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Abstract. The problem discussed in this paper is the symmetric best low multilinear rank
approximation of third-order symmetric tensors. We propose an algorithm based on Jacobi rotations,
for which symmetry is preserved at each iteration. Two numerical examples are provided indicating
the need for such algorithms. An important part of the paper consists of proving that our algorithm
converges to stationary points of the objective function. This can be considered an advantage of the
proposed algorithm over existing symmetry-preserving algorithms in the literature.
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1. Introduction. Higher-order tensors (three-way arrays) have been used as a
tool in higher-order statistics [39, 36, 47, 38] and independent component analysis
(ICA) [13, 14, 19, 9] for several decades. Other application areas include chemo-
metrics, scientific computing, biomedical signal processing, image processing, and
telecommunications. For an exhaustive list and references we refer to [46, 34, 32, 8, 12].

Let us first consider the general low multilinear rank approximation of third-
order tensors. The problem consists of finding the best approximation of a given
tensor A ∈ R

I1×I2×I3 , subject to a constraint on the multilinear rank of the approxi-
mation. The concept of multilinear rank was first introduced in [25, 26] and is simply
a generalization of the row and column rank of matrices to higher-order tensors. We
define the problem more precisely in the next section.

A closed-form solution of the best low multilinear rank approximation problem is
not known. A generalization of the singular value decomposition (SVD) [23, sect. 2.5]
called higher-order SVD (HOSVD) has been studied in [15]. A variation of this
decomposition is know as the Tucker decomposition [49, 50]. In general, truncation
of the HOSVD leads to a good but not necessarily to the best low multilinear rank
approximation. Recent iterative algorithms solving the problem include geometric
Newton [21, 29], quasi-Newton [45], trust-region [27], and particle swarm optimization
[4] algorithms. In [44], a Krylov subspace algorithm is proposed for large sparse
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tensors. The most widely used algorithm is still the one based on alternating least
squares [16, 34, 35, 3, 48] because of its simplicity and its satisfying performance. We
will refer to it as higher-order orthogonal iteration (HOOI). It is worth mentioning
that the objective function associated with the problem may have several stationary
points [28] and none of the iterative algorithms is guaranteed to converge to the global
optimum. Most of the algorithms, however, converge to local optima.

In this paper, we deal with symmetric tensors and symmetric approximations.
Symmetric (also called supersymmetric) tensors are tensors invariant to permutation
of the indices. Symmetric tensors have been studied in [10] in relation to the par-
allel factor decomposition (PARAFAC) [24], also known as canonical decomposition
(CANDECOMP) [7]. The goal there is to decompose a tensor into a (symmetric) sum
of outer products of vectors (rank-1 terms). Symmetric tensors naturally appear, for
example, when dealing with higher-order statistics in the context of ICA [9, 14]. The
low multilinear rank approximation that is considered in this paper can then be used
as a dimensionality reduction tool for ICA [19]. As mentioned in [45], finding the
best approximation in the case of symmetric tensors is to a large extent different
from the general case. Algorithms dedicated to the symmetric case are studied to
a lesser extent. A symmetric version of HOOI for the special case of rank-1 tensors
is mentioned in [16] and further studied in [31, 42, 33]. In [16] the special case of
symmetric (2× 2× · · · × 2)-tensors and their rank-1 approximation is studied as well.
An algorithm for the general symmetric case, based on the quasi-Newton method, is
presented in [45]. Recently, an algorithm exploiting the gradient inequality of convex
functionals has been proposed in [41].

We develop an algorithm for symmetric tensors, based on Jacobi rotations. The
symmetry is preserved at each iteration. The main subproblem reduces to maximiz-
ing a polynomial of degree six (or of degree 2N for Nth order tensors) and finding
the value at which the maximum is reached. The main computational cost is due to
updating (parts of) the tensor at each rotation. With respect to convergence speed
and cost per iteration, the proposed Jacobi algorithm has similar properties as the
general HOOI algorithm, i.e., linear convergence and low cost per iteration. Our al-
gorithm is, however, especially designed for symmetric tensors. HOOI can be used
to solve the symmetric problem as well, but the intermediate steps are not symmet-
ric in general. The solutions found by HOOI on the other hand are reported to be
symmetric, although there is no proof that this would always be the case. There
might be examples where nonsymmetric solutions are at least as good as the best
symmetric ones with respect to the associated objective function. Moreover, if the
symmetry is taken into account, the number of floating point operations is reduced.
In practice, as discussed in section 3.1, in problems with small multilinear rank HOOI
tends to converge faster, whereas for approximations with large multilinear rank,
our proposed algorithm outperforms HOOI. Finally, in the case of large scale prob-
lems, the standard algorithm for SVD would not work and SVD has to be computed
in a different way, e.g., based on the power method. This would affect the imple-
mentation and performance of HOOI. On the other hand, our algorithm is based
on simpler operations and has the potential to handle the large scale case without
change.

The symmetric version of HOOI for rank-1 approximations, called symmetric
higher-order power method (S-HOPM) [31, 42], converges for even-order tensors un-
der some additional assumptions (convexity of the functional induced by the tensor).
However, examples for which it does not converge can be easily constructed (see sec-
tion 4.2). Recently, an improved shifted version of S-HOPM (SS-HOPM) for the
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Table 1.1

Comparison of different algorithms w.r.t. their convergence properties and symmetry of the
solution.

Symmetric Global convergence Remarks
solution to stationary points

HOOI [16, 35, 3, 48] in practice in practice + simple, widely used
– nonsym. intermediate steps

Simple sym. HOOI yes may not converge

S-HOPM [31, 42] yes yes: rank-1 only – additional assumptions

SS-HOPM [33] yes yes: rank-1 only – additional shift parameter
(can affect performance)

Quasi-Newton [45] yes in practice

Regalia [41] yes yes1 – empirical parameter tuning

Jacobi (our method) yes yes

rank-1 case has been suggested in [33], where convergence to local optima is guaran-
teed. Note, however, that the proposed Jacobi algorithm has the advantage of being
able to compute solutions of higher rank as well. The quasi-Newton algorithm [45]
is expected to converge to stationary points. The proposed new algorithm solves
the general case of third-order symmetric tensors, and we prove that it converges to
stationary points. An advantage of the proposed algorithm over the one in [45] is
our comprehensive convergence analysis. Finally, we briefly compare the proposed
algorithm with the one presented in [41]. The complexity of the two algorithms is
comparable. The algorithm of [41] relates to steepest descent and can be interpreted
as a generalized power method [30, sect. 3.4], [43], whereas the proposed Jacobi al-
gorithm is akin to a coordinate search method. Steepest descent tends to converge
faster than coordinate search in terms of the number of iterations. However, the cost
per iteration tends to be lower for coordinate search than for steepest descent. The
algorithm of [41] is easily generalizable to higher-order tensors. On the other hand,
in the case the function (2.7) is nonconvex, in [41] it is modified by adding an addi-
tional term, weighted by a constant that needs to be adjusted empirically. (Based on
the aforementioned connection with the generalized power method of [30, sect. 3.4],
[43], the constant can be interpreted as a shift.) Our algorithm is free from such
adjustments. We summarize these comparisons in Table 1.1.

Jacobi-like algorithms for approximating higher-order tensors under certain con-
straints are already available in the literature. However, to the best of our knowl-
edge, this direction has never been explored for finding the best low multilinear rank
approximation of tensors. Jacobi-based algorithms in the literature [9, 18, 17, 5,
6, 37] are designed to solve problems in the framework of ICA or in relation to
PARAFAC/CANDECOMP. The main purpose of the algorithms is simultaneously
diagonalizing a set of matrices or approximately diagonalizing a higher-order tensor.
In [37], for example, the goal is to minimize the values of the off-diagonal elements of
the given tensors via orthogonal transformations. Our algorithm on the other hand
transforms the elements of the tensor so that, except for a small block, all other
elements have small values. The main subproblems are also different. In [37] the
main problem is reduced to solving subproblems for (2 × 2 × 2)-tensors. In our case
more elements are involved. Finally, the proposed algorithm is specially designed for
symmetric tensors.

1This is the case if a parameter γ is large enough; however, too large γ leads to slower convergence.
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This paper is organized as follows. In section 2 the problem of finding the best low
multilinear rank approximation of higher-order tensors is formulated for the general
and for the symmetric case. HOSVD and HOOI are briefly presented as well. In
section 3 we present the new algorithm. Some numerical experiments are shown in
section 4. In section 5 we provide the convergence proof of the proposed algorithm.
We summarize the results of the paper in section 6.

2. Problem formulation. In this section we first provide some basic definitions
and comment on the notation. Then the problem of finding the best low multilinear
rank approximation of a given tensor is formulated in its general form and an invari-
ance property of the objective function is presented. We also briefly present HOSVD
and HOOI. Finally, the main problem for the case of symmetric tensors is formulated.

2.1. Basic definitions and notation. We adopt the notation from [15]. We de-
note tensors by calligraphic letters (A,B, . . .), matrices by boldface capitals (A,B, . . .),
vectors by boldface letters (a,b, . . .), and scalars by lower-case (a, b, . . .) or capital let-
ters (I, J, . . .) if they denote index bounds. Special scalars, such as tensor dimensions,
entries of the multilinear rank, and upper bounds are written in capital letters. The
symbols × and ⊗ stand for the Cartesian and the Kronecker product, respectively.
The identity matrix is denoted by I. 0 stands for a zero matrix. Finally, Op and
St(p, n) denote the orthogonal group (the set of orthogonal (p× p)-matrices) and the
Stiefel manifold (the set of columnwise orthonormal (n × p)-matrices), respectively.
In this paper we consider mainly third-order tensors.

It is useful to havematrix representations of a tensor. In this paper,A(1),A(2),A(3)

are matrix representations of a tensor A ∈ R
I1×I2×I3 , defined in the following way

A(1)(i1,(i2−1)I3+i3) = A(2)(i2,(i3−1)I1+i1) = A(3)(i3,(i1−1)I2+i2) = ai1i2i3 , 1≤in≤In.

These matrices are thus obtained via the juxtaposition of the different “slices” of the
tensor in the three different directions.

The following tensor-matrix products of a tensor A ∈ R
I1×I2×I3 with matrices

M(n) ∈ R
Jn×In are used:

mode-1 product: (j1, i2, i3)-th element of A •1 M(1) is
∑

i1
ai1i2i3m

(1)
j1i1

,

mode-2 product: (i1, j2, i3)-th element of A •2 M(2) is
∑

i2
ai1i2i3m

(2)
j2i2

,

mode-3 product: (i1, i2, j3)-th element of A •3 M(3) is
∑

i3
ai1i2i3m

(3)
j3i3

,

where 1 ≤ in ≤ In, 1 ≤ jn ≤ Jn. These products can be considered as a generalization
of the left and right multiplication of a matrix A with a matrix M. The mode-1
product signifies multiplying the columns (mode-1 vectors) of A with the rows of M(1)

and similarly for the other tensor-matrix products. We also have (A •n M(n))(n) =

M(n)A(n), n = 1, 2, 3.
We will often use the following associativity properties

(A •n N) •m M = (A •m M) •n N = A •n N •m M, m �= n,

(A •n N) •n M = A •n (MN).

Finally, the scalar product of two tensors A,B ∈ R
I1×I2×I3 is

〈A,B〉 =
∑
i1

∑
i2

∑
i3

ai1i2i3 bi1i2i3 , 1 ≤ in ≤ In
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and the Frobenius norm of a tensor A is

‖A‖ =
√
〈A,A〉.

2.2. The general problem. In the general low multilinear rank approximation
problem we look for a tensor Â with bounded multilinear rank such that Â is a
good approximation of a given tensor A. In stricter terms, given A ∈ R

I1×I2×I3

and values R1, R2, R3, the problem is to minimize the least-squares cost function
F : RI1×I2×I3 → R,

(2.1) F : Â 
→ ‖A− Â‖ 2

under the constraints rank(Â(1)) ≤ R1, rank(Â(2)) ≤ R2, rank(Â(3)) ≤ R3.
An equivalent problem [16] is to maximize the function g : St(R1, I1)×St(R2, I2)×

St(R3, I3)→ R,

(2.2) g : (U, V, W) 
→ ‖A •1 UT •2 VT •3 WT ‖ 2

over the columnwise orthonormal matrices U,V, and W. The link between the solu-
tions of (2.1) and (2.2) is given by

(2.3) Â = B •1 U •2 V •3 W,

where B ∈ R
R1×R2×R3 is given by

B = A •1 UT •2 VT •3 WT .

2.3. Invariance property. The cost function g in (2.2) can be reformulated in
a matrix form as follows:

g(U, V, W) = ‖A •1 UT •2 VT •3 WT ‖ 2 = ‖UTA(1)(V ⊗W)‖ 2

= ‖VTA(2)(W ⊗U)‖ 2

= ‖WTA(3)(U⊗V)‖ 2.

It is worth mentioning that g has the following invariance property:

(2.4) g(UQ(1), VQ(2), WQ(3)) = g(U, V, W) ,

where Q(i), i = 1, 2, 3 are orthogonal matrices. This means that we are interested in
the column space of the matrices U,V,W rather than in their exact elements.

2.4. HOSVD. Matrix SVD [23] is widely used due to its numerous useful prop-
erties. One of them is that the best low rank approximation of a matrix is trivially
obtained by truncating the SVD of the given matrix. Tensor HOSVD [15, 49, 50] is a
generalization of SVD to higher-order tensors that has proven to be useful as well. Ev-
ery tensor A ∈ R

I1×I2×I3 can be decomposed as a product of a tensor S ∈ R
I1×I2×I3 ,

called core tensor, and three orthogonal matrices U(n) ∈ R
In×In , n = 1, 2, 3, i.e.,

A = S •1 U(1) •2 U(2) •3 U(3) .

The factors are taken is such a way that the matrix slices of S in any direction are
orthogonal to each other and have decreasing norm (when increasing the indices).
These properties reduce to having a diagonal core matrix if the original tensor is a
second-order tensor, i.e., a matrix.
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In general, it is impossible to obtain a diagonal core tensor (except in the case
of second-order tensors). This is why HOSVD does not trivially lead to the best
low multilinear rank approximation of higher-order tensors. However, due to the
properties of the core tensor, truncation of HOSVD leads to a good approximation
that can be used as a starting point of iterative algorithms.

Computing HOSVD is straightforward and requires computing three SVDs. The
columns of the singular matrices U(n), n = 1, 2, 3 are obtained as the left singular
vectors of A(n), n = 1, 2, 3. The core tensor can then be computed as

(2.5) S = A •1 U(1)T •2 U(2)T •3 U(3)T .

2.5. HOOI. HOOI [16, 34, 35] is an alternating least-squares algorithm for solv-
ing the best low multilinear rank approximation problem. Initialization is often based
on the truncated HOSVD. Only one of the matrices U,V,W in (2.2) is updated at
a time. One iteration step is complete when all the matrices are updated once in a
fixed order.

When, for example, the matrix U is being optimized, the solution is given by the
left R1-dimensional dominant subspace of A(1)(V ⊗W). Updates of V and W are
obtained in a similar way. The convergence rate of HOOI is at most linear.

The main computational cost of one HOOI iteration is forming the matrices of
the form A(1)(V⊗W) and computing their first Rn left singular vectors. We assume
for simplicity that R1 = R2 = R3 = R and I1 = I2 = I3 = I. First, the expression
A(1)(V ⊗W) is a matrix representation of A •2 VT •3 WT . The cost for computing
the product A•2 VT is of order O(I3R) and the cost for computing the product A•2
VT •3WT , given A•2VT , is O(I2R2). Thus, the computational cost for A(1)(V⊗W)
is of order O(I3R). Second, the computational cost for finding the singular vectors is
approximately 3(6IR4 + 11R6) [23, sect. 5.4.5], i.e., O(IR4 +R6). The total cost for
one iteration of HOOI is then O(I3R+ IR4 +R6) [21, 29].

2.6. The symmetric problem. We look for the best rank-(R,R,R) approxi-
mation Â ∈ R

I×I×I of a symmetric third-order tensor A ∈ R
I×I×I . Â has to be a

symmetric tensor that minimizes the least-squares cost function Fs : R
I×I×I → R,

(2.6) Fs : Â 
→ ‖A− Â‖ 2

under the constraint rank1(Â) ≤ R (i.e., rank(Â(1)) ≤ R).
Instead of minimizing the cost function (2.6) we will solve the equivalent problem

(see [16]) of maximizing the function gs : St(R, I)→ R,

(2.7) gs : U 
→ ‖A •1 UT •2 UT •3 UT ‖ 2

over the columnwise orthonormal matrix U. After determining U, the optimal tensor
Â can be computed as

(2.8) Â = B •1 U •2 U •3 U,

where B ∈ R
R×R×R is given by

B = A •1 UT •2 UT •3 UT .

Note that the function (2.7) also has the invariance property described in section 2.3.
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3. Jacobi algorithm. The main idea of the proposed algorithm is to apply
rotations on the given tensor A in order to increase the norm of its (R × R × R)-
subtensor with smallest indices (visualized as an (R × R × R) top-left-front block in
Figure 3.1).

Let A be a given tensor. We define f : OI → R to be the function

(3.1) f : Q 
→ gs(U),

where Q =
[
U U⊥

]
, U ∈ St(R, I), and U⊥ is the orthogonal complement of U.

(Recall that OI is the set of all orthogonal matrices of size (I × I).)
Then, maximizing gs from (2.7) with respect to U is equivalent to maximizing f

with respect to Q =
[
U U⊥

]
. Note that we can rewrite the function f as

f(Q) = ‖A •1 MQT •2 MQT •3 MQT ‖2

= ‖MQT A(1)((QM)⊗ (QM))‖2,

where M =
(
IR 0
0 0

)
∈ R

I×I .

3.1. Main idea. It is difficult to find such Q directly. On the other hand, let
1 ≤ m ≤ R < n ≤ I and let Gm,n,θ be a modified (I × I) identity matrix with
Gm,n,θ(m,m) = Gm,n,θ(n, n) = cos θ, Gm,n,θ(m,n) = − sin θ, Gm,n,θ(n,m) = sin θ,
i.e.,

Gm,n,θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . . 0

cos θ − sin θ
. . .

sin θ cos θ

0
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where by “0” (boldface zero) we indicate that all elements that are not specified are
equal to zero. For a fixed pair (m,n) it is possible to exactly maximize f(Gm,n,θ)
with respect to the angle θ. The procedure is explained in section 3.2.

This can be used to develop an iterative algorithm for the best symmetric low
multilinear rank approximation of a symmetric A ∈ R

I×I×I in the following way. We
initialize by setting Q1 = II and T1 = A , where II is the (I × I) identity matrix. At
each step we find an optimal Gmk,nk,θk for the current Tk. The current approximation
Qk of Q is updated by

Qk+1 = Qk Gmk,nk,θk .

We also modify the current working tensor Tk by

Tk+1 = Tk •1 GT
mk,nk,θk

•2 GT
mk,nk,θk

•3 GT
mk,nk,θk

.

Note that

Tk+1 = (A •1 QT
k •2 QT

k •3 QT
k ) •1 GT

mk,nk,θk
•2 GT

mk,nk,θk
•3 GT

mk,nk,θk

= A •1 (QkGmk,nk,θk)
T •2 (QkGmk,nk,θk)

T •3 (QkGmk,nk,θk)
T

= A •1 QT
k+1 •2 QT

k+1 •3 QT
k+1.
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The pairs (mk, nk) are chosen from the following possibilities:

(3.2) (1, R+ 1), (1, R+ 2), . . . , (1, I), (2, R+ 1), . . . , (R, I).

In order to ensure convergence to stationary points, we need to choose the pairs (m,n)
carefully. Well-known strategies from matrix algorithms are the so-called threshold
Jacobi and cyclic Jacobi. As will be shown in section 5, it is sufficient to choose each
pair (m,n) such that

(3.3) |〈grad f(Q), dm,n(Q)〉| ≥ ε‖gradf(Q)‖,

where dm,n(Q) = QĠm,n,θ=0, 1 ≤ m ≤ R < n ≤ I, ε is small, and we have used

Ġm,n,θ=0 to denote d
dθGm,n,θ

∣∣
θ=0

. Condition (3.3) is crucial in the convergence anal-
ysis. It guarantees that the sequence of search directions dm,n(Q) (up to orientation
flipping) is gradient related in the sense of [1, Def. 4.1]. It is then possible to conclude
the analysis using [1, Thm. 4.3], or by relying on a fundamental result by Polak [40,
sect. 1.3, Thm. 3] as we will do in section 5. We show in Lemma 5.2 that it is always
possible to find m and n that satisfy (3.3). In practice, however, to speed up the
algorithm, one could just cycle through all pairs in (3.2).

The whole procedure is summarized in Algorithm 1.2

Algorithm 1. Jacobi-based algorithm for minimizing (2.6).

Input: Higher-order tensor A ∈ R
I×I×I , a number R, R < I, and initial Q1 and T1.

(Q1 = II and T1 = A can be used as default values.)
Output: Projection matrix U ∈ St(R, I) and a rank-(R,R,R) approximation Â =
A•1 (UUT )•2 (UUT )•3 (UUT ) of A, corresponding to a stationary point of (2.6).

1: Set ε such that 0 < ε ≤ 2
I (see remark 4 below).

2: for k = 1, 2, . . . until a stopping criterion is satisfied do
3: Choose (mk, nk), 1 ≤ mk ≤ R < nk ≤ I, such that

|〈grad f(Qk), dmk,nk
(Qk)〉| ≥ ε‖gradf(Qk)‖,

where dmk,nk
(Qk) = QkĠmk,nk,θ=0, and Gmk,nk,θ is a modified (I×I) identity

matrix with

Gmk,nk,θ(mk,mk) = Gmk,nk,θ(nk, nk) = cos θ,

Gmk,nk,θ(mk, nk) = − sin θ, Gmk,nk,θ(nk,mk) = sin θ.

4: Maximize f(Gmk,nk,θ) for the tensor Tk with respect to θ (Algorithm 2).
5: Set Qk+1 = QkGmk,nk,θk where θk is a choice of an optimal θ from the previous

step.
6: Set Tk+1 = Tk •1 GT

mk,nk,θk
•2 GT

mk,nk,θk
•3 GT

mk,nk,θk
.

7: end for
8: Take the first R columns of Qk+1 as columns of U, i.e., Qk+1 =

[
U U⊥

]
.

9: Set Â = (A •1 UT •2 UT •3 UT ) •1 U •2 U •3 U.

2Note that R(I − R) is also the number of degrees of freedom that we have for the unknown
matrix U; see the invariance property (2.4). R(I − R) is actually the dimension of the Grassmann
manifold Gr(R, I).
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Remarks.
1. Algorithm 1 is a descent algorithm. A proof of convergence to stationary

points is presented in section 5.
2. As explained in section 2.4, truncated HOSVD generally provides a good

starting point for iterative algorithms. We can use it in Algorithm 1 as well
by setting Q1 = U(1) and T1 = S, where U(1) and S are as in (2.5). (Note
that in the symmetric case, U(1) = U(2) = U(3).)

3. There are different options concerning the stopping criterion. A simple ap-
proach is to stop after a prespecified number of iterations has been reached or
when there is (almost) no change in the column space of the U matrix. An-
other strategy would be to consider the gradient of the objective function and
to stop when it reaches (almost) zero. The latter would guarantee convergence
to a stationary point (see section 5) but would increase the computational
time since it involves additional computations that are not necessary for the
working of the algorithm.

4. The angle condition (3.3) on (mk, nk) ensures convergence to stationary
points (see Theorem 5.4). As we will see in Lemma 5.2, the condition
0 < ε ≤ 2

I guarantees that there is at least one admissible (mk, nk). Note
that for generic A, cycling through all pairs in (3.2) can be made admissible
for an arbitrarily large number of steps by choosing ε small. In practice, we
recommend taking ε� 1.

5. If we assume that all pairs (m,n) are acceptable, the cost per sweep (R(I−R)
iterations) is O(R(I −R)I2), i.e., O(I3R) under the assumption that R� I.
This is similar to the cost of one HOOI iteration, and it is also expected that
one Jacobi sweep does a similar job as one HOOI iteration. The computa-
tionally heaviest operation in the Jacobi-based algorithm is the update of the
tensor (step 6). Note that we need to update only six matrices (and not all the
elements of the tensor due to the sparse structure of the rotation matrices).
We have T (m, :, :) := cos θ T (m, :, :) + sin θ T (n, :, :), where we have used the
notation from MATLAB T (i, :, :) to denote the ith horizontal slice of T . The
cost for such update is 3I2, or (approximately) 3I2/2 if we take into account
that the matrices are symmetric. The total for the six matrix updates is then
9I2. However, since the resulting tensor is also symmetric, we do not actually
need to compute all six matrices but only two of them3 (with respect to one
of the modes), i.e., the final cost for one tensor update is 3I2. Within one
sweep, there are R(I − R) iterations, which in the case R � I leads to the
total cost of O(I3R) per sweep with leading coefficient 3. The corresponding
coefficient for HOOI is 6 [21], i.e., two times larger. We also mention, how-
ever, that the Jacobi-based method has the disadvantage of being fine-grained
(based on BLAS 1 operations, as opposed to BLAS 3 operations for HOOI),
which implies that complexity based on operation counts does not reflect the
full picture. Indeed, in numerical experiments, we have observed that HOOI
often converges faster than the Jacobi-based algorithm. However, note that
for large R (i.e., R ≈ I), the cost for computing HOOI becomes O(I4) flops,
whereas one iteration of the Jacobi algorithm costs O(R(I−R)I2), i.e., O(I3)
flops. This difference was confirmed in numerical experiments, where the Ja-
cobi algorithm performed consistently faster than HOOI for the cases R ≈ I.

3Although we do need to recompute the vectors at the intersections of two matrices one more
time and the elements at the intersections of three matrices two more times.
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R
R

R

(a) (b) (c)

Fig. 3.1. Elements taking part in the Jacobi update.

The trend is preserved for higher-order tensors as well, namely, for Nth order
tensors and R ≈ I, HOOI would need O(IN+1) flops per iteration, whereas
our algorithm would need only O(IN ) flops per iteration.

6. Since most of the computational time is spent for updating the tensor (step 6),
one may decide to skip certain updates if their effect is much smaller than
recently computed updates. An estimation for the impact of an update can
be the value f(Gmk,nk,θk)− f(I) for the current tensor Tk.

3.2. Choosing a rotation angle θ. Note first that the Frobenius norm of a
tensor T does not change under orthogonal transformations, i.e., if Q ∈ R

I×I is an
orthogonal matrix,

‖T •1 QT •2 QT •3 QT ‖ = ‖T ‖.

Note also that the matrices Gm,n,θ in section 3.1 are orthogonal matrices. Let T =
A •1 QT

k •2 QT
k •3 QT

k . The goal is to maximize the sum of squares of the elements
whose indices are smaller than or equal to R; see the gray cube in Figure 3.1(a). This
is equivalent to minimizing the sum of squares of the elements having at least one
index greater than R. Because of the structure of GT

m,n,θ, its application to T (on all
three modes) changes only the elements having an index equal to m or to n. These
elements form six matrices, two in each direction. The three matrices with anm index
are shown in Figure 3.1(b) for m = R. From these elements, we are only interested
in maximizing the ones that do not have an index greater than R; see Figure 3.1(c).
These elements form three (R×R) matrices (in gray). Each two of the three matrices
intersect in a vector (dotted line), and the three vectors have one common element.

For fixed m and n the optimization problem of maximizing the elements from
Figure 3.1(c) by applying GT

m,n,θ can be solved exactly for θ. Let c = cos θ and

s = sin θ. By applying GT
m,n,θ to T on all three modes, the sum of the squares of the

elements we want to maximize (Figure 3.1(c)) changes from

3

R∑
i,j=1
i,j �=m

T (i, j,m)2 + 3

R∑
i=1
i�=m

T (i,m,m)2 + T (m,m,m)2
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to

ψ(c, s) = 3

R∑
i,j=1
i,j �=m

[cT (i, j,m) + sT (i, j, n)]2

+3
R∑
i=1
i�=m

[c2T (i,m,m) + s2T (i, n, n) + 2csT (i,m, n)]2(3.4)

+ [c3T (m,m,m) + s3T (n, n, n) + 3c2sT (m,m, n) + 3cs2T (m,n, n)]2.

Let ϕ(c, s) = ϕ2(c, s) + ϕ4(c, s) + ϕ6(c, s) be the derivative of ψ(c, s) with respect to
θ, where ϕi(c, s) is a homogeneous polynomial of degree i in c and s, i = 2, 4, 6. It
is possible to transform ϕ(c, s) = 0 to a homogeneous equation of degree six in the
following way:

ϕ2(c, s)(c
2 + s2)2 + ϕ4(c, s)(c

2 + s2) + ϕ6(c, s) = 0.

This can now be reduced to a polynomial equation

(3.5) P (t(θ)) = 0

of degree six in t = s/c. We then look for the solution of (3.5) that maximizes ψ(c, s).
If ψ(c(θ), s(θ)) achieves its maximum at two points θ1 and θ2, we choose the one with
smaller |θ|. (If both θ and −θ maximize ψ(c, s), we choose the positive one.) The
algorithm is summarized in Algorithm 2.

Algorithm 2. Choosing the optimal angle θ for step 4 in Algorithm 1.
Input: T , R, m, n.
Output: θ.
1: Form ψ(c, s) as in (3.4).
2: Compute ϕ(c, s), the derivative of ψ(c, s) with respect to θ.
3: Compute the coefficients of P (t) from (3.5).
4: Find all zeros of P (t) = 0.
5: Choose θ as the zero of P (t(θ)) = 0 for which ψ(c, s) has the highest value.

In the special case where we are looking for the best rank-1 approximation of
symmetric (2 × 2 × 2)-tensors, our formulas reduce to the formulas derived in [16,
sect. 3.5].

The proposed Jacobi algorithm is generalizable to tensors of order higher than 3,
but the formulas would become much more involved. For Nth order tensors, we need
to multiply T by N matrices each time, which would result in solving polynomial
equations of degree 2N .

4. Examples. The advantages of the new algorithm are that it serves a spe-
cific purpose and has well-understood convergence behavior. We do not claim speed
improvement with respect to HOOI or symmetric quasi-Newton.

The examples proposed in this section illustrate the need of reliable symmetric
algorithms. The convergence proof of the algorithm will be given in the next section.
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4.1. Partial symmetry. Consider the following example [11]:

A = a ◦ b ◦ c+ b ◦ c ◦ a+ c ◦ a ◦ b,

where ◦ stands for the outer product of vectors and a,b, c ∈ R
n have unit norm and

are orthogonal to each other. We have

A(i, j, k) = A(j, k, i) = A(k, i, j),

i.e, A is partially symmetric. However, it appears that its best rank-(1, 1, 1) approxi-
mation does not have the same partial symmetry in general.

For example, let us take

a =

⎛
⎝ −0.6060

0.3195
0.7285

⎞
⎠ , b =

⎛
⎝ 0.7955

0.2491
0.5524

⎞
⎠ , c =

⎛
⎝ −0.00500.9143
−0.4051

⎞
⎠ .

Then

A(:, :, 1) =

⎛
⎝ 0.0072 −0.4413 0.1941
−0.4413 0.0940 0.5901
0.1941 −0.4099 −0.1012

⎞
⎠ ,

A(:, :, 2) =

⎛
⎝ −0.4413 0.0940 −0.4099

0.0940 0.2183 0.2950
0.5901 0.2950 0.2229

⎞
⎠ ,

A(:, :, 3) =

⎛
⎝ 0.1941 0.5901 −0.1012
−0.4099 0.2950 0.2229
−0.1012 0.2229 −0.4891

⎞
⎠ ,

where we have used the notation from MATLAB A(:, :, i) to denote the i-th frontal
slice of A. If we initialize with the truncated HOSVD and run HOOI on this example,
for the rank-(1, 1, 1) approximation Â of A we get

Â(:, :, 1) =

⎛
⎝ 0.0024 −0.0013 −0.0029
−0.4408 0.2324 0.5299
0.1953 −0.1030 −0.2348

⎞
⎠ ,

Â(:, :, 2) =

⎛
⎝ 0.0008 −0.0004 −0.0009
−0.1380 0.0728 0.1659
0.0612 −0.0322 −0.0735

⎞
⎠ ,

Â(:, :, 3) =

⎛
⎝ 0.0017 −0.0009 −0.0020
−0.3061 0.1614 0.3679
0.1356 −0.0715 −0.1630

⎞
⎠ .

As can be seen, the partial symmetry has been lost.
In [20] the authors consider another type of partial symmetry

A(i, j, k) = A(j, i, k),

i.e, symmetry with respect to the first and second mode of the tensor. They show that
rank-1 CANDECOMP approximation usually preserves this partial symmetry and
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that previous counterexamples were actually saddle points instead of local minima.
Although it is not excluded that CANDECOMP converges to a saddle point, this does
not happen often in practice. Note, however, that the partial symmetry considered
in this subsection

A(i, j, k) = A(j, k, i) = A(k, i, j)

is different. The solution above is not a saddle point but a (local or global) minimum
of F in (2.1).

Whether it is possible to construct similar examples for (super)symmetric tensors
remains an open question; see [22]. However, the above example indicates that it is not
trivial to assume that the best rank-(R,R,R) approximation of a symmetric tensor
would be symmetric. Note also that in applications involving symmetric tensors, one
looks for a symmetric approximation in general. Thus, algorithms seeking the best
rank-(R,R,R) symmetric approximation of a given symmetric tensors should be used.

4.2. Symmetric example. In this section we present an example for which the
symmetric HOOI algorithm does not converge.

Consider the symmetric tensor

(4.1)

A(:, :, 1) =

⎛
⎝ 1.2753 −0.5811 −0.0725
−0.5811 −0.8475 0.0379
−0.0725 0.0379 −1.0573

⎞
⎠ ,

A(:, :, 2) =

⎛
⎝ −0.5811 −0.8475 0.0379
−0.8475 −1.0771 −0.6544
0.0379 −0.6544 −0.7375

⎞
⎠ ,

A(:, :, 3) =

⎛
⎝ −0.0725 0.0379 −1.0573

0.0379 −0.6544 −0.7375
−1.0573 −0.7375 0.1491

⎞
⎠

and let R = 2. The convergence behavior of HOOI, symmetric HOOI, and the Jacobi
algorithm for computing the rank-(2, 2, 2) approximation of A is presented in Fig-
ure 4.1. The algorithms were initialized with truncated HOSVD and stopped after
computing 50 iterations (HOOI)/sweeps (Jabobi) each. HOOI and Jacobi converged
to the same solution. Symmetric HOOI did not converge for this example. However,
we mention that for examples of this size, symmetric HOOI usually converges as well.

The Jacobi-type algorithm proposed in this paper is of the same class of algorithms
as HOOI with respect to convergence speed and flop count, but our algorithm is
guaranteed to converge to stationary points (of the symmetric problem) as shown in
section 5.

Moreover, in the case of early stopping, i.e., if HOOI is stopped after a num-
ber of iterations but before fully converging, the computed approximation would not
necessarily be symmetric. For the example considered in this subsection, if HOOI is
stopped after 10 iterations, which from Figure 4.1 seems to be a reasonable number,
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Fig. 4.1. Convergence behavior of HOOI, symmetric HOOI, and the Jacobi algorithm for the
tensor in (4.1). Truncated HOSVD was used for the initialization. R = 2.

the corresponding approximation ÂHOOI is

ÂHOOI(:, :, 1) =

⎛
⎝ −0.2823 −0.4068 0.0714
−0.4064 −0.6696 −0.1381
0.0708 −0.1379 −0.7070

⎞
⎠ ,

ÂHOOI(:, :, 2) =

⎛
⎝ −0.4068 −0.6699 −0.1375
−0.6696 −1.2139 −0.5455
−0.1380 −0.5453 −0.9599

⎞
⎠ ,

ÂHOOI(:, :, 3) =

⎛
⎝ 0.0714 −0.1375 −0.7079
−0.1381 −0.5455 −0.9597
−0.7070 −0.9599 0.3477

⎞
⎠ ,

This approximation is close to symmetric but not symmetric. Thus, the proposed
Jacobi-based algorithm and all other algorithms preserving symmetry throughout the
iterations have an advantage in case of early stopping.

A fix to the nonsymmetric early stopping of HOOI could be to symmetrize the
solution as follows:

Â(i, j, k)← (Â(i, j, k) + Â(i, k, j) + Â(j, i, k) + Â(j, k, i) + Â(k, i, j) + Â(k, j, i))/6.

However, by this operation the rank of the approximation could change. Another
option is to use one of the three component matrices U,V,W of the HOOI solution
as initialization to the Jacobi or other symmetry-preserving algorithms. Whether
these approximations would be useful for initialization remains a topic of further
research.

Finally, for the same example (4.1), we also compared the Jacobi algorithm to
the recent algorithm in [41]. The latter has an additional parameter γ that has to
be adjusted empirically. For the algorithm to converge, γ has to be large enough;
however, for too large values of γ the convergence becomes slower. We tested with
different values. The results for γ = 0 and 10 other values γ = 2i, i = −3, . . . , 6 are
presented in Figure 4.2. As expected, the algorithm is convergent for γ larger than
some threshold (here approximately 0.5). In terms of iterations, it was faster than the
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Fig. 4.2. Convergence behavior of the algorithm in [41] for different values of the parameter
γ, compared to the Jacobi algorithm on the tensor in (4.1). Truncated HOSVD was used for the
initialization. R = 2.

Jacobi algorithm for values close to γ = 4. However, it is a priori unknown for which
values of the parameter this would be the case. Our algorithm on the other hand
is free from empirical adjustments. Moreover, it performs similarly to the algorithm
in [41] even for the cases where γ is chosen optimally. In other similar experiments,
γ = 0 already leads to a convergent sequence and these cases also correspond to
symmetric HOOI algorithm being convergent as well. In larger examples we observed
different possible scenarios, including convergence of the two algorithms to different
local maxima.

We also note that all algorithms assume that the rank of the approximation is
given in advance. Computing the correct multilinear rank is an important open prob-
lem. However, in general, Tucker-type approximations (low multilinear rank approx-
imations) are less sensitive than PARAFAC to underestimation or overestimation of
the multilinear rank. This is because Tucker-type approximations are closer in nature
to the matrix low rank approximation problem.

5. Convergence proof. In this section we prove that every accumulation point
of a sequence generated by the proposed algorithm is a stationary point of (3.1).
We first prove three lemmas. Lemma 5.1 presents the structure of the gradient of f
from (3.1). This is used in Lemma 5.2 in order to prove that if a point Q is not a
stationary point, then there exists a rotation Gm,n,θ that would increase the value
of f . Lemma 5.3 uses Lemma 5.2 to show that if Q is not a stationary point, then
for any point in a small enough neighborhood around Q, applying one step of the
algorithm would improve the value of f by an increment that is bounded away from
zero.

Finally, based on Polak’s theorem [40, sect. 1.3, Thm. 3] we can prove our main
result by contradiction. Assume that there is an accumulation point Q that is not a
stationary point and take a subsequence {Qj}j∈K that converges to Q. Then after a
certain step, the distance between each point of the subsequence and Q would stay
small enough, and from Lemma 5.3 we have that the value of f(Qj) would continue
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to increase without bound as j → ∞. However, since f is continuous and {Qj}j∈K

converges, {f(Qj)}j∈K should converge too, which is a contradiction.
Lemma 5.1. The gradient of f has the structure

gradf(Q) = Q

⎛
⎝ 0R C

−CT 0

⎞
⎠

for some matrix C ∈ R
R×(I−R).

Proof. Recall that f : OI → R. We define an auxiliary function f̃ : RI×I → R as

f̃ : Q 
→ ‖A •1 MQT •2 MQT •3 MQT ‖2,

i.e., f is the reduction of f̃ to OI . (f̃ performs the same operation on its argument
as f does but f̃ is defined on a larger domain.) Note that gradf(Q) and grad f̃(Q)
are matrices of the same size as Q. In order to compute gradf(Q) we will first
compute grad f̃(Q). Then gradf(Q) is obtained by projecting grad f̃(Q) onto the
tangent space at Q to the manifold OI , i.e.,

grad f(Q) = PQ(grad f̃(Q)).

From the theory of matrix manifolds, it is known that the tangent space at Q to OI

is

TQOI = {Z = QΩ : ΩT = −Ω} = QSskew.

Let skew(B) = (B−BT )/2. The projection onto the tangent space is [2, Ex. 3.6.2]

PQZ = Q skew(QTZ) = Q(QTZ− ZTQ)/2.

It remains to compute grad f̃(Q). From the definition of f̃(Q) we have

f̃(Q) = 〈A •1 MQT •2 MQT •3 MQT , A •1 MQT •2 MQT •3 MQT 〉.

The differential of f̃ is then
(5.1)

Df̃(Q)[ZQ] = 〈A •1 MZT
Q •2 MQT •3 MQT , A •1 MQT •2 MQT •3 MQT 〉

+ 〈A •1 MQT •2 MZT
Q •3 MQT , A •1 MQT •2 MQT •3 MQT 〉

+ 〈A •1 MQT •2 MQT •3 MZT
Q, A •1 MQT •2 MQT •3 MQT 〉

+ 〈A •1 MQT •2 MQT •3 MQT , A •1 MZT
Q •2 MQT •3 MQT 〉

+ 〈A •1 MQT •2 MQT •3 MQT , A •1 MQT •2 MZT
Q •3 MQT 〉

+ 〈A •1 MQT •2 MQT •3 MQT , A •1 MQT •2 MQT •3 MZT
Q〉

)
.

All summands in (5.1) have the same value. Consider, for example, the first two of
them. They are equivalent since A is symmetric and thus A•1MQT •2MZT

Q •3MQT

can be obtained from A •1 MZT
Q •2 MQT •3 MQT by permuting its elements. (The

corresponding permuted version of A•1 MQT •2 MQT •3 MQT is still A•1 MQT •2
MQT •3MQT .) Similarly, we can show that the rest of the summands have the same
value as well. Note that MT = M and MM = M. To simplify the notation, we



SYMMETRIC TENSOR APPROXIMATIONS BY JACOBI ROTATIONS 667

will write (QM⊗QM) for ((QM)⊗ (QM)). Taking into account that trace(AB) =
trace(BA) for any two matrices A and B,

Df̃(Q)[ZQ] = 6 〈A •1 MZT
Q •2 MQT •3 MQT , A •1 MQT •2 MQT •3 MQT 〉

= 6 〈MZT
QA(1)(QM⊗QM), MQTA(1)(QM ⊗QM)〉

= 6 trace
(
MZT

QA(1)(QM⊗QM)(QM⊗QM)TAT
(1)QM)

= 6 trace
(
ZT
QA(1)(QM⊗QM)(QM⊗QM)TAT

(1)QMM)

= 6 〈ZQ, A(1)(QM⊗QM)(QM⊗QM)TAT
(1)QM〉.

From the latter expression we can conclude that

grad f̃(Q) = 6 A(1)(QM⊗QM)(QM⊗QM)TAT
(1)QM.

Finally, for gradf(Q) we have

grad f(Q) = PQ(grad f̃(Q))

= PQ

(
6 A(1)(QM⊗QM)(QM⊗QM)TAT

(1)QM
)

= 6 Q skew
(
QT A(1)(QM⊗QM)(QM⊗QM)TAT

(1)QM
)

= 6 Q
(
QT A(1)(QM⊗QM)(QM⊗QM)TAT

(1)QM

−MQTA(1)(QM⊗QM)(QM⊗QM)TAT
(1)Q

)
/2

= 3 Q
(
SM−MS

)
,

where S = QT A(1)(QM ⊗ QM)(QM ⊗ QM)TAT
(1)Q. Note that ST = S, i.e.,

S =
(

S11 S12

ST
12 S22

)
with S11 ∈ R

R×R, S12 ∈ R
R×(I−R),S22 ∈ R

(I−R)×(I−R). Then

SM−MS =

(
S11 0
ST
12 0

)
−
(

S11 S12

0 0

)
=

(
0 −S12

ST
12 0

)
,

and thus if we set C = −3S12,

grad f(Q) = Q

⎛
⎝ 0R C

−CT 0

⎞
⎠ ,

which concludes the proof.
Lemma 5.2. For every orthogonal Q and every 0 < ε ≤ 2

I there exists a direction
dm,n(Q) such that

|〈grad f(Q), dm,n(Q)〉| ≥ ε‖gradf(Q)‖.

Proof. If grad f(Q) = 0 the equality holds trivially. Let grad f(Q) �= 0 and N :=(
0R C

−CT 0

)
. Recall from Lemma 5.1 that gradf(Q) = Q

(
0R C

−CT 0

)
, i.e., gradf(Q) =

QN. Let 1 ≤ m ≤ R < n ≤ I be such that |N(m,n)| = max1≤i,j≤I |N(i, j)| > 0 and
let x := N(m,n). Then

(5.2) ‖gradf(Q)‖ = ‖QN‖ = ‖N‖ =
√ ∑

1≤i,j≤I

(N(i, j))2 ≤
√
I2x2 = I|x|.
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Consider next Ġm,n,θ=0 :

Ġm,n,θ=0 =
d

dθ
Gm,n,θ

∣∣∣∣
θ=0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

− sin 0 − cos 0

cos 0 − sin 0
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0 −1

1 0
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where by “0” (boldface zero) we indicate that all elements that are not explicitly
specified are equal to zero. Then

dm,n(Q) = QĠm,n,θ=0 = Q

⎛
⎜⎜⎜⎜⎜⎝

0 0
−1

. . .

1
0 0

⎞
⎟⎟⎟⎟⎟⎠ .

We have

(grad f(Q))Tdm,n =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −x *

x 0

*

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
NT

QT Q

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1
0

0
1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

︸ ︷︷ ︸
Ġm,n,θ=0

where we use “*” to denote a block of irrelevant entires, except for the ones that are

explicitly specified. Thus
(5.3)

〈grad f(Q), dm,n(Q)〉 = trace((grad f(Q))T dm,n) = trace(NTQTQĠm,n,θ=0)

= trace(NT Ġm,n,θ=0) = −2x.

We now have

|〈grad f(Q), dm,n(Q)〉| = 2|x| = 2

I
I|x| ≥ 2

I
‖gradf(Q)‖ ≥ ε‖gradf(Q)‖,

which completes the proof of the lemma.
Let a : OI → 2OI be the set-valued function such that for all Q ∈ OI , a(Q) is

the set of all Qk+1 that can be generated from Qk = Q by steps 3–5 of Algorithm 1.
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Note that function a is set-valued because there is, in general, more than one possible
choice for (mk, nk) in step 3 and for θk in step 5.

Lemma 5.3. For every orthogonal Q such that grad f(Q) �= 0 there exist η > 0
and δ > 0 such that

f(Q′)− f(Q) ≥ δ > 0 for all Q ∈ Bη(Q) and all Q′ ∈ a(Q),

where Bη(Q) = {Q : ‖Q−Q‖ ≤ η}.
Proof. Let Q be such that grad f(Q) �= 0. Since f ∈ C∞, there exists η > 0 such

that ε1 := minQ∈Bη(Q) ‖gradf(Q)‖ > 0. Let ε be as in Algorithm 1. Define hQ,m,n :

R → R : θ 
→ f(QGm,n,θ). Let M = maxQ∈Bη(Q),1≤m≤R<n≤I,θ∈R
|h′′Q,m,n(θ)|; since

hQ,m,n is smooth and 2π periodic, M <∞. Let δ =
ε2ε21
2M .

Let Qk ∈ Bη(Q), and let Qk+1, mk, nk, and θk be obtained from steps 3–5 of
Algorithm 1. We show that f(Qk+1)− f(Qk) ≥ δ, hence the claim.

To lighten the notation, we denote hQk,mk,nk
by hk, i.e., hk(θ) := f(QkGmk,nk,θ).

Note that

(5.4) f(Qk) = hk(0) and f(Qk+1) = max
θ
hk(θ).

In view of step 3 of Algorithm 1, we have

‖h′k(0)‖ = |〈gradf(Qk Gmk,nk,0),Qk Ġmk,nk,0〉|
= |〈gradf(Qk), dmk,nk

(Qk)〉| ≥ ε‖gradf(Qk)‖.

Thus

(5.5) ‖h′k(0)‖ ≥ ε min
Q∈Bη(Q)

‖gradf(Q)‖ = εε1 > 0.

The Taylor expansion of hk around 0 is given by

hk(θ) = hk(0) + h′k(0)θ +
1

2
h′′k(ξ)θ

2

≥ hk(0) + h′k(0)θ −
1

2
Mθ2,

where 0 ≤ ξ ≤ θ. For θ = (
h′
k(0)
M ), this yields

hk

(
h′k(0)
M

)
− hk(0) ≥ h′k(0)

h′k(0)
M

− 1

2
M

(
h′k(0)
M

)2

=
1

2

(h′k(0))
2

M
≥ ε2ε21

2M
= δ.

Hence, in view of (5.4), we have that f(Qk+1) − f(Qk) = maxθ hk(θ) − hk(0) ≥
hk(

h′
k(0)
M )− hk(0) ≥ δ, and the claim is proved.
Theorem 5.4. Every accumulation point of the sequence {Qj}j≥1 constructed

by Algorithm 1 is a stationary point of f .
Proof. The proof is based on Polak’s theorem [40, sect. 1.3, Thm. 3].
Suppose Q is an accumulation point of Algorithm 1. Then there exist a subse-

quence of {Qj}j≥1 converging to Q, i.e., {Qj}j∈K → Q, where K is the index set of
the subsequence.

Suppose thatQ is not a stationary point of f , i.e., gradf(Q) �= 0. From Lemma 5.3,
there exist η > 0 and δ > 0 such that

f(Qk+1)− f(Qk) ≥ δ > 0
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for all k such that ‖Q − Qk‖ ≤ η. Since {Qj}j∈K converges to Q, there exists an
l ∈ K such that for all j ≥ l, j ∈ K,

‖Q−Qj‖ ≤ η.

Thus for any two consecutive points Qj ,Qj+i of the subsequence with j, j+i ∈ K, j ≥
l we have

f(Qj+i)− f(Qj) ≥ f(Qj+1)− f(Qj) ≥ δ > 0.

Thus, the sequence {f(Qj)}j∈K is not a Cauchy sequence so it does not converge.
On the other hand, since f is continuous and {Qj}j∈K converges to Q, {f(Qj)}j∈K

should converge to f(Q). This is a contradiction, which proves the theorem.

6. Conclusions. In this paper, we have developed an algorithm for solving the
best low multilinear rank approximation problem in the symmetric case. The main
idea of the algorithm is to modify the given symmetric tensor by simultaneously
applying Jacobi rotations on all modes of the tensor. The main subproblem reduces
to finding the point at which a polynomial of degree six (or for general Nth order
tensors of degree 2N) is maximized. The main computational cost is due to the need
of updating (parts of) the tensor at each rotation.

With respect to the number of floating point operations, the proposed algorithm
is of the same class as the currently widely used HOOI when the reduced multilinear
rank R is much smaller than the size I. Because it makes more efficient use of the
BLAS, HOOI is observed to be faster than Jacobi in our MATLAB implementations.
For large multilinear rank, however, the proposed algorithm outperforms HOOI. This
trend is preserved for higher-order tensors as well. Furthermore, for large scale ex-
amples HOOI has to be modified whereas our algorithm can be used without change.
Another advantage of the Jacobi-based algorithm is that it preserves symmetry. HOOI
on the other hand destroys the symmetry during the iterations although it seems to
converge to a symmetric solution. Whether HOOI always converges to a symmetric
solution remains an open question. Empirical evidence as well as Friedland’s recent
result for rank-(1, 1, 1) approximations [22] suggest that the answer might be positive.
But the counterexample for the case of partial symmetry (section 4.1) suggests that
symmetry preservation should not be seen as granted. In any case, preserving symme-
try throughout the iteration can be viewed as an asset in case of early stopping, and
it is known that HOOI does not have this property while the proposed Jacobi-based
algorithm does.

Although it is easy to acquire symmetric versions of existing algorithms, these
versions are not necessarily reliable. The symmetric version of HOOI where the sym-
metry is preserved at each step has convergence problems in several cases. Fixes for
this problem have been proposed in the literature for the case of rank-(1, 1, 1) ap-
proximation [31, 42, 33]. Our algorithm on the other hand has been designed for the
general case of rank-(R,R,R) approximations.

Another benefit of the proposed algorithm is its convergence behavior. We have
proved that it converges to stationary points. Moreover, the algorithm converges
generically to local maxima of the maximization problem. The convergence theory
of the Jacobi-based algorithm can also be seen as an advantage over the recently
proposed symmetric quasi-Newton algorithm [45].

The most recent algorithm proposed in the literature exploits the gradient in-
equality of convex functionals [41]. In the case the function (2.7) is nonconvex, in
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[41] it is modified by adding an additional term, weighted by a constant that needs
to be adjusted empirically. Compared to this algorithm, the main advantage of the
proposed Jacobi algorithm is that it is free from such adjustments.
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