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1. Introduction

Polynomial matrices play an important role in the study of dynamical systems described by sets of

differential-algebraic equations (DAEs) with constant coefficient matrices

Pdx
(d)(t) + · · · + P1x

(1)(t) + P0x(t) = f (t), t � 0, (1)

where x(t) ∈ Cn, f (t) ∈ Cm, Pi ∈ Cm×n, and x(i)(t) is the i-th derivative of the vector x(t). Taking
the Laplace transform of a DAE system (1) and imposing zero initial conditions, yields the algebraic

equation

P(s)x̂(s) = f̂ (s) with P(s) := Pds
d + · · · + P1s + P0, s ∈ C,

where d is the degree of P(s), and x̂(s) and f̂ (s) are the Laplace transforms of x(t) and f (t), respectively.
Throughout the paper, we assume that the leading coefficient matrix Pd is nonzero so that the highest

degree is indeed d (we say it has exact degree d). The importance of using polynomial models is widely

recognized and can be found in basic references such as [18,30,38,40]. For example, polynomial ma-

trices appear when studying linearizations of mechanical systems [41], multibody dynamics [14], and

vibration analysis of buildings, machines, and vehicles [33].

When the polynomial matrix P(s) is square and regular (this is when det(P(s)) is not identically

zero) then the solutions of the set of differential equations (1) with zero initial conditions mainly

depend on the zeros of P(s) and theirmultiplicities. The fine structure of this so-called zero structure is

described inmore detail by the elementary divisors of P(s). But if P(s) is singular (this iswhendet(P(s))
is identically zero for any s or when P(s) is non-square) then the solution set of (1) becomes more

complex and depends on the left and right nullspaces of P(s). These null spaces describe, respectively,

constraints one needs to impose on f (t) for (1) to have compatible solutions, and degrees of freedom

in the solution set of (1). It is therefore crucial to understand well the complete eigenstructure of P(s)
since this will determine the properties of the solution set of (1).

In general, the eigenstructure of P(s) is quite sensitive to perturbations in thematrix coefficients Pi
and one wants therefore to accurately describe how that structure can change when small variations

are applied to the matrix coefficients. Such a study can be performed by so called versal deformations

of the eigenstructure of the Jordan and Kronecker canonical forms as introduced in [1] for square

matrices. One tool that can be used to analyze the qualitative information of nearby systems is the

theory of stratification [12,11,15,28]. A stratification reveals the closure hierarchy of orbits and bun-

dles of nearby canonical structures and gives important qualitative information about the underlying

dynamical system. It shows which canonical structures can be reached by a small perturbation and

the relation among these structures. A stratification can be represented as a graph where each node

represents an orbit or bundle of a canonical structure and an edge corresponds to a covering relation.

When two orbits (or bundles) of canonical structures are nearest neighbors in the closure hierarchy

they fulfill a cover relation. Such cover relations can be expressed as combinatorial rules acting on

integer sequences representing a subset of the structural elements.

Closure and cover relations have been studied, e.g., in [1,3,5,11,12,23,36,37] for matrices and first

order polynomial matrices (matrix pencils), in [15,17,20,24] for system pencils associated with state-

space systems, and in [10,24,25] for system pencils associated with descriptor and singular systems.

In this paper, we extend these results to the case of polynomial matrices by making use of companion

form linearizations. These linearizations arematrixpencils, butwith the constraint that someelements

of the coefficient matrices are fixed to 0 or 1, which reduces the set of possible eigenstructures that

can be achieved. For numerical algorithms see [31] (and references therein) and [43].

Recently, problems related to stratification of polynomial matrices have been addressed in [35,7].

In [35], it is shown that the map between the orbit space of a controllable matrix pair (A, B) and a

polynomial matrix P(s) is a homeomorphism under stated assumptions. The orbits considered are

the orbits of matrix pairs under system similarity and the orbits of polynomial matrices under right
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equivalence.Moreover, necessary and sufficient conditions for a polynomialmatrix to be in the closure

of another are derived.

The rest of the paper is organized as follows. In Section 2, we start by reviewing the different

eigenstructure elements that a polynomial matrix can have and make the link with the eigenstruc-

ture elements of matrix pencils. In Section 3, we describe standard companion form linearizations of

polynomial matrices that preserve these eigenstructure elements. Sections 4 and 5 analyze in more

detail the constraints on the eigenstructures for the so-called scalar and matrix cases. In Section 6,

we discuss the relations between the polynomial and the system pencil representations. We continue

in Section 7 to introduce integer partitions and minimal coin moves that are used to represent the

structure integer partitions in Section 8 and which appear in the covering rules. Section 9 introduces

the generalized Sylvester space and we define concepts like orbits and bundles for polynomial matrix

linearizations and their codimensions expressed in terms of the structure integer partitions. We also

show that perturbations of a polynomial matrix can be analyzed via the study of perturbations in its

companion form linearization. In Section 10, the cover relations for orbits and bundles of full normal-

rank polynomial matrix linearizations are derived. Finally, in Section 11 we illustrate and apply the

stratification theory on a few examples, including a passive suspension system model.

2. Structural elements of P(s)

The eigenstructure elements of a polynomial matrix require the definition of the Smith normal

form and of unimodular matrices (e.g., see [16]).

Definition 2.1. A square polynomialmatrixM(s) is said to be unimodular if its determinant is constant

and nonzero.

Definition 2.2. Two polynomial matrices P(s) and P̃(s) of the same size are called equivalent if

P(s) = M(s)̃P(s)N(s),

for some unimodular matrices M(s) and N(s) of conforming sizes.

Notice that unimodular matrices have a polynomial inverse that is also unimodular and that prod-

ucts of unimodularmatrices are alsounimodular, fromwhich it follows that they forma transformation

group. Under this transformation group a unique canonical form of an arbitrary polynomialmatrix can

be obtained.

Definition 2.3 [16]. The Smith normal form of an arbitrary m × n polynomial matrix P(s) is the quasi

diagonal matrix obtained under unimodular transformationsMl(s) andMr(s) applied to the rows and

columns of P(s):

Ml(s)P(s)Mr(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1(s) 0 . . . 0

0 e2(s)
. . .

... Or,n−r

...
. . .

. . . 0

0 . . . 0 er(s)

Om−r,r Om−r,n−r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where each ej(s) is monic and divides ej+1(s) for j = 1, . . . , r − 1. The polynomials ej(s) are unique

and are called the invariant polynomials of P(s). Wewill call an invariant polynomial trivial if ej(s) = 1,

otherwise non-trivial (i.e., ej(s) is a polynomial of degree � 1).
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A zero α ∈ C of P(s) is a zero of any ej(s) and its finite elementary divisors are the factors (s − α)hj

of each ej(s); their powers are non-decreasing:

h1 � h2 � · · · � hr � 0. (3)

The index r is called the normal-rank of P(s) and it is equal to the rank of P(s) at any value of s ∈ C

which is not a zero of P(s). Elementary divisors associated with a non-trivial invariant polynomial are

also called non-trivial.

We say that an m × n polynomial matrix has full normal-rank if its normal-rank r = min(m, n).
Consequently, if r = m then n � m and if r = n then n � m.

Remark 2.1. In the rest of the paper, we use a permuted version of the Smith formwhere the elemen-

tary divisors (3) are defined in reverse order:

h1 � h2 � · · · � hr � 0. (4)

This is important for compatibility with the theorems in earlier papers [12,15].

For the zero s = ∞, there are several different characterizations. We will use here the definition

based on the so-called reversed polynomial matrix.

Definition 2.4. For a polynomial matrix P(s) of degree d, the reversed polynomial matrix revP(μ) is

revP(μ) := μdP

(
1

μ

)
= Pd + Pd−1μ + · · · + P0μ

d, (5)

which is obtained from the substitution s = 1
μ

in the polynomial matrix P(s).

Definition 2.5. The finite elementary divisors μhj of the zero μ = 0 of revP(μ) are the infinite

elementary divisors 1/shj of the polynomial matrix P(s).

Notice there exist other definitions of the infinite zero structure [30,43] but one can easily find

relations between them [44].

A polynomial matrix P(s) that has normal-rank r smaller than m and/or n, has also left and right

null spaces that can be represented by polynomial bases as one can see from (2). In order to define the

null space structure, we need to define minimal polynomial bases.

Definition 2.6. The n × r polynomial matrix N(s) with the highest column degrees {d1, . . . , dr} is

column reduced, if the highest degree coefficient matrix Nh, whose j-th column is the coefficient of sdj in

the j-th column of N(s), also has full column rank. Its normal-rank is therefore also equal to r.

We recall here a lemma about column reducedmatrices, that will be useful in the rest of the paper.

Proof can be found in, e.g., [30].

Lemma 2.7. Every n × r polynomial matrix N(s) of normal-rank r can be transformed by a unimodular

column transformation V(s) to a column reduced matrix N(s)V(s) with non-increasing column degrees

dj, j = 1, . . . , r. An additional constant and invertible row transformation R will transform the highest

degree coefficient matrix of RN(s)V(s) to

⎡⎣ Ir

0

⎤⎦ .
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Remark 2.2. The dual result obviously holds as well. Every r × m polynomial matrix N(s) of normal-

rank r can be transformed by a unimodular row transformationU(s) to a row reducedmatrixU(s)N(s)
with non-increasing row degrees dj, j = 1, . . . , r. An additional constant and invertible column trans-

formation C will transform the highest degree coefficient matrix of U(s)N(s)C to
[
Ir 0

]
.

Definition 2.8. The n × r polynomial matrix N(s) is called a minimal basis for the space spanned by

its columns if N(s) has full column rank for all finite s ∈ C and if it is column reduced. The column

degrees {d1, . . . , dr} of anyminimal basis for a particular space, are unique and are called theminimal

indices of that space.

We are now ready to define the remaining eigenstructure elements of P(s).

Definition 2.9. Let P(s) be anm × n polynomial matrix of normal-rank r and let

NT
� (s)P(s) = 0, P(s)Nr(s) = 0, (6)

where them×(m−r)polynomialmatrixN�(s) and then×(n−r)polynomialmatrixNr(s) are column

reduced. The left and right null space structures of P(s) are then the column degrees {η1, . . . , ηm−r}
and {ε1, . . . , εn−r} of N�(s) and Nr(s), respectively.

The column degrees {η1, . . . , ηl0} and {ε1, . . . , εr0} are called the left (row) and right (column)

minimal indices, respectively, where l0 = m − r and r0 = n − r.

Wepoint out here that ifwe apply the above definitions to a first order (or linear) polynomialmatrix

P(s) we retrieve the definitions of the structural elements obtained from the Kronecker canonical form

(KCF) of a matrix pencil sH + G. Any general mp × np matrix pencil sH + G can be transformed into

KCF in terms of an equivalence transformation with two nonsingular matrices U and V [16]:

U(sH + G)V−1 = diag(Lε1 , . . . , Lεr0 , J(λ1), . . . , J(λq),Nh1 , . . . ,Nhg∞ , LTη1
, . . . , LTηl0

), (7)

where J(λi) = diag(Jh1(λi), . . . , Jhgi (λi)), i = 1, . . . , q, andgi is thegeometricmultiplicityof thefinite

eigenvalue λi and g∞ the geometric multiplicity of the infinite eigenvalue. The matrix pencil sH + G

has q distinct finite eigenvalues and each eigenvalue λi coincides with a zero of P(s) in Definition 2.3.

The four types of canonical blocks are:

Jhk(λi) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s − λi −1

. . .
. . .

. . . −1

s − λi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Nhk :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 s

. . .
. . .

. . . s

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Lεk :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s −1

. . .
. . .

. . .
. . .

s −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and LTηk

:=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s

−1
. . .

. . .
. . .

. . . s

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where
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• Jhk(λi) is a hk × hk Jordan block of a finite eigenvalue λi, corresponding to a finite elementary

divisor of degree hk , namely (s − λi)
hk ,

• Nhk is a hk × hk Jordan block of the infinite eigenvalue, corresponding to an infinite elementary

divisor of degree hk , namely 1/shk ,
• Lεk is an εk × (εk + 1) right singular block, corresponding to a right (column) null vector of

minimal degree εk , namely [1, s, . . . , sεk ]T , and
• LTηk

is an (ηk + 1) × ηk left singular block, corresponding to a left (row) null vector of minimal

degree ηk , namely [1, s, . . . , sηk ].
L0 and LT0 blocks are of size 0× 1 and 1× 0, respectively, and each of them contributes with a column

(L0) or row (LT0) of zeros in the KCF.

In Section 3, we present a linearization of the polynomial matrix in the form of a matrix pencil and

we show that most of the structural elements of P(s) are preserved as the structural elements of the

linear pencil.

3. Linearizations

The classical approach to analyze and determine the structural elements of (1) is to study lin-

earizations of polynomial matrices P(s), which result in a large linear matrix pencil sH + G [2,18].

A linearization is not unique, instead there exist several different, e.g., see [4,6,8,34]. Here we only

consider the so called right and left linearizations (also called second and first companion lineariza-

tions, respectively). We remark that the generalized eigenvalues of the companion linearizations are

potentially more ill-conditioned compared to the eigenvalues of P(s). However, when the 2-norms of

the coefficient matrices of P(s) are all around one, they are almost equally conditioned [22].

The right linearization of an m × n polynomial matrix P(s), which is equivalent to the so called

second companion form, has the matrix pencil representation

sHr + Gr := s

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Im

. . .

Im

Pd

⎤⎥⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 P0

−Im
. . . P1

. . . 0
...

−Im Pd−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

In this section, we derive the relations between the eigenstructure elements of P(s) of normal-rank

m and those of the matrix pencil sHr + Gr of size dm× (m(d− 1) + n). To do this we make use of the

following lemma.

Lemma 3.1 [16]. Two polynomial matrices P(s) and Q(s) are equivalent if and only if they have the same

invariant polynomials.

When left multiplying sHr + Gr (8) with an appropriate unimodular matrix we obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im sIm . . . sd−1Im

. . .
. . .

...

. . . sIm

Im

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(sHr + Gr) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 P(s)

−Im
. . . X2(s)

. . . 0
...

−Im Xd(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)
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where the Xi(s), for i = 2, . . . , d, are polynomial matrices as well. An additional unimodular right

transformation then gets rid of the matrices Xi(s):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 P(s)

−Im
. . . X2(s)

. . . 0
...

−Im Xd(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Im X2(s)

. . .
...

Im Xd(s)

Im

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎣ P(s)

−Im(d−1)

⎤⎦ .

Together with Lemma 3.1 we have now shown that sHr + Gr and P(s) have the same finite elementary

divisors.

For the infinite elementary divisors, we need to compare the elementary divisors of the eigenvalue

μ = 0 of the reversed pencil Hr + μGr with those of the reversed polynomial revP(μ) defined in (5).

We now multiply Hr + μGr on the left with an appropriate unimodular matrix in the variable μ:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im

μIm
. . .

...
. . .

. . .

μd−1Im . . . μIm Im

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Hr + μGr) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Im Yd(μ)

. . .
...

Im Y2(μ)

revP(μ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

where now the matrices Yi(μ) are polynomial matrices in μ and can be eliminated by an additional

unimodular transformation applied to the right:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Im Yd(μ)

. . .
...

Im Y2(μ)

revP(μ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Im −Yd(μ)

. . .
...

Im −Y2(μ)

Im

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎣Im(d−1)

revP(μ)

⎤⎦

showing that Hr + μGr and revP(μ) have the same elementary divisors. We have thus derived the

following theorem (see also [18]).

Theorem3.2. The polynomial matrix P(s) and the linearized pencil sHr + Gr defined in (8), have the same

finite and infinite elementary divisors.

In order to address the null space structure, we recall a lemma, proved in [44].

Lemma 3.3. Let
[
X1 X2

] ⎡⎣ Y1

Y2

⎤⎦ = 0 and let X1 and

⎡⎣ Y1

Y2

⎤⎦ have full column rank, then Y2 must also

have full column rank.

We now use this lemma to prove the following theorem for the right null space structures of P(s)
and sHr + Gr .

Please cite this article in press as: S. Johansson et al., Stratification of full rank polynomial matrices, Linear Algebra

Appl. (2013), http://dx.doi.org/10.1016/j.laa.2012.12.013

http://dx.doi.org/10.1016/j.laa.2012.12.013


8 S. Johansson et al. / Linear Algebra and its Applications xxx (2013) xxx–xxx

Theorem 3.4. Let N(s) be a minimal basis for the right null space of the pencil sHr + Gr and partition it

as follows (where N2(s) has n rows):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sIm P0

−Im
. . .

...

. . . sIm Pd−2

−Im sPd + Pd−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ N1(s)

N2(s)

⎤⎦ = 0. (10)

Then N2(s) is a right minimal basis of P(s) with the same minimal indices as N(s).

Proof. We first apply the same left transformation as in (9) to (10), yielding

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 P(s)

−Im
. . . X2(s)

. . . 0
...

−Im Xd(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ N1(s)

N2(s)

⎤⎦ = 0. (11)

Clearly, this implies that P(s)N2(s) = 0 and applying Lemma 3.3 to this for any finite value s, implies

that N2(s) has full column rank for any finite value of s.

Let us now partition the highest degree coefficient matrix Nh in a similar fashion. Then, equating

the highest degree coefficients of the top m(d − 1) equations of (10) yields

⎡⎢⎢⎢⎢⎣
Im 0

. . .
...

Im 0

⎤⎥⎥⎥⎥⎦
⎡⎣ Nh1

Nh2

⎤⎦ = 0.

This implies that Nh1 = 0 and Nh2 has full column rank. Therefore, N2(s) is a minimal basis with the

same minimal indices as N(s). �

Remark 3.1. The following example shows that one cannot say the same for the left minimal indices

of P(s) and sHr + Gr:

P(s) :=
⎡⎣s s2

1 s

⎤⎦ =
⎡⎣s

1

⎤⎦ [
1 s

]
, sHr + Gr =

⎡⎢⎢⎢⎢⎢⎢⎣
s 0 0 0

0 s 1 0

−1 0 1 s

0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Indeed, theminimal left null spaces of P(s) and sHr + Gr are respectively
[
1 −s

]
and

[
1 −s s −s2

]
and their minimal index is different.

Thuswehaveproved that anm×npolynomialmatrixP(s)of normal-rankmhas the samestructural

elements as the so-called right linearization sHr + Gr (8).
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For the left minimal indices we consider the left linearization

sH� + G� := s

⎡⎢⎢⎢⎢⎢⎢⎢⎣

In

. . .

In

Pd

⎤⎥⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −In

. . .
. . .

0 −In

P0 P1 . . . Pd−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (12)

for which the dual result holds. Notably, the matrix pencil sH� + G� is equivalent to the so called first

companion form.

We synthesize the results of this section in the following theorem.

Theorem 3.5. Let P(s) be an m × n polynomial matrix of normal-rank r, then

1. if r = m, P(s) has the same structural elements as sHr + Gr defined in (8),

2. if r = n, P(s) has the same structural elements as sH� + G� defined in (12),

3. for any r, P(s) has the same elementary divisors as sHr + Gr and as sH� + G�, and

4. for any r, P(s) has the same right minimal indices as sHr + Gr and the same left minimal indices as

sH� + G�.

4. Scalar case

In this section, we consider the case where m = 1 and we assume that the polynomial matrix

has exact degree d (nonzero leading coefficient Pd). This of course implies that the polynomial matrix

has normal-rank 1 as well since it is nonzero. The Smith form of such a polynomial matrix is quite

special since it contains exactly one polynomial e(s), which is the greatest commondivisor of the scalar

polynomials in P(s):

P(s) :=
[
p1(s) . . . pn(s)

]
, e(s) := gcd {p1(s), . . . , pn(s)} .

If k is the degree of e(s) then there are n−2 rightminimal indices equal to 0 and one equal to d−k. The

other structure elements are all the possible structures one can find in a scalar polynomial of degree

k. We synthesize the conclusions in the following theorem.

Theorem 4.1. A 1×n polynomial matrix P(s) of exact degree d has only one elementary divisor (s−λi)
hi

for each zeroλi, n−2 rightminimal indices equal to zero, and one rightminimal index equal to ε1 satisfying∑
i

hi + ε1 = d.

All structures satisfying these constraints are possible for such a polynomial matrix.

Corollary 4.2. A 1×1 scalar polynomial p(s) of exact degree d has only one elementary divisor (s−λi)
hi

for each zero λi satisfying∑
i

hi = d.

All structures satisfying these constraints are possible for such a polynomial.

Clearly this is not reflected in the general form sH + G of the pencil sHr + Gr , but it is a result of the

fact that sHr + Gr has fixed elements equal to 0 and 1. This problem is also related to the controllability
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of a generalized state-space systemwith n− 1 inputs. For this, we relabel the polynomials as follows:

a(s) := p1(s), B(s) :=
[
p2(s) . . . pn(s)

]
,

where we assume for simplicity that the highest degree coefficient of a(s) is nonzero and that of B(s)
is equal to zero. This can be achieved by a constant column transformation of P(s) (which does not

affect the conclusions), where the highest degree coefficient of a(s) is used as pivot to eliminate those

of B(s). One can then consider the following partitioning of the linearization of P(s):

[
sE + A B

]
:=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s a0 B0

−1
. . . a1 B1

. . . s
...

...

−1 sad + ad−1 Bd−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where B0, . . . , Bd−1 are 1 × (n − 1) matrices. The controllability of this generalized state-space pair

is equivalent to the existence of a gcd e(s) of the polynomials of P(s) = [ a(s) B(s) ]. The dimension

of the uncontrollable space is also equal to the degree of e(s). Rather than analyzing this using the

perturbations of
[
sE − A B

]
one can look at perturbations for this row vector of polynomials to have

a common divisor.

5. Matrix case

In this section, we derive similar conditions for full normal-rank polynomial matrices as for the

scalar case presented in Theorem 4.1 and Corollary 4.2. We will prove the following results.

Theorem 5.1. An m×m polynomial matrix P(s) of exact degree d and normal-rank m has m finite ele-

mentary divisors (s − λi)
h
(i)
j , j = 1, . . . ,m, for each zero λi, i = 1, . . . , q, and m infinite elementary

divisors 1/sh
(∞)
j (some of these indices can be trivially zero) satisfying

q∑
i=1

m∑
j=1

h
(i)
j +

m∑
j=1

h
(∞)
j = dm. (13)

All structures satisfying the constraints (13) are possible for such a polynomial matrix.

Theorem 5.2. An m × n polynomial matrix P(s) of exact degree d and normal-rank m has m finite

elementary divisors (s − λi)
h
(i)
j , j = 1, . . . ,m, for each zero λi, i = 1, . . . , q, m infinite elementary

divisors 1/sh
(∞)
j , and n − m right minimal indices εj , j = 1, . . . , n − m (some of these indices can be

trivially zero) satisfying

q∑
i=1

m∑
j=1

h
(i)
j +

m∑
j=1

h
(∞)
j +

n−m∑
j=1

εj = dm. (14)

All structures satisfying the constraints (14) are possible for such a polynomial matrix.

Remark 5.1. The dual result for when P(s) has normal-rank n is obtained by interchanging m and n,

and replacing the right minimal indices ε with the left minimal indices η in the theorem above.
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We thus need to show that all these structures may occur in an m × n polynomial matrix P(s) of

exact degree d. The fact that these constraints are necessary, is evident since an m × n polynomial

matrix of rank r = m can have only r non-trivial elementary divisors for each zero. The fact that

these constraints are sufficient, on the other hand, requires a proof. Our proof is based on unimodular

transformations, which leave the finite elementary divisors unchanged, but may change the infinite

elementary divisors. We therefore make a change of variables, such that the polynomial matrix has no

elementary divisors at infinity. For this we need the following lemma.

Lemma 5.3. Let P(s) be an m× n polynomial matrix of exact degree d and full normal-rank m which has

no zero at s = ω. Then putting s = 1
μ

+ ω, the transformed polynomial matrix

Pω(μ) := μdP

(
1

μ
+ ω

)
= Pd(1 + μω)d + Pd−1μ(1 + μω)(d−1) + · · · + P0μ

d

has the same right nullspace structure as P(s), no zero at infinity, and its finite elementary divisors are given

by

(
μ − 1

(λi − ω)

)h
(i)
j

, j = 1, . . . ,m, and μh
(∞)
j , j = 1, . . . ,m. (15)

Proof. The lemma follows directly from the correspondence with the Kronecker structure of the lin-

earized pencil sH + G. The linearization of the transformed polynomial matrix Pω(μ) is given by

(1 + μω)H + μG = μ(ωH + G) + H, which has the same right null space structure as sH + G and

the same elementary divisors except for the transformations given in (15). �

Note that a full normal-rank polynomial matrix P(s) without zeros at infinity must have a highest

degree coefficient matrix Ph which has full rank as well.

Proof of Theorem5.1. As discussed above, following Lemma5.3we can transformapolynomialmatrix

with full normal rank into onewithout elementary divisors at infinity and still keep the right nullspace

intact. Consequently, we can show that the result of Theorem 5.1 holds by considering a polynomial

matrix P(s) without infinite elementary divisors.

Let P(s) be in Smith canonical form and h1 � · · · � hm � 0 be the degrees of its elementary

divisors, then the highest degree coefficient matrix is the identity matrix Im. Moreover, since P(s) has
no elementary divisors at infinity, the conditions of Theorem 5.1 implies that

∑m
i=1 hi = dm. We now

show that P(s) can be transformed using unimodular transformations to one of degree dwith highest

degree coefficient matrix Ph = Im with degrees all equal to d (hence Ph = Pd). This proves that there

always is a polynomial matrix of degree d that satisfies Theorem 5.1.

We construct such a polynomial matrix by recursively reducing the difference between h1 and hm
while

∑m
i=1 hi remains the same. At the end of this process all hi will be equal to d. Assume for this

that h1 > d then wemust have hm < d, otherwise the ordered sequence of hi could not sum up to dm.

Moreover, throughout this process P(s) is assumed to be in column reduced form. Consequently, in

the transformation U(s)P(s)V(s) = P̂(s) belowwe only show the elements of highest column degrees

in P(s) and P̂(s).

⎡⎢⎢⎢⎣
1

I

1 as

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
sh1

. . .

shm

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
−a

I

sδ 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
bsh1−1

. . .

xsh1−1 ashm+1

⎤⎥⎥⎥⎥⎦ , (16)

where δ = h1 − hm − 1, a, b �= 0, and x is arbitrary. Clearly, this transformation yields a new column

reduced matrix but with the smallest column degree hm increased by one and the largest column
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degree h1 decreased by one. The reduction can be continued since we can use Lemma 2.7 to put again

the newmatrix in normalized column reduced form. Eventually we obtain anm × m polynomial ma-

trix of degree d with prescribed elementary divisors and Pd = Im. �

Proof of Theorem5.2. In order to prove Theorem5.2,we have to construct anm×n polynomialmatrix

P(s)with given Smith form, but alsowith given rightminimal indices. LetNr(s)be an×(n−m) column

reduced polynomial matrix with prescribed column indices ε1, . . . , εn−m. Following Lemma 2.7 we

can assumewithout loss of generality that the indices εi are non-increasing and that its highest column

degreematrix is
[
In−m 0

]T
. In [30], it is then shownhow to construct a row reduced polynomialmatrix

Pr(s)witha rightminimalbasis spannedbyNr(s), and such thatPr(s)has thehighest rowdegreematrix[
0 Im

]
with non-increasing row degrees r1, . . . , rm satisfying

∑m
i=1 ri = ∑n−m

j=1 εj . The construction is

based on the concepts of left and right coprime factorizations in column and row reduced forms (see

[30, pp. 381–385]). Since Pr(s) is row reduced it has no non-trivial elementary divisors, but if we pre-

multiply it with a diagonal matrix Pf (s) of (monic) finite elementary divisors with prescribed degrees

h1, . . . , hm, then P(s) := Pf (s)Pr(s) satisfies P(s)Nr(s) = 0 and it has the prescribed elementary

divisors as well. Moreover the row degrees are now di = hi + εi, i = 1, . . . ,m and the highest row

degree matrix is still
[
0 Im

]
.

Wenowassume thatwe startwith amatrix product P(s)Nr(s) = 0with the above conditions on the

highest degree coefficient matrices. The conditions of Theorem 5.2 imply that
∑m

i=1 di = ∑m
i=1(ri +

hi) = ∑n−m
j=1 εj + ∑m

i=1 hi = dm. If all the coefficients di are not equal to d we update the matrices in

the product recursively until they become equal.

We need to update simultaneously the matrices P(s) and Nr(s) while making sure that: (i) Nr(s)
remains a rightminimal basis of P(s)with the sameminimal indices; and (ii) P(s) has the same invari-

ant polynomials. In the transformation U(s)P(s)V(s) = P̂(s) displayed below, we assume that P(s) is
in row reduced form and therefore only show the elements of highest row degrees in P(s) and P̂(s):

⎡⎢⎢⎢⎣
−a sδ

I

1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

sd1

0
. . .

sdm

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
In−m 0

1

0 I

1 as

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
bsd1−1 xsd1−1

0
. . .

asdm+1

⎤⎥⎥⎥⎥⎦ , (17)

where δ = d1 − dm − 1, a, b �= 0, and x is arbitrary. Transformations are unimodular and hence the

elementary divisors of P(s) and P̂(s) are the same but the smallest row index dm increased by 1 and the

largest row index d1 decreased by 1. Meanwhile, the rightminimal indices did not change, because the

corresponding right nullspace underwent the transformation V−1(s)Nr(s) = N̂r(s). Below we only

show the highest column degree elements in Nr(s) and N̂r(s):

⎡⎢⎢⎢⎢⎢⎢⎣
In−m 0

−as 1

0 I

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sε1

. . .

sεn−m

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sε1

. . .

sεn−m

xsε1 · · · xsεn−m

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Clearly, only row (n−m)+1 of N̂r(s)may contribute to the highest degreematrix, but it will not affect

the minimal indices. Again, we can continue the recursive updating transformations until all powers

di = d, which completes the proof. �
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For completeness, we include the following two corollaries for polynomial matrices with a full

rank highest degree coefficient matrix Pd. The proofs are omitted since, as shown in Lemma 5.3, a full

normal-rank polynomial matrix can always be transformed to a polynomial matrix with a full-rank

coefficient Pd via a change of variables.

Corollary 5.4. Let P(s) = Pds
d + · · · + P1s + P0 be an m × m polynomial matrix of exact degree d,

normal-rank m, and det(Pd) �= 0. Possible structural elements of P(s) are those of Theorem 5.1 excluding

the infinite elementary divisors.

Corollary 5.5. Let P(s) = Pds
d + · · · + P1s + P0 be an m × n polynomial matrix of exact degree d,

normal-rank m, and with Pd of full row rank. Possible structural elements of P(s) are those of Theorem 5.2

excluding the infinite elementary divisors.

6. Polynomial versus system pencil representation

The matrix pencils sHr + Gr and sH� + G� corresponding to the right and left linearizations of a

full normal-rank m × n polynomial matrix P(s) = Pds
d + · · · + P1s + P0, can be expressed as the

system pencils

SR (s) = sHr + Gr = s
[
E 0

]
+

[
A B

]
and SL (s) = sH� + G� = s

⎡⎣E

0

⎤⎦ +
⎡⎣A

C

⎤⎦ , (18)

respectively. If the highest degree coefficientmatrix Pd has full row or column rank, the system pencils

in (18) can be transformed into

SC(s) = s
[
Idm 0

]
+

[
Ã B̃

]
or SO(s) = s

⎡⎣Idn

0

⎤⎦ +
⎡⎣Ã

C̃

⎤⎦ , (19)

respectively, where SC(s) has full row rank and SO(s) has full column rank. The structural elements of

SC(s) only depend on the matrix pair (̃A, B̃) and those of SO(s) on (̃A, C̃). The stratification rules for

SR (s) and SL (s) can be derived from the stratification rules for general matrix pencils sH + G, and the

rules for SC(s) and SO(s) from matrix pairs (A, B) and (A, C), respectively. See Section 10.

Let us now consider systems that can be represented by a polynomial fraction

D(s)x(t) = N(s)u(t), where D(s) and N(s) are polynomial matrices with degree D(s) > degree N(s).
We illustrate how such a polynomial fraction can be expressed in the form of a system pencil using

three examples. Thefirst example is of general formand the remaining twoare taken fromapplications.

Example 6.1. Consider the differential equation system

Ddx
(d)(t) + Dd−1x

(d−1)(t) + · · · + D1x
(1)(t) + D0x(t)

= −Nd−1u
(d−1)(t) − · · · − N1u

(1)(t) − N0u(t),
(20)

where Dk ∈ Cm×m and Nk ∈ Cm×p. The system (20) can equivalently be expressed as

[
Dd 0

] ⎡⎣x(d)(t)

u(d)(t)

⎤⎦ +
[
Dd−1 Nd−1

] ⎡⎣x(d−1)(t)

u(d−1)(t)

⎤⎦ + · · · +
[
D0 N0

] ⎡⎣x(t)

u(t)

⎤⎦ = 0, (21)
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with the associated m × (m + p) polynomial matrix P(s) =
[
Dd 0

]
sd + · · · +

[
D0 N0

]
of degree d.

With P(s) of full normal-rank m the corresponding right linearization is

s

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Im 0

. . .
...

Im

Dd 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 D0 N0

−Im
. . . D1 N1

. . . 0
...

...

−Im Dd−1 Nd−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (22)

which is a system pencil of the form SR (s). Furthermore, if Dd is nonsingular and well-conditioned

then the linearization can be transformed to a system pencil of the form SC(s) by multiplying all

coefficient matrices of P(s) by D
−1
d from left. Similarly, the left linearization of a polynomial matrix

with full normal-rank n and det(Dd) �= 0 corresponds to the system pencil SO(s). However, since

the long-time goal is to apply and implement the stratification theory in numerical algorithms for

robust computation of structure information, we in general recommend to keep to the matrix pencil

representation rather than transforming the system pencil (18) to the standard matrix pair form (19).

Example 6.2. Consider a controlled dynamical system which can be expressed by its equation of

motion in the form

Mẍ + Cẋ + Kx = Fu,

whereM, C, and K are the mass, damping, and stiffness matrices, respectively, F is the input (control)

matrix, x is a vector of positive variables, and u is a vector of control variables. Assuming that the mass

matrix M is positive definite, the linearization of the associated polynomial matrix can be expressed

by the companion form

[
sI + A B

]
=

⎡⎣ sI M−1K M−1F

−I sI + M−1C 0

⎤⎦ ,

where I is the identity matrix of conforming size. The (2, 3)-block is a zero matrix since u̇ does not

appear in the equation of motion.

Example 6.3. Consider an LTI system represented by the state-space model

ẋ(t) = Ax(t) + Bu(t), (23)

where A ∈ Cn×n, B ∈ Cn×m, x(t) is the state vector, and u(t) is the input vector.

The controllability of an LTI system only depends on the matrices A and B, hence the matrix pair

(A, B) is usually referred to as the controllability pair [15,28]. The system (23) has the correspond-

ing controllability pencil SC(s) =
[
sIn + A B

]
. For the definition of controllability see any standard

textbook on control theory, e.g., [30,40].

7. Coin moves and integer partitions

In the next section we use integer partitions to represent the structural elements of a matrix or

matrixpencil and coinmoves todefine the stratification rules.Here,we recall thedefinitionsbyquoting

excerpts from [12,15].

An integer partition κ = (κ1, κ2, . . .) of an integer K is a monotonically non-increasing sequence of

integers (κ1 � κ2 � · · · � 0) where κ1 + κ2 + · · · = K . The union τ = (τ1, τ2, . . .) of two integer
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Fig. 1.Minimum leftward and rightward coinmoves illustrate thatκ = (2, 2, 1, 1) is covered by τ = (3, 1, 1, 1) andκ = (2, 2, 1, 1)

covers ν = (2, 1, 1, 1, 1).

partitions κ and ν is defined as τ = κ ∪ ν where τ1 � τ2 � · · · . Furthermore, the conjugate

partition of κ is defined as ν = conj(κ), where νi is equal to the number of integers in κ that are

equal to or greater than i, for i = 1, 2, . . ..
Ifν is an integerpartition, notnecessarily of the same integerK asκ , andκ1+· · ·+κi � ν1+· · ·+νi

for i = 1, 2, . . ., then κ � ν . When κ � ν and κ �= ν then κ > ν . If κ , ν and τ are integer partitions

of the same integer K and there does not exist any τ such that κ > τ > ν where κ > ν , then κ
covers ν .
An integer partition κ = (κ1, . . . , κn) can also be represented by n piles of coins, where the first

pile has κ1 coins, the second κ2 coins and so on. An integer partition κ covers ν if ν can be obtained

from κ by moving one coin one column rightward or one row downward, and keep κ monotonically

non-increasing. Or equivalently, an integer partition κ is covered by τ if τ can be obtained from κ by

moving one coin one column leftward or one row upward, and keep κ monotonically non-increasing.

These two types of coin moves are defined in [12] and called minimum rightward and minimum

leftward coin moves, respectively (see Fig. 1).

8. Structure integer partitions

We can now represent the structural elements of matrix pencils defined in Section 2 as integer

partitions (notation from [15]):

(i) The columnminimal indices as ε = (ε1, . . . , εr0), where ε1 � ε2 � · · · � εr1 > εr1+1 = · · · =
εr0 = 0. From the conjugate partition (r1, . . . , rε1 , 0, . . .) of ε we define the integer partition

R(sH + G) = (r0) ∪ (r1, . . . , rε1).
(ii) The row minimal indices as η = (η1, . . . , ηl0), where η1 � η2 � · · · � ηl1 > ηl1+1 = · · · =

ηl0 = 0. From the conjugate partition (l1, . . . , lη1
, 0, . . .) of η we define the integer partition

L(sH + G) = (l0) ∪ (l1, . . . , lη1
).

(iii) For each distinct finite eigenvalue λi, i = 1, . . . , q, with the finite elementary divisors on the

form (s − λi)
h
(i)
1 , . . . , (s − λi)

h
(i)
gi , where h

(i)
1 � · · · � h

(i)
gi � 1, we introduce the integer

partitionhλi
= (h

(i)
1 , . . . , h

(i)
gi )which isknownas theSegre characteristic. Theconjugatepartition

J λi
(sH + G) = (j1, j2, . . .) of hλi

is the Weyr characteristic of λi.

(iv) For the infinite eigenvalue with the infinite elementary divisors on the formμh1 , μh2 , . . . , μhg∞ ,

with h1 � · · · � hg∞ � 1, we introduce the integer partition h∞ = (h1, . . . , hg∞) which is

known as the Segre characteristic for the infinite eigenvalue. The conjugate partitionN (sH + G)
= (n1, n2, . . .) of h∞ is theWeyr characteristic of the infinite eigenvalue.

The integer partitions above are referred to as structure integer partitions [15]. In addition, the

condensed notation R, L, J , and N is used for the integer partitions corresponding to the right and

left singular structures, and the Jordan structures of the finite and infinite eigenvalues, respectively,

when it is obvious from the context.

9. A geometric view of the polynomial matrix linearizations

Consider the (2d2m2 + 2dm(n−m))-dimensional space of dm× (m(d − 1) + n) complex matrix

pencils sH + G with Frobenius inner product 〈sH + G, sH̃ + G̃〉 ≡ tr(GG̃∗ + HH̃∗). Let us for now
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only consider matrix pencils with d = 1 (see also [11,12]). The orbit of a generalm × nmatrix pencil:

OP(sH + G) ≡ {U(sH + G)V−1 : det(U) · det(V) �= 0}, (24)

is the manifold of all equivalent matrix pencils, i.e., a manifold in the 2mn-dimensional space. All

matrix pencils in the same orbit have the same canonical form, with the eigenstructure fixed. A bundle

defines the union of all orbits with the same canonical form but with the eigenvalues unspecified,

BP(sH + G) := ⋃
λi
OP(sH + G) [1].

The dimension of OP(sH + G) is equal to the dimension of the tangent space to OP(sH + G) at

sH + G:

tan(sH + G) = {sTH + TG = s(XH − HY) + (XG − GY)},

where X ∈ Cm×m and Y ∈ Cn×n. The orthogonal complement of the tangent space is the normal

space, nor(sH + G) = {sZH + ZG} where ZHH
∗ + ZGG

∗ = 0 and H∗ZH + G∗ZG = 0. The dimension

of the normal space is called the codimension of OP(sH + G), denoted by cod(OP(sH + G)). The codi-

mension of the corresponding bundle is one less for each unspecified distinct eigenvalue. For example,

a matrix pencil with k unspecified eigenvalues and the rest with known specified eigenvalues has

cod(BP(sH + G)) = cod(OP(sH + G)) − k.

While a general matrix pencil of size dm × (m(d − 1) + n) belongs to the complete pencil space,

a linearization of a polynomial matrix of degree d > 1 only resides in a affine subspace of the pencil

space. An intuitiveway to realize this is to consider, e.g., the right linearization sHr + Gr in (8) of a poly-

nomial matrix (dual arguments also hold for the left linearization). The right linearization is a matrix

pencil with several fixed elements, where each fixed element decreases the degree of freedom by one.

Following [13,32], the set of dm× (m(d−1)+n) sHr + Gr forms a (d+1)mn-dimensional affine sub-

space in thepencil space,whichwecall the generalized Sylvester spaceanddenotebygsyl(sHr + Gr), see
Fig. 2. Themanifold of pencils equivalent to sHr + Gr (see Lemma9.2) and belonging to the generalized

Sylvester space is the orbit defined as

OR(sHr + Gr) ≡ {sH̃r + G̃r = U(sHr + Gr)V
−1 : sH̃r + G̃r ∈ gsyl(sHr + Gr),

det(U) · det(V) �= 0}. (25)

Equivalently, the orbit of sH� + G� is defined as

OL(sH� + G�) ≡ {sH̃� + G̃� = U(sH� + G�)V
−1 : sH̃� + G̃� ∈ gsyl(sH� + G�),

det(U) · det(V) �= 0}. (26)

So, does a perturbation in the linearization correspond to a perturbation in the polynomial matrix?

This was proven for square polynomial matrices in [43, Section 4]; we treat the general case below.

The theorem and the following lemma are stated for the right linearization, but obviously they hold

for the left linearization as well.

Theorem 9.1. Let sHr + Gr be the right linearization (8) of thematrix polynomial P(s), which is perturbed

by an arbitrary pencil s�H + �G with ‖
[
�H �G

]
‖ = O(ε). Assuming that ‖

[
P0 · · · Pd

]
‖ = O(1),

then there exist matrices X (dm×dm) and Y (m(d−1)+n×m(d−1)+n) such that ‖X‖, ‖Y‖ = O(ε),
satisfying

(I + X)(Hr + �H) = (Hr + �̂H)(I + Y) and

(I + X)(Gr + �G) = (Gr + �̂G)(I + Y),
(27)
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Fig. 2. Illustration of the matrix pencil space, in which we represent a particular right linearization sHr + Gr as a point. The orbit

OR(sHr + Gr ) is the intersection between gsyl(sHr + Gr) and the orbit OP (sHr + Gr ).

where

Hr + �̂H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Im

. . .

Im

Pd + �Pd

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , Gr + �̂G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 P0 + �P0

−Im
. . .

.

.

.

. . . 0

−Im Pd−1 + �Pd−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and ‖
[
�P0 · · · �Pd

]
‖ = O(ε).

Proof. We prove this by showing how to construct solutionmatrices X and Y of (27). We solve (27) by

imposing that X and Y satisfy the nonlinear system of equations in the unknown variables X, Y, �̂H,

and �̂G:

(Hr + �̂H)Y − X(Hr + �H) = �H − �̂H,

(Gr + �̂G)Y − X(Gr + �G) = �G − �̂G.
(28)

Let (X, Y) be a solution of this systemwith O(ε) norm (by continuity, such a solution must exist since

X , Y , �̂G and �̂H go to zero when �G and �H go to zero). Then it follows from (28) that �̂H and

�̂G must also have O(ε) norm. If we now neglect all O(ε2) terms in (28), we obtain a linear system of

equations

HrŶ − X̂Hr = �H − �̂H,

GrŶ − X̂Gr = �G − �̂G,
(29)

which we can restrict to the blocks where the matrices �̂G and �̂H are zero:

HrŶ − X̂Hr = �H,

GrŶ − X̂Gr = �G.
(30)
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In order to make the solution of this last system unique for X̂ and Ŷ , we choose X̂11 = 0 and Ŷdj = 0,

for all j. For simplicity, we construct them for a polynomial matrix of degree d = 3. The general case

can be treated similarly. The linear system (30) then yields the following system of equations:

⎡⎢⎢⎢⎣
Ŷ11 Ŷ12 Ŷ13

Ŷ21 Ŷ22 Ŷ23

0 0 ?

⎤⎥⎥⎥⎦ −

⎡⎢⎢⎢⎣
0 X̂12 X̂13P3

X̂21 X̂22 X̂23P3

X̂31 X̂32 ?

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
�H11 �H12 �H13

�H21 �H22 �H23

�H31 �H32 ?

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0 0 ?

Ŷ11 Ŷ12 ?

Ŷ21 Ŷ22 ?

⎤⎥⎥⎥⎦ −

⎡⎢⎢⎢⎣
X̂12 X̂13 ?

X̂22 X̂23 ?

X̂32 X̂33 ?

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
�G11 �G12 ?

�G21 �G22 ?

�G31 �G32 ?

⎤⎥⎥⎥⎦ ,

where “?” indicates a block that does not need to be considered in order to compute the solutions X̂

and Ŷ . This is now a square system of equations in the block variables X̂ij and Ŷij of conforming sizes,

which can easily be solved in the following order:[
X̂12 X̂13

]
=

[
�G11 �G12

]
,[

Ŷ11 Ŷ12 Ŷ13

]
=

[
�H11 �H12 �H13

]
+

[
0 X̂12 X̂13P3

]
,[

X̂22 X̂23

]
=

[
�G21 �G22

]
+

[
Ŷ11 Ŷ12

]
,[

Ŷ22 Ŷ23

]
=

[
�H22 �H23

]
+

[
X̂22 X̂23P3

]
, (31)[

X̂33

]
=

[
�G32

]
+

[
Ŷ22

]
,[

X̂31 X̂32

]
= −

[
�H31 �H32

]
,[

Ŷ21

]
= −

[
�G31

]
+

[
X̂32

]
,[

X̂21

]
= −

[
�H21

]
+

[
Ŷ21

]
.

This linear system of equations is clearly well conditioned (all singular values of the corresponding

linear map associated to (31) are O(1)); with the block ordering of the above equations the system is

upper triangularwith diagonal blocks that are±I of conforming sizes. Since ‖
[
�H �G

]
‖ = O(ε) and

‖
[
P0 · · · Pd

]
‖ = O(1) the solution matrices of this approximate linear system (31) clearly satisfy

‖X̂‖, ‖Ŷ‖ = O(ε). Subtracting (29) from (28), yields the nonlinear system

Hr(Y − Ŷ) − (X − X̂)Hr = X · �H − �̂H · Y,

Gr(Y − Ŷ) − (X − X̂)Gr = X · �G − �̂G · Y .

Since the (nonlinear) right hand side isO(ε2) and the left hand side is awell conditioned linear system,

this implies that the norm of the solution (X − X̂, Y − Ŷ) is O(ε2). The solution (X, Y) of the nonlinear
equations (28) therefore isO(ε2) close to the solution (X̂, Ŷ) of the linear system (29). It finally follows

that ‖
[
�P0 · · · �Pd

]
‖ = O(ε), since it is made of submatrices of �̂H and �̂G. This completes the

proof. �

We remark that any other deformation can be obtained by an appropriate smooth change of pa-

rameters and an equivalence transformation smoothly dependent of parameters [1,11]. We can now

show that the orbit of the linearization is a manifold, as we have indicated already.
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Lemma 9.2. The orbit OR(sHr + Gr) in (25) forms a manifold in the matrix pencil space.

Proof. Consider two smooth manifolds of a given finite dimensional embedding (Euclidean) space.

Following [21], these twomanifolds intersect transversally if at every point of intersection their sepa-

rate tangent spaces at the selected point together generate the ambient space at that point. In our case

we apply this fact to the generalized Sylvester space (which is its own tangent space since it is an affine

space) and to OP(sHr + Gr) whose tangent space is described by the pair (HrY − XHr, GrY − XGr). In
the proof of Theorem 9.1, we precisely showed that these two affine spaces are transversal since the

linearized system considered there has always a solution. Indeed, the linear equations (29) in (X̂, Ŷ)
imply that anypencil in the ambient space canbewritten as a combination of a pencil in gsyl(sHr + Gr)
and a pencil in the tangent space of OP(sHr + Gr):

(Hr + �H, Gr + �G) =
∈ tan(sH+G) at sHr+Gr︷ ︸︸ ︷

(HrŶ − X̂Hr, GrŶ − X̂Gr) +
∈ gsyl(sHr+Gr)︷ ︸︸ ︷

(Hr + �̂H, Gr + �̂G) .
(32)

Consequently,OP(sHr + Gr) is also transversal to gsyl(sHr + Gr) and the intersectionOR(sHr + Gr)

between OP(sHr + Gr) and gsyl(sHr + Gr) is a (sub-)manifold. See Fig. 2 for an illustration. �

The codimension of theOR(sHr + Gr) is obtained directly from the transversality theory. In general,

the codimension of an intersection between two transversal manifolds is equal to the sum of the

codimensions of these two manifolds, e.g., see [21]. Hence, by first considering OR(sHr + Gr) in the

general matrix pencil space we have (following the arguments in the proof of Lemma 9.2):

cod(OR(sHr + Gr)) = cod(OP(sHr + Gr)) + cod(gsyl(sHr + Gr)).

Since the manifoldOR(sHr + Gr) is indeed restricted to the generalized Sylvester space it follows that

cod(OR(sHr + Gr)) = cod(OP(sHr + Gr)). Moreover, the linearization sHr + Gr is a matrix pencil

without any left minimal indices. Consequently, knowing the eigenstructure elements of P(s) the

codimension ofOR(sHr + Gr) can be computed using parts of the explicit expression derived in [9] for

general matrix pencils, assuming that no left minimal indices exist:

cod(OR(sHr + Gr)) = cRight + cJor + cJor,Right, (33)

where

cRight = ∑
εk>εl

(εk − εl − 1), cJor =
q∑

i=1

gi∑
j=1

(2j − 1)h
(i)
j +

g∞∑
j=1

(2j − 1)h
(∞)
j , and

cJor,Right = r0

⎛⎝ q∑
i=1

gi∑
j=1

h
(i)
j +

g∞∑
j=1

h
(∞)
j

⎞⎠ .

Similarly, the codimension ofOL(sH� + G�) can be computed using parts of the expression for general

matrix pencils, assuming that no right minimal indices exist:

cod(OL(sH� + G�)) = cLeft + cJor + cJor,Left, (34)

where

cLeft = ∑
ηk>ηl

(ηk − ηl − 1), cJor,Left = l0

⎛⎝ q∑
i=1

gi∑
j=1

h
(i)
j +

g∞∑
j=1

h
(∞)
j

⎞⎠ ,

and cJor is computed as in (33). Note that some of the terms in (33) and (34) can be empty.
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10. Stratifications

In this section,webeginby introducing the stratification theoryoforbits andbundles, and reviewing

some known results. These results are then extended with stratification theory for linearizations of

full normal-rank polynomial matrices P(s).
The closure hierarchy of orbits (or bundles) is a stratification that we represent by a connected

graph [12,15]. Thenodesof thegraphcorrespond toorbits (or bundles) of specified canonical structures

and the edges to their covering relations. The organization of the graph is from bottom to top (or top

to bottom) with nodes in decreasing (or increasing) order of codimension; see Figs. 3 and 5.

Besides the orbit (or bundle) itself, the closure includes all orbits (or bundles) represented by the

nodes which can be reached by a downward path in the graph. With a downward path we mean a

path that starts out from a (specified) node and follows downward edges until it terminates in another

(specified) node further down in the graph. Similarly, a path in the opposite direction is called an

upward path.

We remark that by adding a small perturbation to amatrix pencil (e.g., corresponding to a lineariza-

tion of P(s)), it is always possible to make it more generic corresponding to a node along an upward

path from the orbit (or bundle). In general, it is not possible to insist on a downward move by just

adding a small perturbation of a givenmatrix pencil. However, the caseswhen a structure below in the

hierarchy actually is nearby is often of particular interest, as it shows that amore degenerate structure

can be found by a small perturbation. In a practical application this could mean that a controllable

system is close to an uncontrollable one, which eventually could lead to a disaster.

By picking random matrix pencils of the same size, they will almost all have the same canonical

structure, corresponding to themost generic casewith the lowest codimension in the closure hierarchy.

On the other side, the most degenerate case, or equivalently, the least generic case has the highest

codimension. These extreme cases are represented by the topmost node (most generic) and the bottom

node (least generic) in the closure hierarchy graph. For example, general rectangular matrix pencils

may have several generic cases, but only one least generic case corresponding to a matrix pencil with

only zero entries.

Our approach to deal with the stratification of linearizations of polynomial matrices extends on

earlier work for general matrix pencils [12] and for controllability (and observability) pairs [15]. The

results in [12,15] are stated in a set of rules expressed as minimal coin moves within and between the

structure integer partitions R, L, J , and N (as defined in Section 8).

For example, necessary and sufficient conditions for an orbit of two matrix pencils sH + G and

sH̃ + G̃ to be closest neighbors in a closure hierarchy are established in [12]. In otherwords, conditions

when OP(sH + G) covers OP(sH̃ + G̃), where the orbit is the manifold of strictly equivalent matrix

pencils (24). The corresponding set of rules for bundles of matrix pencils are also presented in [12].

In [15], the results for generalmatrix pencils are extended to necessary and sufficient conditions for

orbits and bundles of two controllability pairs (A, B) and (̃A, B̃) or two observability pairs (A, C) and
(̃A, C̃) to be closest neighbors in a closure hierarchy, where the orbits considered are under feedback

equivalence.

The structure elements of themost and least generic orbits are, e.g., considered in [42,9] for matrix

pencils and [19,15] for matrix pairs.

10.1. Stratification of polynomial matrix linearizations

Theorem 9.1 and Lemma 9.2 enable us to formulate the covering relations between orbits and

bundles of linearizations ofm× n full normal-rank polynomial matrices P(s) in terms of coin rules on

the structure integer partitions of the linearizations.We show that these relations can be derived from

the covering relations for generalmatrix pencils. By transforming the zero at infinity to a finite zero (as

shown in Lemma 5.3), the results in this section could as well be derived from the stratification theory

for matrix pairs, e.g., see [15]. However, since such a transformation can be arbitrarily ill-conditioned

it is in general recommended to keep the general form of the linearizations. See also Remark 10.1.

For consistencywith earlier results in [12,15] our new findings in Theorem 10.1 below and corollar-

ies are stated using the same notation and similar formulations, see also Sections 7 and 8. For example,
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throughout the following sections we use structure integer partitions (R, L, and J ) and the KCF no-

tation introduced in (7) to represent the eigenstructure elements (minimal indices and elementary

divisors) of a polynomial matrix and its linearization. Notably, in Theorem 10.1 the eigenvalue λi cor-

responding to the structure integer partition J λi
belongs to C, i.e., λi ∈ C ∪ {∞}, and the restriction

on rules (1) and (2) fixate the number of right and left singular blocks.

Theorem 10.1. Let sHr + Gr be the right linearization (8) of an m × n polynomial matrix P(s) of exact

degree d and normal-rank m, where m < n. Given the structure integer partitionsR and J λi
of sHr + Gr,

where λi ∈ C, one of the following if-and-only-if rules finds sH̃r + G̃r fulfilling orbit or bundle covering

relations with sHr + Gr.

A. OR(sHr + Gr) covers OR(sH̃r + G̃r):

(1) Minimum rightward coin move in R.
(2) If the rightmost column in R consists of one

coin only, move that coin to a new rightmost

column of some J λi
(which may be empty

initially).
(3) Minimum leftward coin move in any J λi

as

long as j
(i)
1 does not exceed m.

Rules 1 and 2 are not allowed to do coinmoves that

affect r0 (first column in R).

B. BR(sHr + Gr) covers BR(sH̃r + G̃r):

(1) Same as rule 1 on the left.
(2) Same as rule 2 on the left, except it is

only allowed to start a new setJ λi
cor-

responding to aneweigenvalue (i.e., no

appending to non-empty sets).
(3) Same as rule 3 on the left.
(4) Let any pair of eigenvalues coalesce,

i.e., take the union of their sets of coins.

C. OR(sHr + Gr) is covered by OR(sH̃r + G̃r):

(1) Minimum leftward coin move in R, without

affecting r0.
(2) If the rightmost column in some J λi

consists

of one coinonly,move that coin toanewright-

most column in R.
(3) Minimum rightward coin move in any J λi

.

D. BR(sHr + Gr) is covered by BR(sHr +
Gr):

(1) Same as rule 1 on the left.
(2) Same as rule 2 on the left, except that

J λi
must consist of one coin only.

(3) Same as rule 3 on the left.
(4) For anyJ λi

, divide the set of coins into

two new partitions so that their union

is J λi
.

The corresponding rules for OL(sH� + G�) and BL(sH� + G�) of the dual left linearization sH� + G�

(12), associated with an m × n polynomial matrix of normal-rank n (n < m), are obtained by exchanging

R with L and m with n in the above rules.

Proof. The new restrictions in the cover rules, with respect to the rules for general matrix pencils

sH + G [12], follow directly from Theorem 5.2. The restrictions are: (i) no LT blocks can exist; (ii) since

there can at most bem finite andm infinite elementary divisors, j
(i)
1 in J λi

for each λi ∈ C can at most

bem; (iii) r0 inRmust be n−m, which implies that the number of L blocks remains fixed and is n−m.

The covered-by rules follows directly by reversing the cover rules. �

Remark 10.1. The rules in Theorem 10.1 and the covering rules for matrix pairs [15] are similar.

However, the orbits in the stratifications are different, and as we will see in Theorem 10.4 their least

generic (most degenerate) canonical structures are not the same. We have chosen to include all four

cases (A to D) in Theorem 10.1 to make it self-contained.
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We also remark that the set of A-rules in Theorem 10.1 is in line with the necessary conditions for

covering relations of matrix pencils with no left minimal indices [24].

Now, the cover relations for square full normal-rank polynomialmatrices follow fromTheorem10.1

together with the restrictions of Theorem 5.1. Notably, these rules coincide with the cover rules for

regular matrix pencils [23,12] with the exception that the number of Jordan blocks is restricted by the

normal-rank.

Corollary 10.2. Let sHr + Gr be the right linearization of a square m×m polynomial matrix P(s) of exact
degree d and normal-rank m. Then the covering relations are given by rule (3) of A and rules (3) and (4) of

B in Theorem 10.1.

Remark 10.2. Obviously, when considering square polynomial matrices of full normal-rank, the right

and left linearizations are equivalent with the same structural elements (same elementary divisors

and no minimal indices, see Theorem 3.5).

In addition, the cover relations for m × n full normal-rank polynomial matrices with a full rank

highest degree coefficient matrix follow straightforwardly. The only restriction, with respect to the

cover rules in Theorem 10.1, is that there cannot exist infinite eigenvalues since Hr has full row rank

(or H� has full column rank).

Corollary 10.3. Let P(s) be anm×npolynomialmatrix of exact degree dwith the highest degree coefficient

matrix Pd of full rank. If m < n and normal-rank of P(s) is m, consider the right linearization sHr + Gr

of P(s), else if n < m and normal-rank of P(s) is n, consider the left linearization sH� + G� of P(s). Then
it follows that the covering relations are given by the stated rules in Theorem 10.1, where λi ∈ C (no

eigenvalues at infinity can exist).

The canonical structure elements of themost and least generic orbits or bundles in the stratification

of a linearization of a full normal-rank polynomial matrix are given by the following theorem.

Theorem 10.4. Let sHr + Gr and sH� + G� be the right and left linearizations, respectively, of an m × n

polynomial matrix P(s) of exact degree d and full normal-rank r, where m �= n.

If r = m, the most generic orbit (or bundle) of sHr + Gr has the structure integer partition R =
(r0, . . . , rα, rα+1)where r0 = · · · = rα = n−m, rα+1 = (dm) mod (n−m), and α = �(dm)/(n−
m)�.

There exist p(d) least generic orbits of sHr + Gr (all with the same codimension), where the partition

function p(d) is the number of possible partitions of the integer d. All least generic orbits haveR = (n−m),
but different J λi

associated with at most d distinct eigenvalues λi, i = 1, . . . , d. For each orbit construct

J λi
as follows. Let κ = (k1, . . . , kd) = (m, . . . ,m). Distribute the integer partition κ across J λi

,

i = 1, . . . , d, so that the union of the new J λi
is κ . One or several J λi

can be empty.

The least generic bundle of sHr + Gr has R = (n − m) and J λ = (j1, . . . , jd) = (m, . . . ,m), i.e., m
Jd blocks corresponding to a single eigenvalue of multiplicity m.

If r = n, the most and least generic orbits (or bundles) of sH� + G� are obtained by exchangingRwith

L and interchanging m and n in the above expressions.

Proof. Most generic orbit and bundle: Since each term in (33) (or (34)) coincideswith the correspond-

ing part of the codimension count for matrix pencils with m < n (or m > n) [42,9], it follows that

the most generic orbit and bundle have the same eigenstructure as the corresponding matrix pencil.

If this would not be the case there would exist another orbit of a polynomial matrix linearization with

lower codimension, but in that case there would also exist a matrix pencil with the same codimension

(and vice versa).

Least generic orbit: Theorem5.2 states that all structural elements add up to dm.Moreover, the least

generic orbitmust have all rightminimal indices equal to zero (i.e., only L0 blocks exist), thus theymake
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no contribution to the sum (14). Consequently,
∑

h
(i)
j = dm, where we for simplicity here assume

that any possible infinite elementary divisor is included in the total. Since dm is an integer and we

have atmostm nonzero elementary divisors for each eigenvalue, there can exist atmost d eigenvalues.

There are two extreme cases: (i) only one eigenvalue λ1, which means that there must existm Jordan

blocks of size d × d with the corresponding eigenvalue λ1 of multiplicity m (J λ1
= (m, . . . ,m));

(ii) d distinct eigenvalues λi, i = 1, . . . , d, which means that there must exist m Jordan blocks of

size 1 × 1 for each λi (J λi
= (m)). Since the sum of all elementary divisors

∑
h
(i)
j = dm, the

number of (distinct) eigenvalues does not change the codimension. Therefore, all possible partitions

of κ = (k1, . . . , kd) = (m, . . . ,m) across one or several J λi
, i = 1, . . . , d, are possible.

Least generic bundle: Since each distinct (unspecified) eigenvalue decreases the codimension, the

least generic bundle has only one multiple eigenvalue corresponding to J λ1
= κ (corresponding to

case (i) for orbits). �

11. Sample stratification examples

In this section, we apply and illustrate the stratification theory on a few examples, including two

artificial polynomial matrices and a half-car passive suspension systemwith four degrees of freedom.

Wehave implemented the stratification results presented in Section 10.1 in the software tool Strati-

Graph [27,26,29], which makes it possible to compute, generate and visualize the closure hierarchy

graphs.

Before we move on we introduce a condensed notation for the KCF, used in StratiGraph for repre-

senting the eigenstructure elements. A general block diagonal matrix A = diag(A1, A2, . . . , Ab) with

b blocks can be represented as a direct sum

A ≡ A1 ⊕ A2 ⊕ · · · ⊕ Ab ≡
b⊕

k=1

Ak.

Now, the KCF (7) can compactly be expressed asU(sH + G)V−1 ≡ L⊕L
T ⊕J(λ1)⊕· · ·⊕J(λq)⊕N,

where

L =
r0⊕

k=1

Lεk , L
T =

l0⊕
k=1

LTηk
, J(λi) =

gi⊕
k=1

Jhk(λi), and N =
g∞⊕
k=1

Nhk .

Notice that blocks of the KCF in the direct sum notation above are, without loss of generality, ordered

so that the singular blocks (L and L
T ) appear first.

In the following, we use this direct sum notation of the KCF to represent a linearization of a poly-

nomial matrix with the corresponding eigenstructure elements. Moreover, we denote the orbit of

a linearization, e.g., OR(sHr + Gr), having the eigenstructure elements corresponding to the KCF

L ⊕ LT ⊕ J(λ1) ⊕ · · · ⊕ J(λq) ⊕ N in the compact form OR(L ⊕ LT ⊕ J(λ1) ⊕ · · · ⊕ J(λq) ⊕ N).

11.1. Two full normal-rank polynomial matrices

We start by considering a full normal-rank 2 × 4 polynomial matrix of degree d = 2. In Fig. 3

and Table 1, we illustrate some of the results presented in Section 10 applied to this example. From

Theorem10.4weobtain themost and least genericorbits: themost genericOR(2L2)has codimension0;

the two least genericorbitsOR(2L0⊕2J1(μ1)⊕2J1(μ2))andOR(2L0⊕2J2(μ1))havebothcodimension

16. By applying the set of A-rules in Theorem 10.1 we obtain the complete orbit stratification of the

right linearization sHr + Gr shown in Fig. 3. Note that each edge between two nodes in the graph is

the result of applying one of these rules.

We choose to illustrate the orbit covering A-rules by starting at OR(2L2) with codimension 0 and

following the right-most downward path in Fig. 3. To simplify we use the notation Cod : #, introduced

in Table 1, to denote a specific orbit. By applying the rule A.(1) to orbit 0:1 we obtain the orbit 1:1.
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Fig. 3. Orbit stratification of the right linearization sHr + Gr of a full normal-rank 2 × 4 polynomial matrix of degree 2

(m = 2, n = 4, d = 2, r = m). Each node in the graph represents an orbit of sHr + Gr with the stated structural elements

represented as KCF-blocks. The numbers on the left are the codimensions of the orbits on each level. See also Table 1.

Table 1

The table lists all orbits in the stratification of the right linearization of the full normal-rank 2×4 polynomial matrix

of degree 2 shown in Fig. 3. The first column Cod is the codimension of the corresponding orbit and # is a sequence

number identifying orbits with the same codimension (numbered from left to right in Fig. 3). The third column

Blocks gives the structural elements of the orbit represented in KCF block notation, and the remaining columns show

the corresponding structure integer partitionsR and J .

Cod:# Blocks R Jμ1
Jμ2

Jμ3
Jμ4

0 : 1 2L2 (2, 2, 2)
1 : 1 L3 ⊕ L1 (2, 2, 1, 1)
3 : 1 L2 ⊕ L1 ⊕ J1(μ1) (2, 2, 1) (1)
3 : 2 L4 ⊕ L0 (2, 1, 1, 1, 1)
5 : 1 L3 ⊕ L0 ⊕ J1(μ1) (2, 1, 1, 1) (1)
6 : 1 2L1 ⊕ J1(μ1) ⊕ J1(μ2) (2, 2) (1) (1)
6 : 2 2L1 ⊕ J2(μ1) (2, 2) (1, 1)
7 : 1 L2 ⊕ L0 ⊕ J1(μ1) ⊕ J1(μ2) (2, 1, 1) (1) (1)
7 : 2 L2 ⊕ L0 ⊕ J2(μ1) (2, 1, 1) (1, 1)
8 : 1 2L1 ⊕ 2J1(μ1) (2, 2) (2)
9 : 1 L1 ⊕ L0 ⊕ J1(μ1) ⊕ J1(μ2) ⊕ J1(μ3) (2, 1) (1) (1) (1)
9 : 2 L2 ⊕ L0 ⊕ 2J1(μ1) (2, 1, 1) (2)
9 : 3 L1 ⊕ L0 ⊕ J2(μ1) ⊕ J1(μ2) (2, 1) (1, 1) (1)
9 : 4 L1 ⊕ L0 ⊕ J3(μ1) (2, 1) (1, 1, 1)
11 : 1 L1 ⊕ L0 ⊕ 2J1(μ1) ⊕ J1(μ2) (2, 1) (2) (1)
11 : 2 L1 ⊕ L0 ⊕ J2(μ1) ⊕ J1(μ1) (2, 1) (2, 1)
12 : 1 2L0 ⊕ J1(μ1) ⊕ J1(μ2) ⊕ J1(μ3) ⊕ J1(μ4) (2) (1) (1) (1) (1)
12 : 2 2L0 ⊕ J2(μ1) ⊕ J1(μ2) ⊕ J1(μ3) (2) (1, 1) (1) (1)
12 : 3 2L0 ⊕ J2(μ1) ⊕ J2(μ2) (2) (1, 1) (1, 1)
12 : 4 2L0 ⊕ J3(μ1) ⊕ J1(μ2) (2) (1, 1, 1) (1)
12 : 5 2L0 ⊕ J4(μ1) (2) (1, 1, 1, 1)
14 : 1 2L0 ⊕ 2J1(μ1) ⊕ J1(μ2) ⊕ J1(μ3) (2) (2) (1) (1)
14 : 2 2L0 ⊕ J2(μ1) ⊕ 2J1(μ2) (2) (1, 1) (2)
14 : 3 2L0 ⊕ J2(μ1) ⊕ J1(μ1) ⊕ J1(μ2) (2) (2, 1) (1)
14 : 4 2L0 ⊕ J3(μ1) ⊕ J1(μ1) (2) (2, 1, 1)
16 : 1 2L0 ⊕ 2J1(μ1) ⊕ 2J1(μ2) (2) (2) (2)
16 : 2 2L0 ⊕ 2J2(μ1) (2) (2, 2)
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Once again rule A.(1) is used on 1:1 to get 3:2. From 3:2 we can recursively apply rule A.(2) four times

obtaining 5:1, 7:2, 9:4, and 12:5.We remark that going from3:2 to 5:1 a new setJ for a new eigenvalue

is created, while the remaining edges in the subpath correspond to that the existing J is extended,

creating a Jordan block of larger size (2, 3, and 4, respectively). Finally, the last two edges (from 12:5

to 16:2 via 14:4) are obtained by applying rule A.(3).

We could aswell have started at the least genericOR(2L0⊕2J2(μ1)) (16:2) and applied the covered-

by rules in Theorem 10.1 to generate the right-most (now) upward path ending at orbit OR(2L2) (0:1)
in Fig. 3.

Next we consider squarem × m polynomial matrices P(s) of exact degree d and with full normal-

rank r = m, which we only illustrate here with an example where m = d = r = 2. There are five

most generic orbitswhere each of themare independent, i.e., they belong to different closure hierarchy

graphs. The five cases I–V are listed below togetherwith the corresponding least generic orbit and their

codimension.

Case Cod Most generic orbit Cod Least generic orbit

I 4 OR(J4(μ1)) 8 OR(2J2(μ1))

II 4 OR(J3(μ1) ⊕ J1(μ2)) 6 OR(J2(μ1) ⊕ J1(μ1) ⊕ J1(μ2))

III 4 OR(J2(μ1) ⊕ J2(μ2)) 8 OR(2J1(μ1) ⊕ 2J1(μ2))

IV 4 OR(J2(μ1) ⊕ J1(μ2) ⊕ J1(μ3)) 6 OR(2J1(μ1) ⊕ J1(μ2) ⊕ J1(μ3))

V 4 OR(J1(μ1) ⊕ J1(μ2) ⊕ J1(μ3) ⊕ J1(μ4)) — —

Weremark that caseV above, indeed, is a stratificationwith only onenode (four distinct eigenvalues

corresponding tofinitezerosofP(s)). Thestratificationof thefivecases canbeobtained fromtheclosure

hierarchy graph of a regular matrix pencil, with the restriction that there can be at mostm elementary

divisors associated with each eigenvalue.

11.2. Half-car suspension model

Finally,weapply the stratification theory toamechanical system in the formof ahalf-car suspension

model with four degrees of freedom as shown in Fig. 4, where ki are stiffnesses, ci dampings, li lengths,

mi masses, and Jp ≈ mblf lr is the bodymoment of inertia. Themodel represents one side of a car (front

and rear suspension), where the pitch ϕ and heave motion zb of the vehicle body and the vertical

translation of the front and rear axles (zf and zr , respectively) can be analyzed. Typical values for a

passenger sedan can be found in, e.g., [39].

The equations of motion of the half-car suspension model are:

mf z̈f = ktf (zf − qf ) + kf (zb − ϕlf − zf ) + cf (żb − ϕ̇lf − żf ) + mf , (35)

mrz̈r = ktr (zr − qr) + kr(zb + ϕlr − zr) + cr(żb + ϕ̇lr − żr) + mr , (36)

mbz̈b = kf (zf − zb + ϕlf ) + kr(zr − zb + ϕlr) + cf (żf − żb + ϕ̇lf ) (37)

+ cr(żr − żb − ϕ̇lr) + mb ,

Jpϕ̈ = −kf lf (zf − zb + ϕlf ) − cf lf (żf − żb + ϕ̇lf ) + kr lr(zr − zb + ϕlr) (38)

+ cr lr(żr − żb − ϕ̇lr).

Let the state vector be x =
[
zf zr zb

]T
, and the input vector be u =

[
qf qr

]T
, where qf , qr are

the road heights. Then the equations (35)–(37) can be represented inmatrix form by the second-order

differential equation

Mẍ + Cẋ − Kx − Cpϕ̇ − Kpϕ = Fu, (39)
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Fig. 4. Half-car passive suspension model.

and (38) as

Jpϕ̈ + kpϕ̇ + cpϕ − CT
p ẋ − KT

p x = 0, (40)

where

M = diag(mf ,mr,mb), F =

⎡⎢⎢⎢⎣
1 0 mf

0 1 mr

0 0 mb

⎤⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎣
cf 0 −cf

0 cr −cr

−cf −cr cf + cr

⎤⎥⎥⎥⎦ ,

K =

⎡⎢⎢⎢⎣
ktf − kf 0 kf

0 ktr − kr kr

kf kr −kf − kr

⎤⎥⎥⎥⎦ , Cp =
[
−cf lf cr lr cf lf − cr lr

]T
,

Kp =
[
−kf lf kr lr kf lf + kr lr

]T
, cp = cf l

2
f + cr l

2
r , and kp = kf l

2
f + kr l

2
r .

Using the Laplace variable s, (39) and (40) can be expressed as

Ms2x + Csx − Kx − Cpsϕ − Kpϕ = Fu, and

Jps
2ϕ + kpsϕ + cpϕ − CT

p sx − KT
p x = 0,

(41)

respectively. Eliminating ϕ from (41) leads to the fourth-order differential equation

P4x
(4) + P3x

(3) + P2x
(2) + P1x

(1) + P0x = Q2u
(2) + Q1u

(1) + Q0u, (42)

where

P4 = JpM, P3 = kpM + JpC, P2 = kpC + cpM − JpK − CpC
T
p ,

P1 = cpC − kpK − KpC
T
p − CpK

T
p , P0 = cpK − KpK

T
p , Q2 = JpF,

Q1 = kpF, and Q0 = cpF.
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Fig. 5. Subgraph of the orbit stratification of the right linearization (43). The nodes in the left part represent the orbits of controllable

systems (only Lk blocks). The nodes in the right part represent the orbits of uncontrollable systems with one uncontrollable mode

(only Lk blocks and one J1(μ1) block). The numbers (0–24) to the left show the codimensions of the different orbits in the subgraph.

Using the technique outlined in Example 6.1 we obtain the right linearization of the associated

3 × 6 polynomial fraction (42) as

⎡⎢⎢⎢⎢⎢⎢⎣
sI3 P0 Q0

−I3 sI3 P1 Q1

−I3 sI3 P2 Q2

−I3 sP4 + P3 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (43)

If P4 (in this case the diagonal matrix JpM) is well-conditioned one can apply the stratification rules

in Corollary 10.3. Otherwise, we keep to the formulation (43) and use the rules in Theorem 10.1. The

complete stratification of (43) has 6416 different orbits! Here, we only show a subgraph in Fig. 5
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for illustration. The subgraph represents all the controllable orbits (on the left) together with the

closest uncontrollable orbits with one uncontrollable mode (on the right) which can be reached by a

perturbation of the polynomial matrix coefficients. The most generic orbit with KCF 3L4 corresponds

to the case when the three transformed inputs {̃u1, ũ2, ũ3} in the linearization control four states

each, while the least generic controllable orbit (OR(L12 ⊕ 2L0) with codimension 22) corresponds to

when ũ1 controls all twelve states. One example taken from the uncontrollable part of the graph is

when the two suspensions do not have any damping (cf = cr = 0). Such a configuration belongs to

OR(L5 ⊕2L3 ⊕ J1(μ1))with codimension 6. In practice, this means that a suspension systemwith low

damping factor is likely to be close to OR(L5 ⊕ 2L3 ⊕ J1(μ1)).
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