A GENERALIZED STATE-SPACE APPROACH FOR THE
ADDITIVE DECOMPOSITION OF A TRANSFER MATRIX

BO KAGSTROM
Institute of Information Processing
University of Umea, S-901 87 Umea, Sweden

PAUL VAN DOOREN
Coordinated Science Laboratory
University of Illinois, Urbana I, 61801, USA

We dedicate this paper to Gene Golub, a true source of inspiration for our work,
but also a genuine friend, at the occasion of his sixtieth birthday.

ABSTRACT

Robust and reliable algorithms are presented for computing the stable
projection with respect to a specified region I' in the complex plane of a
transfer matrix given by its generalized state space realization. The algorithms
are based on a block-diagonalization of AE — A (in generalized Schur form)
with optimally conditioned transformation matrices. A first direct elimination
approach reduces to solving a generalized Sylvester equation. In a second
approach an equivalence transformation is constructed from unitary bases of
pairs of deflating subspaces obtained from two reorderings of the eigenvalues.
The sensitivity of the problem and the stability of the proposed algorithms
are discussed and compared with a more classical approach. Results from
numerical experiments that evaluate the algorithms and confirm the theory
are also reported.

Keywords: Transfer matrix, additive decomposition, generalized state space
realization, generalized Sylvester equation, block-diagonalization.

1 Introduction

Constructing the stable projection H. () of a given transfer matrix H(A) is a prob-
lem which appears in several analysis and design problems of systems and control
theory ([11], [18], [6]). Tt could be briefly described as follows. Let T' be a region of
the complex plane C and let H,,,(A) be a m X p rational transfer matrix with poles
inside and outside the region T', (C = TUT,T'NT = §)). Then H()\) always has an
additive decomposition

H(A) = Hy(A) + Hy(A) (1.1)
where H.(A) has only poles inside T', and Hx(A) has only poles outside T' (i.e. inside
). The term H.()) is then also called the stable projection of H()) on I'. Notice
that this decomposition is not unique. Indeed, let H () and H~(\) be a solution to

this problem then H.(A\)+ M and Hs(A) — M with M an arbitrary m X p constant
matrix, is also a solution to (1.1), since adding or subtracting a constant matrix does



not affect the poles of a transfer matrix. The classical construction of a solution to
the above problem is the partial fraction expansion of H(X) (see e.g. [6], p.56):

k
H(A) =Y Ha,(A) + Ho+ Hoo(N) (1.2)
1=1
where
Hoo(N)= Hi - A4+ Ho - N4+ Hy- X\ (1.3)
and " "
Ho(\) = —20b oy Zoidi 1.4

The poles of H(A) are clearly the o, =1,...,k and agy1 = oo (depending on the
existence of the H.-part). It is clear that H(A) and H.,(A) must have coinciding
polar parts for o; € T' and similarly H(\) and Hy(A) must have coinciding polar
parts for a; € I'. One now obtains a construction for H,(\) and H5(A) by merely
grouping in H,(A) all polar parts corresponding to a pole inside T' and grouping in
H=(A) all polar parts corresponding to a pole outside T'. This immediately reflects
the degree of freedom in the constant term Hy which can arbitrarily be distributed
over both H,()) and Hs(A). The problem becomes uniquely defined though, when
one adds the constraint

H’Y(/\O) = go,/\o S T (15)

for an arbitrary point Ag outside T', since that fixes the constant part of H.(}).

The rest of the paper is outlined as follows. In section 2 a generalized state-space
approach of the additive decomposition of a transfer matrix is described leading
to a block decomposition of the system matrix. Deflating subspaces and optimal
block-diagonalization are introduced in section 3. In section 4 two algorithms for
computing a block-decomposition with optimally conditioned transformation ma-
trices are presented. Section 5 discusses the sensitivity of the problem and the
stability of the proposed algorithms. Section 6 reports some numerical experiments
and, finally, some conclusions are summarized in section 7. This paper is based and
extends on an earlier conference paper [8].

The following notation is used in the paper. A(F, A) denotes the spectrum of a
regular matrix pencil AEF— A. [|A|| denotes the spectral norm (2-norm) of a matrix A
induced by the FEuclidean vector norm. [|A||g denotes the Frobenius (or Euclidean)
matrix norm. x(A) = [|A|| - [|A7"|| denotes the spectral condition number of a
matrix A. Gpmar(A) and omin(A) denote the largest and smallest singular values of
a matrix A, respectively. For a square matrix A we have that [|A|| = opmaz(A4) and
[J[A=Y|| = omin~'(A). A® B denotes the Kronecker product of two matrices A and
B whose (i, j)-th block element is a;; B. rank(A) denotes the rank of a matrix A.
AH denotes the conjugate transpose of A.



2 A Generalized State-Space Approach

Assume that H,,(A) is given via its generalized state-space realization:
H(\) =CA\E—-A)"'B+D (2.1)

where {A\E — A, B,C, D} is a minimal realization, i.e. rank(FE) equals the McMillan
degree of H(A) [11]. Algorithms for obtaining such realizations are e.g. given in
[15]. If H(A) happens to be bounded at A = oo, then a realization can always be
chosen with £ = I, which is then a (standard) state space realization. Notice that
a minimal realization such as (2.1) is not unique. Several such realizations can in
fact be derived from (2.1) via the equivalence relation:

(\E — A, B,C, D} 25 (U=*(\E — A)V,U~'B,CV, D} (2.2)

where U and V' are nonsingular matrices. If we define

ME—A B ] (2.3)

sw =[5 B

to be the system matriz of the realization (2.1) then the equivalent realization (2.2)
has a system matrix:

_lut o A —A B V o0
Suv(A) = [ 0 I ] : [ _C D ] : [ 0 I, ] (2.4)
which is a compact notation always used in the sequel. That both S(A) and Sy v ()

correspond to the same transfer function H(A) is easily verified from (2.1). By

choosing U and V to be the transformation matrices reducing the regular pencil
AE — A to its Weierstrass canonical form (WCF):

UY\E — A)V = diag{\[ — JAN — T} (2.5)

where AT — J is in Jordan canonical form (finite eigenvalues a;) and N is nilpotent
and in Jordan canonical form (infinite eigenvalue), the corresponding realization
Suv(A) yields information which is implicitly equivalent to the partial fraction
expansion of H(\). Denoting By = U~!B and Cy = C'V one then has

H(\) = Cy -diag{(\ — J)"',(A\N = I)~'} - By + D. (2.6)

Let (A—a;)T— N; be the diagonal block of AT—.J corresponding to a given eigenvalue
A = a; (N; is thus nilpotent) and let By o, be the corresponding block rows of By
and Cl 4, the corresponding block columns of C'y. Then, clearly

Ho,(A\) =Cva, - [(A= )] = N;]" - By, (2.7)

is the polar section of H.,(A) at A = «; and the coefficients H,,; of (1.4) can
easily be derived from appropriate columns and rows of Cy ., and By ,,, respec-
tively. Notice that rank(H,, 4,) is equal to the number of Jordan blocks of size



d; corresponding to a;. The discussion above shows the connection between the
Weierstrass form of a generalized state-space realization and the partial fraction
expansion of its transfer matrix. At the same time we also indicate the weakness of
the partial fraction expansion, since it is related to the WCF: its computation may
be extremely sensitive when H () has multiple poles or poles that are close to each
other.

3 Deflating Subspaces and Optimal Block-diagonalization

The comparison in section 2 suggests that the solution to the additive decomposition
1s in fact solved by a block decomposition of the type:

AE — A 0 By
Suv() = 0 AP An By . (3.1)
-4 —C

Tt is readily verified that the transfer function of Sy v () is:
HA)=Cy-(AFB11 — A1) - By 4+ Cy - (AE9g — Ago) ™' - B+ D (3.2)

and it thus suffices to find a decomposition of the type (3.1) where AFy; — A1y has
only eigenvalues inside I and A E95 — A9 only outside I'. Such block decompositions
boil down to the computation of two complementary deflating subspaces of the
original pencil AE — A [5]. For explaining this we first recall the definition of a
deflating subspace of a regular pencil A\E — A [14]. Any subspace X satisfying

Y = EX + AX;dimY = dimX (3.3)

1s called a deflating subspace of the pencil AE — A. The name stems from the
following decomposition

H _ | AEn— A AFE12— Ags
Q (/\E—A)Z_ 0 Aoy — Ao

(3.4)
which is directly obtained from (3.3) using any unitary transformations @ and 7
such that the first n1 columns of 7 and @ span the subspaces X’ and Y, respectively
[14]. The block decomposition (3.4) shows that the generalized eigenvalue problem
AE — Ais now “deflated” into two smaller dimensional problems AFE;; — A;;,1 = 1, 2.
The spectrum of AEy1 — Ay associated with the subspace X’ uniquely determines
the space X if and only if it is disjoint from the spectrum of AFaq — Ass [14].
Indeed X is then the subspace spanned by the eigenvectors and principal vectors of
higher grade in the WCF associated with those eigenvalues. But since the spectra
of AE11 — A1q and AFs9 — Ao are disjoint there is also a unique deflating subspace
X, with the spectrum of AF55 — Ass . In [5] it is shown that these spaces are then
complementary (i.e. they are linear independent and add up to the whole space) as
well as their ranges Y = FX 4+ AX and Y. = EAX, + AX,. Further, there exists a



decomposition

-1 _ | AEn—An 0
U'(AE — A)V = 0

AE99 — Aay (3.5)

where V' and U are no longer unitary, but are such that their first n; columnsspan X
and Y, respectively, and their last ns columns span X. and ).. The complementarity
of these pairs of subspaces also ensures that U and V' are invertible [5], and U and
V' are given by:

U=[Y[Y];V = [X[X,] (3.6)
where X, X.,Y and Y, are submatrices whose columns span the spaces X', X, Y
and Y., respectively. From (3.5-3.6) it follows that our problem is solved by the
computation of the subspaces

X=X X, =4 (3.7)

corresponding to the complementary regions I' and T' we are interested in. These
spaces are unique, as follows from our discussion and the matrices U and V' derived
from (3.6) are then invertible and yield the derived decomposition (3.5).

By minimizing the condition numbers of the transformation matrices we will
compute an additive decomposition which is less sensitive to rounding errors. So,
in this context we are interested to have U and V in (3.5) as well-conditioned as
possible subject to the constraint that the block columns of U and V span X', X, Y
and Y., respectively. UD; and V Dy, where D; = diag{Dﬁ),Dg} has a block
partitioning compatible with (3.5), also satisfy (3.5) and we define (3.5) to be an
optimal block-diagonalization if U and V' fulfill

k(P) = iIII)f k(PD) for P=U,V (3.8)

where infimum is taken over all nonsingular block diagonal matrices D. In our case
we only have two blocks and then it 1s well-known that any transformation matrices
U and V with unitary bases for X', X., Y and Y., respectively, satisfy (3.8) (see e.g.

[1],[4]).
4 Block Decomposition Algorithms

In order to construct a decomposition of the type (3.1) we first transform AEF — A
to generalized Schur form by applying the QZ-algorithm [12]. Then the eigenvalues
of AE — A are reordered so that the ny eigenvalues inside T' are placed in the (1, 1)-
block of the transformed pencil and consequently the remaining eigenvalues (outside
T') are placed in the (2, 2)-block of the transformed pencil. This reordering can also
be accomplished with unitary matrices [16], [17]. After this generalized state-space
transformation (accomplished with unitary transformation matrices @ and 7) we
have a system matrix of the form:
AE1 — A AE1— A By

So.z(\) = 0, A - Az By (1.1)
—u1 —Lw2



Now it remains to decouple the diagonal blocks by annihilating the (1,2)-block
of (4.1). We present two approaches for this decoupling. The first is a direct
elimination approach which is performed by solving a generalized Sylvester equation.
In the second approach the required equivalence transformation is constructed from
unitary bases of pairs of deflating subspaces obtained from two reorderings of the
eigenvalues of the generalized Schur form of AE — A.

4.1 Block-diagonalization by Solving the Generalized Sylvester Equa-
tion

Here, AF15 — A19 18 zeroed out with an equivalence transformation of the form:

I, —L 0 A1 — Air AF1s— As By I, R 0
0 I,, 0 | 0 AEss — Asy  Bs 0 I, 0 |.(42)
0 0 In —Cy 0y D 0o 0 I

This leads to solving for R and L in the generalized Sylvester equation

AR — LAsy = —Ass
Ei1R— LEsy = —Fq (4.3)

which is a linear system with 2n; - ns unknowns, the entries of Z and R. Tn [10], [9]
efficient and reliable algorithms and software for solving this matrix equation are
presented. One of the algorithms uses the generalized Schur form of both AF;; —
Aji,t = 1,2 which happen to be provided by the triangular form described in the
previous step (4.1). Notice that B; and C3 are also affected by the equivalence
transformation (4.2). In the following we summarize the main steps of the proposed
algorithm.

Algorithm ADTF1
(Additive Decomposition of a Transfer Function no. 1)

1. Apply the QZ-algorithm to AE — A.

2. Reorder the eigenvalues so that the ny eigenvalues inside T' are in AE 1 — Aq;.
After steps 1-2 we have the following decomposition of AE — A:

H _ | AEn— A AFE12— Aps
QF(\E— A)7 = [ ; N (4.4)

3. Zero out AF12 — Aqa by solving the generalized Sylvester equation (4.3).

4. Complete the equivalence transformation from steps 1-2 giving a system ma-
trix of the form (3.1):

Bz[g;]::QHB;CE[Cl Cy1:=CZ (4.5)

5. Complete the equivalence transformation (4.2):

By :=By — LBy;(y:=C1R+ (5 (4.6)



6. Construct U and V' as in (3.6) from steps 1, 2 and 3:

=[U Us]:= 1 1L 9
VIV WS i e (1)

where Q = [ Q1 Q2 ],Z = [ 71 72 ], and @1, 71,U1 and Vi have ng

columns, respectively, and @2, 72, Us and V5 have ns columns, respectively.

Notice that only Us and V5 are affected by the transformation matrices of the
equivalence transformation (4.2). We have only introduced U and V in step 6
for clarity. They should be stored in @ and Z, respectively. The algorithm is
of course also possible to apply to the standard state space realization H(X) =
C(A — A)='B + D. The use of the Sylvester equation in this particular case was
also suggested in [13].

In Table 1 we summarize the amount of work in flops required by algorithm
ADTF1 (one flop is the amount of work associated with one floating point add and
one floating point multiply). The pencil AE — A is of dimension ny +na by ny + ns.
For the operation counts of step 1 see [7], [12]; for step 2 see [16], [17]; for step 3 see
[10]. Step 4 to 6 are just matrix multiplications. By adding the flops for all steps
in Table 1 we get an estimate of the overall workcount for the ADTF1-algorithm
(cubic in nq+na, since normally ny 4+ns > m and p). The solution of the generalized

Table 1: The amount of work in flops for algorithm ADTF1

Step No. Flops Step No. Flops
1 15(n1 + no)3 4 (n1 + n2)%(m +p)
2 5(n1 + na)3 on average 5 nyna(m + p)
3 57112712 + 577,177,22 + 0(77,177,2) 6 2(77,1 + 77,2)77,177,2

Sylvester equation in step 3 give us L and R in the block-decomposition (4.2). Tt
is now possible to compute an optimal diagonalizing equivalence transformation of
AE — A in generalized Schur form (4.4) [4],[5]. Without loss of generality the right
and left transformation matrices are of the form SD with

_ Inl M | D1y 0
Then the choice [5]
Diy = Iny, Das = (14| M|]")7% - I, (4.9)

makes x(SD) satisfy the optimality condition (3.8) and
K(SD) = [|M||+ (1 +[|M]*)=. (4.10)

Let I = (14 ||L||2)% and r = (1+ ||R||2)%. Then the optimal block-diagonalization
imposes the following modifications (scalings) in algorithm ADTF1: AEas — Agg in



(4.4) will be replaced by fj(/\Egg — As9); By in (4.5) by IBy; and C5 in (4.6) by
(C1R + C5)/r. The extra work concerns mainly the computation of [ and » which
both require O(4n3ns) flops. The work for the scalings are only second order terms.

4.2 Block-diagonalization with Unitary Bases from Two Reorderings of
the Eigenvalues

Tt 1s 1n fact possible to construct an optimal block diagonalizing equivalence transfor-
mation of AE — A directly from two reorderings of the eigenvalues of the generalized
Schur form. The following theorem gives an algorithm for computing the transfor-
mation matrices that block diagonalizes AE — A with the desired splitting of the
spectrum A(F, A).

Theorem 4.1 Let (Q, 7) be unitary matrices that transform AE — A to the gener-
alized Schur form:

ABED 4D ABLD - A
0 AR — Al
(4.11)

with MBS, ARy € T oand MED, AAYONES, ALY = 0. Similarly, let (U, V)

be unitary matrices that transform AE — A to the generalized Schur form:

QT\E — A)Z = [ 8§]QE_A)[ 7 7=

(2) (2) (2) (2)
H _ — U1H _ — /\Eu _An /\E12 _A12
UT(AE — A)V = [ UzH ] ANE-A)[ Vi V= 0 /\Eg)—Ag)
(4.12)
with MBS, A €T and MBS, APYOMED, AZ)) = 0. Then
UH
X_l = [ 2H :| ,Y :[ Z1 V1 ] (413)
Q5

are transformation matrices with optimal condition numbers (3.8) that block diag-
onalize \E — A such that the (1,1)-block of the transformed pencil has all (n)
eigenvalues inside T' and the (2,2)-block has all eigenvalues outside T (i.e. inside
r).

Proof: By using (4.11), (4.12) and (4.13) in X~1(AE — A)Y we obtain

UFQ(AEY — Ay vFu, (B — A

X"'AE - A)Y = 1
QFQIAEY - AY) QFU(EY - AY)

(4.14)
Since U and @ are unitary it follows that the (1,2) and (2, 1) blocks of (4.14) are
zero matrices. The desired spectral properties of the diagonal pencils follow from
the fact that the (1, 1)-block is an equivalence transformation of /\Eﬁ) — A(lll) and
similarly the (2,2)-block is equivalent to /\Eﬁ) — A(lzl). By construction the two
block columns of Y and the two block rows of X! have orthonormal bases which
ensure transformation matrices with optimal condition numbers [1]. O



Theorem 4.1 is of course also applicable to the standard problem A7 — A in which
case X can be chosen as Y. In the following we summarize the main steps of an
algorithm based on Theorem 4.1:

Algorithm ADTF2
(Additive Decomposition of a Transfer Function no. 2)

1. Apply the QZ-algorithm to AE — A.

2. Reorder the eigenvalues of the generalized Schur form from step 1 so that
the ny eigenvalues inside T are in the (1, 1)-block. Save the transformation
matrices (Q, 7).

After steps 1-2 we have transformed AE — A on the form (4.11).

3. Reorder the eigenvalues of the generalized Schur form from step 1 such that
the ny eigenvalues inside T are in the (2, 2)-block, giving (4.12).

4. Construct X~1 and Y as in (4.13) from steps 2 and 3 and compute the diagonal
blocks of X~1(AE — A)Y.

5. B and C are affected by X! and Y:

B _
B = [ B; ] =X"'BC=[C1 Cy]:=CZ (4.15)

After steps 1-5 of ADTF2 we have a system matrix Sx y (A) of the desired form
(3.1). Notice that the diagonal pencils of Sx y (A) may now be full blocks but their
spectra will satisfy the properties of Theorem 4.1. By adding the flops for all steps
in Table 2 we get an estimate of the overall work count for the ADTF2-algorithm.
The operation counts for step 1-3 follow Table 1. The work count for step 4 is
based on the expressions of the diagonal blocks in (4.14). Step 5 comprises two
matrix multiplications. Besides, the extra storage for (@, Z) in step 2 the ADTF2-

Table 2: The amount of work in flops for algorithm ADTF?2

Step No. Flops Step No. Flops
1 15(n1 + na)> 4 (n1 +n2)3 +n? +n3
2 5(n1 + n2)? on average 5 (n1 4+ n2)?(m +p)
3 5(n1 + ns)? on average

algorithm requires somewhat more work, mainly due to that the solution of the
generalized Sylvester equation in ADTF1 1s replaced by a second reordering of the
eigenvalues in ADTF2.

Notice that the two reorderings of Theorem 4.1 can be performed independently.
So, in a parallel setting it is possible to perform the two reorderings during the time
for one.



5 The Sensitivity of the Problem

We only measure here the sensitivity of the block decomposition (3.1), but clearly
the matrices B and C' also play a role in the sensitivity of the final projection H. ()
(1.1). Tndeed, we can analyze the sensitivity by looking at the expressions for the
matrices AE1; — Aq1, B and Cf in terms of the original matrices A, B, C' and E and
the blocks L and R; describing the spaces we compute in the block decomposition:

[i; SHAE—A AR A

¢ o -C D 0 0 I
(5.1)
AE — A 0 By
0 /\EQQ — A22 32
-4 —Ch D
where
Bl ILlB;Cl :CRI;/\EII_AII ILl(/\E—A)Rl (52)

If we perturb A, B, C, E then this will affect the bases I; and Ry and of course
also Fq1, A1, B1 and C. If the perturbations of A, B, C' and F are bounded norm-
wise by § the perturbations of L; and Ry will be of size § times the sensitivity
of the spaces and in turn the latter perturbations will be the most influential in
the perturbations of Fy1, A11, By and C; as we can see from (5.2). So we con-
centrate on the sensitivity of the spaces connected to the block decomposition we
are after by introducing a condition number that provides information about the
sensitivity of the block decomposition (3.1) to perturbations in data. In section
3 we showed that computing (3.1) is a deflating subspace problem and that the
additive decomposition problem is equivalent to computing the subspaces X and
X (3.7). The sensitivity of these subspaces depends on dif(A11, Asa; F11, Fao) [14],
which is the smallest singular value of the linear operator that maps (L, R) in (4.3)
to (A11 R — LAgs, F11R — LFE99). In [5] it is shown that the dif-function also is
Omin(7), the smallest singular value of the 2n1ny by 2nin, matrix

_| hooAn -AL oI,
7 = 2 22 ! 5.3
In2®E11 —Eng®fn1 ( )

where 7 is one representation of the coefficient matrix of the linear system (4.3).
The smallest singular value of 7 is nonzero as long as the spectra of AE1; — Ay
and AFay — Agg are disjoint (which they are by definition in our application). A
consequence of these definitions is that we can bound the solution of the generalized
Sylvester equation [5] as

(A1s, B1o)||E

||
Iz, Bl < R (54)

So, a small 6., (7) may cause L and R to be large, implying that the deflating
subspaces A’ and A, are not well separated. Clearly, the sensitivity of the block

10



decomposition (3.1) for perturbations in the data is proportional to 0';121»”(Z). (For
details of the perturbation theory for deflating subspaces see [14], [5] and for details
of the perturbation theory for the generalized Sylvester equation see [10]). One
interpretation of these perturbation results says that if ., (7) is small then small
changes in the minimal realization (especially perturbations in A and/or E) can
induce large changes in X' and X. (3.7), i.e. the additive decomposition problem
is ill-conditioned. Similarly, a moderate or large value of ¢y, (7) indicates a well-
conditioned additive decomposition problem (1.1) and small changes in the minimal
realization will only cause correspondingly small changes in the subspaces A’ and
Xe (3.7).

In summary, omin(7) is the relevant condition number for the additive decom-
position problem. Tt measures the separation of A(F11, A11) from A(Faa, Asa). Tt is
small if only a small perturbation is needed to make an eigenvalue in A(E11, A11)
coalesce with one in A(Faa, A22) [5]. Notice that if AF1; — A1q and AEas — Ags
have well-separated spectra and ¢, (7) is small then this signals that the original
regular pencil AE — A is close to a singular pencil (det(AE — A) = 0 for all A).

Tt is interesting to know how much dif(A11, Ass; F11, Ea2) (= omin(Z)) can
change due to the scaling for optimally conditioned transformation matrices as in
(4.9-4.10). Before we state the result we first prove the following Lemma:

Lemma 5.1 Let A be an n x n matriz and D = diag{l,,,al,,} where a > 0 and
n=n1 + no. Then omin(A) and Gpmin(AD) will differ at most by a factor o:
min{l, a}omin(A) < omin(AD) < maz{l, a}omin(A). (5.5)
Proof: Since [|[A7Y|71 = 0nin(A), ||D|| = maz{l,a},and ||D7[|7! = 1/min{l, a}
the lemma follows immediately from the following 2-norm inequalities:
A~
10|

< AD)H < [JATH - (I~ (5.6)
O

Theorem 5.1 The scaling (4.9-4.10) for optimally conditioned transformation ma-
trices Ugpt, Vope will change the separation between the spectra measured by the dif-
function with at most a factor fj

min{la fi}dif(An, Asa; B, Ezz) < dif(Au, ,lTAzz; Eiq, ,lTEzz) <

; 5.7
mal‘{laf?}dlf(An,Azz;En,Ezz) ( )
where | = (14|L||?)% and » = (14| |R||?)%.
Proof: The matrix representation (5.1) of the dif-function will change to
L, @ In, 0
Zopt = Z . 0 i—[nz ® Inl (5.8)

Now (5.7) follows by applying Lemma 5.1 to (5.8). O
The following theorem shows how far from the optimal condition numbers we
are before the scaling (4.9-4.10).

11



Theorem 5.2 Let U and V be the transformation matrices in (4.7). The improve-
ment of the condition numbers for U and V in relation to Uyp: and Vope, that fulfill
the optimality condition (3.8), can be bounded as follows:

2i-ve—n <29 @S- vESTD (5.9)

“(Uom)
rz(r— r?—1) < lex(/v)t) < (7“2 +Vr2=1)(r—vr?=1) (5.10)

where 1 = (1+||L||%)* and r = (1+||R||?)*%.

Proof: Without loss of generality we assume that U and V' are on the form:

L, L. _[5L R

2

In general we have

Lo M7 _|[1 (M
0 I, =l1lo 1

where m = ||M]|| . By applying (5.12) to (5.11) and using [ and r we can bound the

2
= 1405(m* + (m* +4m*)3)  (5.12)

condition numbers for U and V as
P<kU)<P4HVE-1,r7<g(V)<ri+Vr2-1 (5.13)

Now, (5.9) and (5.10) follow by using the fact that U,y and V,p; satisfy (4.10). O

Notice that individual eigenvalues of AE;; — A;; and their Jordan canonical forms
can be more sensitive for small perturbations in the data than the separation of the
spectrum of A7 — Aqq from the spectrum of A9 — Ass. In the partial fraction
expansion (1.2) the sensitivity of the individual eigenvalues will be reflected in the
sensitivity of the computed additive decomposition. This is in contrast to our block
decomposition approach, where the inherent conditioning of the additive decom-
position problem (measured as o, (7)) will be reflected in the sensitivity of the
computed solution which is the best we can ask for. In other words, both algorithms
ADTF1 and ADTF2 are numerically stable in the sense that small changes in data
will only cause relative errors in the computed quantities of size proportional to
the conditioning of the original problem. For steps 1, 2, 4 and 6 of ADTF1 we can
make use of Wilkinson’s backward error analysis for products of unitary matrices
[19]. A rounding error analysis of the generalized Schur algorithm for solving the
generalized Sylvester equation is presented in [10]. The conclusion there is that
the algorithm is weakly stable [2], meaning that the relative errors in the computed
(L, R) are small for all well-conditioned problems. More precisely, the relative errors
in the computed (I, R) are proportional to the condition number times a smooth
function of the relative machine precision. These errors will finally propagate to
the computations where R and L are involved (steps 4-6 in ADTF1). All steps in
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ADTF2 include products of unitary matrices and Wilkinson’s backward analysis for
products of unitary matrices is applicable [19].

In [10], [9] dif~'-estimators (lower bounds on o}

(Z) in the style of the Linpack
condition estimator [3]) that are incorporated into the generalized Schur algorithm
for solving the generalized Sylvester equation (4.3) are presented. The heuristic
condition estimators need O(ning + nin3) flops, which is the same magnitude of
work as solving the generalized Sylvester equation (4.3) (see Table 1). This should
be compared with O(10n3n3) flops for computing the exact value of o} (7). Since
solving the generalized Sylvester equation is one step in algorithm ADTF1, this
block decomposition approach also provides us with estimates of the conditioning
of the original problem and the sensitivity of the computed additive decomposition.
For the algorithm ADTF2 the condition estimation must be performed in a post-

processing step.

6 Numerical Experiments

Here we report some numerical results from our Fortran 77 implementations of
ADTF1 and ADTF2. To assess the reliability and robustness of the algorithms
with condition estimators from [10], [9], we ran different sets of test problems,
including both well-conditioned and ill-conditioned additive decomposition prob-
lems. In all examples we have chosen T to be the interior of the unit circle. The
first set of test problems are generated by specifying the spectra of AE — A, and
the upper triangular part of A and F are filled with elements chosen randomly
from [—1.02,1.0z], where # > 0 is an integer that affects the conditioning of the
problem. Finally, A and E are obtained by pre- and post-multiplication of ran-
dom unitary matrices. Examples 1-3 are generated in this way with the follow-
ing spectra: Ex 1:{0.25,0.5,1.5,2.0}; Ex 2:{0.,0.9957, 1.005¢, —0.995¢, —1.005¢}; Ex
3:{0.,4+0.9957,£1.0057, +0.9957, +£1.005i}. In Example 4 we choose: A = J3(1 —
a,1)® Jo(1 + o, 1) and E = I3 @ Iz, where J,(d,s) denotes a Jordan block of
dimension n with d and s as diagonal and superdiagonal elements, respectively,
and « is a real parameter > 0. As before we apply a unitary random equivalence
transformation to (A, F). The final set of test problems were set up to evaluate
our algorithms on random matrices. In Example 5, A and E are 8 by 8 upper
triangular with entries chosen randomly from [—1.0, 1.0] corresponding to an upper
triangular generalized Schur form. The other extreme is when all eigenvalues are
complex conjugate pairs. So, in Example 6, A is chosen 6 by 6, quasi triangular
with 2 by 2 blocks along the diagonal and E is chosen upper triangular. In the
random examples we also apply a unitary random equivalence transformation to
(A, E). All tests were performed using double precision real arithmetic (machep
~ 1.FE—1T7).

In Tables 3-4 results for ADTF1 and ADTF1 with optimal block-diagonalizing
equivalence transformation are shown. Quantities displayed are ¢, (7), the prod-
uct pp = Gmin(Z)dif =1, k(U), k(V) the spectral condition numbers of the transfor-

13



mation matrices and residuals for the computed block diagonal matrices Aand E.
These residuals reflect the sensitivity of the block decompositions. The reliability of
the dif~'-estimator is proved if 0 < prp < 1 and its accuracy is determined by how
close pp is to 1. We see that the correct dimension n; of the stable projection of
H(A) on T was computed for all examples. Further, the condition estimator was in
all cases (except one) within a factor four of the correct value. For some examples
we get a drastic improvement of the condition numbers for U and V. In Table 5

Table 3: Results for ADTF1 with condition estimator

Ex z | n | Omin(Z) pF &(U) k(V) |A—=UAV| | |[E-UEV]|
la 1 2 0.409 0.822 1.61 2.66 5.5E-17 0.0E0
1b 10 2 0.045 0.551 19.9 3104. 2.5E-14 4.1E-14
2a 1 3 0.118 0.634 13.5 16.1 8.3E-16 4.5E-16
2b 10 3 0.263 0.736 330. 2737.2 6.8FE-14 4.5E-16
3a 1 5 9.7E-3 0.347 | 3361. 9013. 3.8E-13 4.8E-13
3b 10 5 5.3E-4 0.277 | 5.0E5 4.5E8 5.3E-10 1.4E-10
4a - 3 1.7E-9 0.413 1.0 1.0 1.2E-15 7.6E-16
4b - 3 1.7E-13 0.409 1.0 1.0 2.3E-15 1.2E-15
5 - 3 0.036 0.577 80.4 59.3 1.1E-15 2.2E-15
6 - 2 0.085 0.360 10.5 11.3 2.9E-15 1.9E-15

Table 4: Results for ADTF1 with optimal block-diagonalizing equivalence transfor-
mation and condition estimator

Ex z | n1 | Omin(Z) pF &(U) (V) | |JA=UAV| | |E-UEV|
1a 1 2 0.389 0.783 1.59 2.45 4.7E-17 3.1E-17
1b 10 2 0.028 0.343 8.59 111.4 2.0E-15 1.3E-15
2a 1 3 0.113 0.605 6.95 7.68 1.6E-16 2.4E-16
2b 10 3 0.209 0.586 36.3 54.3 5.6E-15 4.6E-14
3a 1 5 7.9E-3 0.284 115.9 189.9 6.5E-14 5.0E-14
3b 10 5 6.6E-5 0.035 | 1.4E3 | 4.3E4 4.4F-12 3.9E-12
4a - 3 1.7E-9 0.413 1.0 1.0 1.2E-15 7.6E-16
4b - 3 1.7E-13 0.409 1.0 1.0 2.2E-15 1.3E-15
5 - 3 0.040 0.656 17.8 15.2 1.8E-15 1.5E-15
6 - 2 0.083 0.352 6.04 6.28 2.3E-15 1.3E-15

we display Hfgjp)t), H?‘(/Z/P)t) and the lower and upper bounds of Theorem 5.2 of these

ratios. Tn most examples the lower bounds of (5.9-5.10) are almost attained.

As expected the computed residuals in Table 3-4 are of the size maz{x(U), x(V)}
times machep. So, the bounds (5.9-5.10) give us apriori information on how much
accuracy we can gain by further scaling. In Table 6 0, (Zopt) and the upper
and lower bounds of Theorem 5.1 are shown. For comparison, ¢, (7) and the
condition numbers of the equivalence transformation (U, V) computed by ADTF2
are displayed in the last three columns of Table 6. Notice that &,in(7) did not
change very much after scaling for optimally conditioned U and V. Knowing an
estimate of in(7) the bounds (5.7) give us apriori information on how much
the difference between the spectra measured by the dif-function can change under
scaling for an optimal block diagonalization. Notice Example 3 in Table 6: opin(7)
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Table 5: Lower and upper bounds on the relative changes of k(U) and k(V)

w(U w(V

Ex | o | ni | B(5.9) | = (zﬁo,l) ub(5.9) | 1b(5.10) | - &O;) ub(5.10)
Ta | T | 2 | 07740 | 1.0126 | 1.2558 | 0.8330 | 1.0857 | 1.8561
1h | 10 | 2 | 2.2045 | 2.3155 | 6.4380 | 27.8572 | 27.8654 | 83.5583
2a | 1 | 3 | 1.8117 | 1.9424 | 52179 | 1.9832 | 2.1016 | 5.7528
2b [ 10 | 3 | 9.0769 | 9.1073 | 27.1893 | 13.5696 | 13.5895 | 40.6812
3a | 1 | 5 | 28.987 | 28.9947 | 86.9485 | 47.4663 | 47.4725 | 142.3910
3b | 10 | 5 | 351.822 | 351.823 | 1055.5 | 1.066F4 | 1.066F4 | 3.198F4
da | - | 3 1.0 1.0 1.0 1.0 1.0 1.0
b | - | 3 1.0 1.0 1.0 1.0 1.0 1.0

5 - | 3 | 44691 | 4.5267 | 13.3228 | 3.8365 | 3.9000 | 11.4108
6 - | 2 ] 1.5926 | 1.7450 | 4.5268 | 1.6508 | 1.7962 | 4.7116

Table 6: Lower and upper bounds on omin(Zopt) with optimal block-diagonalizing
equivalence transformation and results for ADTF2

Ex r | m W(5.7) | omin(Zopt) | ub(5.7) | omin(Z) | &(U) k(V)
Ta 1 2 0.3108 0.389 0.409 0.364 1.59 2.45
1b 10 2 0.0035 0.028 0.045 0.005 8.59 111.4
2a 1 3 0.1074 0.113 0.118 0.239 6.95 7.68
2b 10 3 0.1762 0.209 0.263 0.009 36.3 54.3
3a 1 5 5.9E-3 7.9E-3 9.7E-3 7.3E-5 115.9 189.9
3b 10 5 1.75E-5 6.6E-5 5.3E-4 1.8E-7 1.4E3 | 4.3E4
4a - 3 1.7E-9 1.7E-9 1.7E-9 1.7E-9 1.0 1.0
4b - 3 1.7E-13 1.7E-13 1.7E-13 1.7E-13 1.0 1.0
5 - 3 0.0360 0.040 0.042 0.014 17.8 15.2
6 - 2 0.0816 0.083 0.085 0.035 6.04 6.28

computed by ADTF2 is a factor 100 smaller than ¢, (7) computed by ADTF1. Tn
most cases ADTF2 gives a smaller ., (7) than ADTF1. One possible explanation
is that the diagonal blocks are affected as well by ADTF2.

7 Conclusions

We have presented robust and numerically (backward) stable algorithms ADTF1
and ADTF2 for solving the additive decomposition problem of a transfer matrix
given by its generalized state space realization H(\) = C(AE — A)~'B + D. The
algorithms are based on block-diagonalization of A\E'— A (in generalized Schur form)
with optimally conditioned transformation matrices U,p; and Vp:. ADTF1 uses a
direct elimination approach by solving a generalized Sylvester equation giving U
and V. Then U,,; and V,p; are obtained from a block diagonal scaling of U and V.
ADTF2 constructs U,y and V,p; from unitary bases of pairs of deflating subspaces
obtained from two reorderings of the eigenvalues of A\EF— A in generalized Schur form.
A condition number o, (7) that measures the sensitivity of the computed block
decomposition and the subspaces X' and X, (3.7) is introduced. The stability of the
proposed algorithms are discussed and compared with the classical partial fraction
expansion approach (e.g. see [6]). Algorithm ADTF1 also provides reliable lower
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bounds of o} (Z) [10], [9] that estimate the sensitivity of the computed additive
decomposition (1.1). If dif~! and/or the condition numbers of the transformation
matrices are large the computed additive decomposition including the subspaces X
and X. (3.7) may be sensitive for small perturbations in A and/or E. For algorithm
ADTF1 computable lower and upper bounds that estimate the change of the con-
ditioning of the computed block-decomposition due to the block-diagonal scaling
are derived. Results from numerical experiments are reported that evaluate the
algorithms and confirm the theory. Based on these results and the time complexity
of the two algorithms (measured in flops), we conclude that ADTF1 with condition
estimator is the most reliable and robust way of computing a block decomposition

of the type (3.1).
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