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1 Introduction

This part provides an introduction to various aspects of the numerical solution of selected problems
of interest in systems, control, and estimation theory. Space limitations preclude an exhaustive
survey; rather, a compact “introduction to the literature” will lead the interested reader to sources
of additional detailed information and help to put the other parts in this reprints book in proper
perspective.

Many of the problems considered in this book arise in the study of the “standard” linear model

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t). (2)

Here, x(t) is an n-vector of states, u(t) is an m-vector of controls or inputs, and y(t) is an p-vector
of outputs. The standard discrete-time analog of (1), (2) takes the form

xk+1 = Axk + Buk (3)

yk = Cxk + Duk. (4)

Of course, considerably more elaborate models are also studied, including time-varying, stochastic,
and nonlinear versions of the above, but these will not be discussed in this book. In fact, the above
linear models are usually derived from linearizations of nonlinear models about selected nominal
points. The interested reader is referred to standard textbooks such as [2], [17], [109], and [201],
for further details.

The matrices considered here will, for the most part, be assumed to have real coefficients and
be small (of order a few hundred or less) and dense, with no particular exploitable structure. Cal-
culations for most problems in classical single-input, single-output control fall into this category.
It must be emphasized that consideration of large, sparse matrices or matrices with special, ex-
ploitable structures may involve significantly different concerns and methodologies than those to
be discussed here.

The systems, control, and estimation literature is replete with ad hoc algorithms to solve the
computational problems which arise in the various methodologies. Many of these algorithms work
quite well on some problems (e.g., “small order” matrices) but encounter numerical difficulties,
often severe, when “pushed” (e.g., on larger order matrices). The reason for this is that little or
no attention has been paid to how the algorithms will perform in “finite arithmetic,” i.e., on a
finite-word-length digital computer.

A simple example due to Moler and Van Loan [144] will illustrate a typical pitfall. Suppose
it is desired to compute the matrix eA in single precision arithmetic on a computer which gives 6
decimal places of precision in the fraction part of floating-point numbers. Consider the case

A =

[

−49 24
−64 31

]

and suppose the computation is attempted using the Taylor series formula

eA =
+∞
∑

k=0

1

k!
Ak. (5)
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This is easily coded and it is determined that the first 60 terms in the series suffice for the com-
putation, in the sense that terms for k ≥ 60 are of the order of 10−7 and no longer add anything
significant to the sum. The resulting answer is

[

−22.2588 −1.43277
−61.4993 −3.47428

]

.

Unfortunately, the true answer is (correctly rounded)

[

−0.735759 0.551819
−1.47152 1.10364

]

and one sees a rather alarming disparity. What happened here was that the intermediate terms
in the series got very large before the factorial began to dominate. In fact, the 17th and 18th
terms, for example, are of the order of 107 but of opposite signs so that the less significant parts
of these numbers—while significant for the final answer—are “lost” because of the finiteness of the
arithmetic.

Now for this particular example various fixes and remedies are available. But in more realistic
examples one seldom has the luxury of having the “true answer” available so that it is not always
easy simply to inspect or test an answer such as the one obtained above and determine it to be in
error. Mathematical analysis (truncation of the series, in the example above) alone is simply not
sufficient when a problem is analyzed or solved in finite arithmetic (truncation of the arithmetic).
Clearly, a great deal of care must be taken.

The finiteness inherent in representing real or complex numbers as floating-point numbers on
a digital computer manifests itself in two important ways: floating-point numbers have only finite
precision and finite range. In fact, it is the degree of attention paid to these two considerations
that distinguishes many reliable algorithms from more unreliable counterparts. Wilkinson [197]
still provides the definitive introduction to the vagaries of floating-point computation while [133]
and the references therein may be consulted to bring the interested reader up to date on roundoff
analysis.

The development in systems, control, and estimation theory, of stable, efficient, and reliable
algorithms which respect the constraints of finite arithmetic began in the 1970’s and is ongoing.
Much of the research in numerical analysis has been directly applicable, but there are many com-
putational issues in control (e.g., the presence of hard or structural zeros) where numerical analysis
does not provide a ready answer or guide. A symbiotic relationship has developed, particularly
between numerical linear algebra and linear system and control theory, which is sure to provide a
continuing source of challenging research areas.

The abundance of numerically fragile algorithms is partly explained by the following observation
which will be emphasized by calling it a “folk theorem”:

If an algorithm is amenable to “easy” hand calculation, it is probably a poor method if implemented in

the finite floating-point arithmetic of a digital computer.

For example, when confronted with finding the eigenvalues of a 2 × 2 matrix most people
would find the characteristic polynomial and solve the resulting quadratic equation. But when
extrapolated as a general method for computing eigenvalues and implemented on a digital computer,
this turns out to be a very poor procedure indeed for a variety of reasons (such as roundoff and
overflow/underflow). Of course the preferred method now would generally be the double Francis
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QR algorithm (see [60], [61], [171], and [198] for the messy details) but few would attempt that by
hand—even for very small order problems.

In fact, it turns out that many algorithms which are now considered fairly reliable in the
context of finite arithmetic are not amenable to hand calculations (e.g., various classes of orthogonal
similarities). This is sort of a converse to the folk theorem. Particularly in linear system and
control theory, we have been too easily seduced by the ready availability of closed-form solutions
and numerically naive methods to implement those solutions. For example, in solving the initial
value problem

ẋ(t) = Ax(t); x(0) = x0 (6)

it is not at all clear that one should explicitly want to compute the intermediate quantity etA.
Rather, it is the vector etAx0 that is desired, a quantity that may be computed more reasonably
by treating (6) as a system of (possibly stiff) differential equations and using, say, an implicit
method for numerical integration of the differential equation. But such techniques are definitely
not attractive for hand computation.

Awareness of such numerical issues in the mathematics and engineering community has increased
significantly in the last fifteen years or so. In fact, some of the background material (mentioned in
this part and in some of the papers in later parts) that is well known to numerical analysts, has
already filtered down to undergraduate and graduate curricula in these disciplines. A number of
introductory textbooks currently available (e.g., [90], [34], [56], [85], [164], [165]) also reflect a strong
software component. The effect of this awareness and education has been particularly noticeable
in the area of system and control theory, especially in linear system theory. A number of numerical
analysts were attracted by the wealth of interesting numerical linear algebra problems in linear
system theory. At the same time, several researchers in the area of linear system theory turned
their attention to various methods and concepts from numerical linear algebra and attempted to
modify and use them in developing reliable algorithms and software for specific problems in linear
system theory. This cross-fertilization has been greatly enhanced by the widespread use of software
packages and by recent developments in numerical linear algebra. This process has already begun to
have a significant impact on the future directions and development of system and control theory, and
applications, as is evident from the growth of computer-aided control system design (CACSD) as an
intrinsic tool. Algorithms implemented as mathematical software are a critical “inner” component
of a CACSD system.

In the remainder of this part, we give a survey of some recent results and trends in this inter-
disciplinary research area. We put the emphasis on numerical aspects of the problems/algorithms,
which is why we also spend some time in going over the appropriate numerical tools and techniques.
We discuss a number of control and filtering problems that are of widespread interest to the control
systems community.

Before proceeding further we shall list here some notation to be used in the sequel:
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IFn×m the set of all n × m matrices with coefficients in the field IF
(IF will generally be IR orC )

AT the transpose of A ∈ IRn×m

AH the complex-conjugate transpose of A ∈Cn×m

A+ the Moore-Penrose pseudoinverse of A
‖A‖ the spectral norm of A

(i.e., the matrix norm subordinate to the Euclidean vector norm:
‖A‖ = max‖x‖2=1 ‖Ax‖2)

diag (a1, · · · , an) the diagonal matrix







a1 0
. . .

0 an







Λ(A) the set of eigenvalues λ1, · · · , λn (not necessarily distinct) of A ∈ IFn×n

λi(A) the ith eigenvalue of A
Σ(A) the set of singular values σ1, · · · , σm (not necessarily distinct) of A ∈ IFn×m

σi(A) the ith singular value of A.

Finally, let us define a particular number to which we shall make frequent reference in the se-
quel. The machine epsilon or relative machine precision can be defined, roughly speaking, as the
smallest positive number ε which, when added to 1 on our computing machine, gives a number
greater than 1. In other words, any machine representable number δ less than ε gets “ rounded
off” when (floating-point) added to 1 to give exactly 1 again as the rounded sum. The number
ε, of course, varies depending on the kind of computer being used and the precision with which
the computations are being done (single precision, double precision, etc.). But the fact that there
exists such a positive number ε is entirely a consequence of finite word length.

2 Numerical Background

In this section we give a very brief discussion of two concepts of fundamental importance in numer-
ical analysis: numerical stability and conditioning. While this material is standard in textbooks
such as [73],[39],[79],[174], [179] it is presented here both for completeness and because the two
concepts are frequently confused in the systems, control, and estimation literature.

Suppose we have some mathematically defined problem represented by f which acts on data d
belonging to some set of data D, to produce a solution f(d) in a solution set S. These notions are
kept deliberately vague for expository purposes. Given d ∈ D we desire to compute f(d). Suppose
d∗ is some approximation to d. If f(d∗) is “near” f(d) the problem is said to be well-conditioned.
If f(d∗) may potentially differ greatly from f(d) even when d∗ is near d, the problem is said to be
ill-conditioned. The concept of “near” can be made precise by introducing norms in the appropriate
spaces. We can then define the condition of the problem f with respect to these norms as

κ[f(d)] = lim
δ→0

sup
d2(d,d∗)=δ

[

d1(f(d), f(d∗))

δ

]

(7)

where di (. , .) are distance functions in the appropriate spaces. When κ[f(d)] is infinite, the
problem of determining f(d) from d is ill-posed (as opposed to well-posed). When κ[f(d)] is finite and
relatively large (or relatively small), the problem is said to be ill-conditioned (or well-conditioned).
Further details can be found in [163].

A simple example of an ill-conditioned problem is the following. Consider the n × n matrix
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A =



















0 1 0 · · · 0
· · · · · · ·
· · · · · ·
· · · · 0
· · · 1
0 · · · · · 0



















with n eigenvalues at 0. Now consider a small perturbation of the data (the n2 elements of A)
consisting of adding the number 2−n to the first element in the last (nth) row of A. This perturbed
matrix then has n distinct eigenvalues λ1, · · · , λn with λk = 1/2 exp(2kπj/n). Thus, we see that
this small perturbation in the data has been magnified by a factor on the order of 2n to result
in a rather large perturbation in the solution (the eigenvalues of A). Further details and related
examples can be found in [198].

Note that we have thus far made no mention of how the problem f above (computing Λ(A) in
the example) was to be solved. Conditioning is a function solely of the problem itself. To solve a
problem numerically we typically must implement some numerical procedure or algorithm which
we shall denote by f∗. Thus, given d, f∗(d) represents the result of applying the algorithm to d
(for simplicity, we assume d is “representable”; a more general definition can be given when some
approximation d∗∗ to d must be used). The algorithm f ∗ is said to be numerically (backward)
stable if, for all d ∈ D, there exists d∗ ∈ D near d such that f∗(d) is near f(d∗) (= the exact
solution of a nearby problem). If the problem is well-conditioned, then f(d∗) will be near f(d) so
that f∗(d) will be near f(d) if f∗ is numerically stable. In other words, f ∗ does not introduce any
more sensitivity to perturbation than is inherent in the problem. Example 1 below will further
illuminate this definition of stability which, on a first reading, can seem somewhat confusing.

Of course, one cannot expect a stable algorithm to solve an ill-conditioned problem any more
accurately than the data warrant but an unstable algorithm can produce poor solutions even to
well-conditioned problems. Example 2, below, will illustrate this phenomenon. There are thus two
separate factors to consider in determining the accuracy of a computed solution f ∗(d). First, if the
algorithm is stable, f∗(d) is near f(d∗), for some d∗, and second, if the problem is well-conditioned
then, as above, f(d∗) is near f(d). Thus, f∗(d) is near f(d) and we have an “accurate” solution.

Roundoff errors can cause unstable algorithms to give disastrous results. However, it would be
virtually impossible to account for every roundoff error made at every arithmetic operation in a
complex series of calculations such as those involved in most linear algebra calculations. This would
constitute a forward error analysis. The concept of backward error analysis based on the definition
of numerical stability given above provides a more practical alternative. To illustrate this, let us
consider the singular value decomposition of an arbitrary m×n matrix A with coefficients in IR or
C [73]

A = UΣV H . (8)

Here U and V are m × m and n × n unitary matrices, respectively, and Σ is an m × n matrix of
the form

Σ =

[

Σr 0

0 0

]

; Σr = diag{σ1, · · · , σr} (9)

with the singular value σi being positive and satisfying σ1 ≥ σ2 · · · ≥ σr > 0. The computation of
this decomposition is, of course, subject to rounding errors. Denoting computed quantities by an
overbar, we generally have for some error matrix EA :
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A = A + EA = UΣV
H

(10)

The computed decomposition thus corresponds exactly to a perturbed matrix A. When using the
SVD algorithm available in the literature [73], this perturbation can be bounded by :

‖ EA ‖≤ πε ‖ A ‖ (11)

where ε is the machine precision and π some quantity depending on the dimensions m and n, but
reasonably close to 1 (see also [105]). Thus, the backward error EA induced by this algorithm, has
roughly the same norm as the input error Ei that results, for example, when reading the data A
into the computer. Then, according to the definition of numerical stability given above, when a
bound such as that in (11) exists for the error induced by a numerical algorithm, the algorithm
is said to be backward stable [198], [41]. Notice that backward stability does not guarantee any
bounds on the errors in the result U, Σ, and V . In fact this depends on how perturbations in the
data (namely EA = A − A) affect the resulting decomposition (namely EU = U − U, EΣ = Σ − Σ,
and EV = V − V ). This is commonly measured by the condition κ[f(A)] [163].

It is important to note that backward stability is a property of an algorithm while conditioning
is associated with a problem and the specific data for that problem. The errors in the result depend
on both the stability of the algorithm used and the conditioning of the problem solved. A good
algorithm should therefore be backward stable since the size of the errors in the result is then
mainly due to the condition of the problem, not to the algorithm. An unstable algorithm, on the
other hand, may yield a large error even when the problem is well-conditioned.

Bounds of the type (11) are obtained by an error analysis of the algorithm used; see, e.g., [198],
[199]. The condition of the problem is obtained by a sensitivity analysis; see, e.g., [198], [193], [173],
[178] for some examples.

We close this section with two simple examples to illustrate some of the concepts introduced
above.

Example 1: Let x and y be two floating-point computer numbers and let fl(x ∗ y) denote the
result of multiplying them in floating-point computer arithmetic. In general, the product x ∗ y will
require more precision to be represented exactly than was used to represent x or y. But what can
be shown for most computers is that

fl(x ∗ y) = x ∗ y(1 + δ) (12)

where |δ| < ε (= relative machine precision). In other words, fl(x ∗ y) is x ∗ y correct to within a
unit in the last place. Now, another way to write (12) is as

fl(x ∗ y) = x(1 + δ)1/2 ∗ y(1 + δ)1/2 (13)

where |δ| < ε. This can be interpreted as follows: the computed result fl(x∗y) is the exact product
of the two slightly perturbed numbers x(1+ δ)1/2 and y(1+ δ)1/2. Note that the slightly perturbed
data (not unique) may not even be representable floating-point numbers. The representation (13)
is simply a way of accounting for the roundoff incurred in the algorithm by an initial (small)
perturbation in the data.

Example 2: Gaussian elimination with no pivoting for solving the linear system of equations

Ax = b (14)
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is known to be numerically unstable. The following data will illustrate this phenomenon. Let

A =

[

0.0001 1.000
1.000 −1.000

]

, b =

[

1.000
0.000

]

.

All computations will be carried out in four-significant-figure decimal arithmetic. The “true answer”
x = A−1b is easily seen to be

[

0.9999
0.9999

]

.

Using row 1 as the “pivot row” (i.e., subtracting 10,000 × row 1 from row 2) we arrive at the
equivalent triangular system

[

0.0001 1.000
0 −1.000 × 104

] [

x1

x2

]

=

[

1.000
−1.000 × 104

]

.

Note that the coefficient multiplying x2 in the second equation should be -10,001, but because
of roundoff, becomes -10,000. Thus, we compute x2 = 1.000 (a good approximation), but back-
substitution in the equation

0.0001x1 = 1.000 − fl(1.000 ∗ 1.000)

yields x1 = 0.000. This extremely bad approximation to x1 is the result of numerical instability.
The problem itself can be shown to be quite well-conditioned.

3 Fundamental Problems in Numerical Linear Algebra

In this section we give a brief overview of some of the fundamental problems in numerical linear
algebra which serve as building blocks or “tools” for the solution of problems in systems, control,
and estimation.

A. Linear Algebraic Equations and Linear Least Squares Problems
Probably the most fundamental problem in numerical computing is the calculation of a vector

x which satisfies the linear system
Ax = b (15)

where A ∈ IRn×n(orCn×n) and has rank n. A great deal is now known about solving (15) in finite
arithmetic both for the general case and for a large number of special situations. Some of the
standard references include [45], [57], [81], [174], and [73].

The most commonly used algorithm for solving (15) with general A and small n (say n ≤ 200) is
Gaussian elimination with some sort of pivoting strategy, usually “partial pivoting.” This essentially
amounts to factoring some permutation of the rows of A into the product of a unit lower triangular
matrix L and an upper triangular matrix U . The algorithm is effectively stable, i.e., it can be
proved that the computed solution is near the exact solution of the system

(A + E)x = b (16)

with |eij | ≤ φ(n) γ β ε where φ(n) is a modest function of n depending on details of the arithmetic
used, γ is a “growth factor” (which is a function of the pivoting strategy and is usually—but not
always—small), β behaves essentially like ‖A‖, and ε is the machine precision. In other words,
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except for moderately pathological situations, E is “small”—on the order of ε ‖A‖. See [174], [73]
for further details.

The following question then arises. If, because of roundoff errors, we are effectively solving (16)
rather than (15), what is the relationship between (A + E)−1b and A−1b? To answer this question
we need some elementary perturbation theory and this is where the notion of condition number
arises. A condition number for the problem (15) is given by

κ(A) : = ‖A‖ ‖A−1‖. (17)

Simple perturbation results can be used to show that perturbation in A and/or b can be magnified
by as much as κ(A) in the computed solution. Estimation of κ(A) (since, of course, A−1 is unknown)
is thus a crucial aspect of assessing solutions of (15) and the particular estimation procedure used
is usually the principal difference between competing linear equation software packages. One of
the more sophisticated and reliable condition estimators presently available is based on [33] and
is implemented in LINPACK [45] and its successor LAPACK [3]. In addition to the l1 condition
estimator of [33], LINPACK and LAPACK feature many codes for solving (14) in case A has certain
special structures (e.g., banded, symmetric, positive definite).

Another important class of linear algebra problems and one for which codes are available in
LINPACK and LAPACK is the linear least squares problem

min ‖Ax − b‖2 (18)

where A ∈ IRm×n and has rank k, with (in the simplest case) k = n ≤ m. The solution of (18) can
be written formally as x = A+b. Here, standard references include [45], [123], [73], and [174]. The
method of choice is generally based upon the QR factorization of A (for simplicity, let rank(A) = n)

A = QR (19)

where R ∈ IRn×n is upper triangular and Q ∈ IRm×n has orthonormal columns, i.e., QT Q = I.
With special care and analysis the case k < n can also be handled similarly. The factorization is
effected through a sequence of Householder tranformations Hi applied to A. Each Hi is symmetric
and orthogonal and of the form I − 2uuT /uT u where u ∈ IRm is specially chosen so that zeros are
introduced at appropriate places in A when it is premultiplied by Hi. After n such transformations
we have

HnHn−1 · · ·H1A =

[

R
0

]

from which the factorization (19) follows. Defining c and d by

[

c
d

]

:= HnHn−1 · · ·H1b

where c ∈ IRn, it is easily shown that the least squares solution x of (18) is given by the solution of
the linear system of equations

Rx = c . (20)

The above algorithm can be shown to be numerically stable and, again, a well-developed pertur-
bation theory exists from which condition numbers can be obtained, this time in terms of

κ(A) : = ‖A‖ ‖A+‖.
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Least squares perturbation theory is fairly straightforward when rank(A) = n, but is consider-
ably more complicated when A is rank-deficient. The reason for this is that while the inverse is a
continuous function of the data (i.e., the inverse is a continuous function in a neighborhood of a
nonsingular matrix), the pseudoinverse is discontinuous. For example, consider

A =

[

1 0
0 0

]

= A+

and perturbations

E1 =

[

0 0
δ 0

]

and

E2 =

[

0 0
0 δ

]

with δ small. Then

(A + E1)
+ =

[

1
1+δ2

δ
1+δ2

0 0

]

which is close to A+ but

(A + E2)
+ =

[

1 0
0 1

δ

]

which gets arbitrarily far from A+ as δ is decreased towards 0. For a complete survey of perturbation
theory for the least squares problem and related questions, see [176], [178].

In lieu of Householder transformations, Givens transformations (elementary rotations or reflec-
tions) may also be used to solve the linear least squares problem. Details can be found in [45],
[123], [157], [175], and [197]. Recently, Givens transformations have received considerable attention
for the solution of both linear least squares problems as well as systems of linear equations in a
parallel computing environment. The capability of introducing zero elements selectively and the
need for only local interprocessor communication make the technique ideal for “parallelization.”
Indeed, there have been literally dozens of “parallel Givens” algorithms proposed and we include
[67], [76], [127], [169], [128], and [141] as representative references.

B. Eigenvalue and Generalized Eigenvalue Problems
In the algebraic eigenvalue/eigenvector problem for A ∈ IRn×n, one seeks nonzero solutions

x ∈Cn and λ ∈C which satisfy
Ax = λx. (21)

The classic reference on the numerical aspects of this problem is Wilkinson [198] with Parlett [157]
providing an equally thorough and up-to-date treatment of the case of symmetric A (in which
x ∈ IRn, λ ∈ IR). A more brief textbook introduction is given in [174] [73].

It is really only rather recently that some of the computational issues associated with solving
(21) — in the presence of rounding error—have been resolved or even understood. Even now
some problems such as the invariant subspace problem continue to be active research areas. For
an introduction to some of the difficulties which may be encountered in trying to make numerical
sense out of mathematical constructions such as the Jordan canonical form, the reader is urged to
consult [74].

The most common algorithm now used to solve (21) for general A is the QR algorithm of Francis
[60],[61]. A shifting procedure (see [174], [73] for a brief explanation) is used to enhance convergence
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and the usual implementation is called the double-Francis-QR algorithm. Before the QR process
is applied, A is initially reduced to upper Hessenberg form AH(aij = 0 if i − j ≥ 2) [130]. This
is accomplished by a finite sequence of similarities which can be chosen to be of the Householder
form discussed above. The QR process then yields a sequence of matrices which are orthogonally
similar to A and which converge (in some sense) to a so-called quasi-upper-triangular matrix S
which is also called the real Schur form (RSF) of A. The matrix S is block-upper-triangular with
1×1 diagonal blocks corresponding to real eigenvalues of A and 2×2 diagonal blocks corresponding
to complex-conjugate pairs of eigenvalues. The quasi-upper-triangular form permits all arithmetic
done to be real rather than complex as would be necessary for convergence to an upper triangular
matrix. The orthogonal transformations from both the Hessenberg reduction and the QR process
may be accumulated into a single orthogonal transformation U so that

UT AU = R (22)

compactly represents the entire algorithm.
An analogous process can be applied in the case of symmetric A and considerable simplifications

and specializations result. Moreover, [157], [198], [73], and [178] may be consulted regarding an
immense literature concerning stability of the QR and related algorithms, and conditioning of
eigenvalues and eigenvectors. Both subjects are vastly more complex for the eigenvalue/eigenvector
problem than for the linear equation problem.

Quality mathematical software for eigenvalues and eigenvectors is available; the EISPACK [62],
[171] collection of subroutines represents a pivotal point in the history of mathematical software.
This collection is primarily based on the algorithms collected in [199]. The successor to EISPACK
(and LINPACK) is the recently released LAPACK [3] in which the algorithms and software have
been restructured to provide high efficiency on vector processors, high performance workstations,
and shared memory multiprocessors.

Closely related to the QR algorithm is the QZ algorithm [143] for the generalized eigenvalue
problem

Ax = λMx (23)

where A, M ∈ IRn×n. Again, a Hessenberg-like reduction, followed by an iterative process are
implemented with orthogonal transformations to reduce (23) to the form

QAZy = λQMZy (24)

where QAZ is quasi-upper-triangular and QMZ is upper triangular. For a review and references
to results on stability, conditioning, and software related to (23) and the QZ algorithm, see [122],
[73]. The generalized eigenvalue problem is both theoretically and numerically more difficult to
handle than the ordinary eigenvalue problem, but it finds numerous applications in control and
system theory [184].

C. The Singular Value Decomposition and Some Applications
One of the basic and most important tools of modern numerical analysis, particularly numerical

linear algebra, is the singular value decomposition (SVD). It was introduced in Section 2. Here we
make a few comments about its properties and computation as well as its significance in various
numerical problems.

Singular values and the singular value decomposition have a long history particularly in statistics
and more recently in numerical linear algebra. Even more recently the ideas are finding applica-
tions in the control and signal processing literature, although their use there has been overstated
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somewhat in certain applications. For a survey of the singular value decomposition, its history,
numerical details, and some applications in systems and control theory, see [105].

The fundamental result was stated in Section 2 (for the complex case). The result for the real
case is similar and is stated below.

Theorem 1: Let A ∈ IRm×n with rank(A) = r. Then there exist orthogonal matrices U ∈ IRm×m

and V ∈ IRn×n such that
A = UΣV T (25)

where

Σ =

[

Σr 0
0 0

]

and Σr = diag {σ1, · · · , σr} with σ1 ≥ · · · ≥ σr > 0.
The proof of Theorem 1 is straightforward and can be found in, for example, [70], [73], and [174].

Geometrically, the theorem says that bases can be found (separately) in the domain and codomain
spaces of a linear map with respect to which the matrix representation of the linear map is diagonal.
The numbers σ1, · · · , σr together with σr+1 = 0, · · · , σn = 0 are called the singular values of A and
they are the positive square roots of the eigenvalues of AT A. The columns {uk, k = 1. · · · , m} of U
are called the left singular vectors of A (the orthonormal eigenvectors of AAT ), while the columns
{vk, k = 1, · · · , n} of V are called the right singular vectors of A (the orthonormal eigenvectors of
AT A). The matrix A can then also be written (as a dyadic expansion) in terms of the singular
vectors as follows:

A =
r
∑

k=1

σkukv
T
k .

The matrix AT has m singular values, the positive square roots of the eigenvalues of AAT . The r [=
rank (A)] nonzero singular values of A and AT are, of course, the same. The choice of AT A rather
than AAT in the definition of singular values is arbitrary. Only the nonzero singular values are
usually of any real interest and their number, given the SVD, is the rank of the matrix. Naturally,
the question of how to distinguish nonzero from zero singular values in the presence of rounding
error is a nontrivial task.

It is not generally advisable to compute the singular values of A by first finding the eigenvalues
of AT A (remember the folk theorem!), tempting as that is. Consider the following example with µ a
real number with |µ| <

√
ε (so that fl(1+µ2) = 1 where fl(·) denotes floating-point computation).

Let

A =







1 1
µ 0
0 µ






.

Then

fl(AT A) =

[

1 1
1 1

]

so we compute σ̂1 =
√

2, σ̂2 = 0 leading to the (erroneous) conclusion that the rank of A is 1. Of
course, if we could compute in infinite precision we would find

AT A =

[

1 + µ2 1
1 1 + µ2

]

with σ1 =
√

2 + µ2, σ2 = |µ| and thus rank (A) = 2. The point is that by working with AT A we
have unnecessarily introduced µ2 into the computations. The above example illustrates a potential
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pitfall in attempting to form and solve the normal equations in a linear least squares problem, and
is at the heart of what makes square root filtering so attractive numerically. Very simplistically
speaking, square root filtering involves working directly on an “A-matrix,” for example updating
it, as opposed to working on (updating, say) an “AT A-matrix.” See [14] for further details and
references.

Square root filtering is usually implemented using the QR factorization (or some closely related
algorithm) as described previously rather than SVD. The key thing to remember is that in most
current computing environments, the condition of the least-squares problem is squared unnecessarily
in solving the normal equations. Moreover, critical information may be lost irrecoverably by simply
forming AT A.

Returning now to the SVD there are two features of this matrix factorization that make it
so attractive in finite arithmetic: First, it can be computed in a numerically stable way, and
second, singular values are well-conditioned. Specifically, there is an efficient and numerically
stable algorithm due to Golub and Reinsch [72] (based on [70]) which works directly on A to give
the SVD. This algorithm has two phases: In the first phase, it computes orthogonal matrices U1

and V1 such that B = U1
T AV1 is in bidiagonal form, i.e., only the elements on its diagonal and

first super-diagonal are non-zero. In the second phase, the algorithm uses an iterative procedure to
compute orthogonal matrices U2 and V2 such that U2

T BV2 is diagonal and non-negative. The SVD
defined in (25) is then given by Σ = UT BV , where U = U1U2 and V = V1V2. The computed U and
V are orthogonal to approximately the working precision, and the computed singular values can be
shown to be the exact σi’s for A+E where ‖E‖/‖A‖ is a modest multiple of ε. Fairly sophisticated
implementations of this algorithm can be found in [45] and [62]. The well-conditioned nature of
the singular values follows from the fact that if A is perturbed to A+E, then it can be proved that

|σi(A + E) − σi(A)| ≤ ‖E‖.

Thus, the singular values are computed with small absolute error although the relative error of
sufficiently small singular values is not guaranteed to be small. A new algorithm for computing the
singular values of a bidiagonal matrix [44] overcomes this deficiency to the extent that it computes
the singular values of a bidiagonal matrix to the same relative precision as that of the individual
matrix entries. In other words, the algorithm will obtain accurate singular values from accurate
bidiagonal matrices. However, one cannot in general guarantee high accuracy in the reduction to
bidiagonal form.

It is now acknowledged that the singular value decomposition is the most generally reliable
method of determining rank numerically (see [74] for a more elaborate discussion). However, it
is considerably more expensive to compute than, for example, the QR factorization which, with
column pivoting [45], can usually give equivalent information with less computation. Thus, while
the SVD is a useful theoretical tool, its use for actual computations should be weighed carefully
against other approaches.

Only rather recently has the problem of numerical determination of rank become well-understood.
A recent treatment of the subject can be found in the paper by Chan [26]; see also [177]. The essen-
tial idea is to try to determine a “gap” between “zero” and the “smallest nonzero singular value”
of a matrix A. Since the computed values are exact for a matrix near A, it makes sense to consider
the rank of all matrices in some δ-ball (with respect to the spectral norm ‖ · ‖, say) around A. The
choice of δ may also be based on measurement errors incurred in estimating the coefficients of A,
or the coefficients may be uncertain because of roundoff errors incurred in a previous computation
to get them. We refer to [177] for further details. We must emphasize, however, that even with
SVD, numerical determination of rank in finite arithmetic is a highly nontrivial problem.
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That other methods of rank determination are potentially unreliable is demonstrated by the
following example which is a special case of a general class of matrices studied by Ostrowski [150].
Consider the matrix A ∈ IRn×n whose diagonal elements are all −1, whose upper triangle elements
are all +1, and whose lower triangle elements are all 0. This matrix is clearly of rank n, i.e., is
invertible. It has a good “solid” upper triangular shape. All of its eigenvalues (= −1) are well away
from zero. Its determinant is (−1)n—definitely not close to zero. But this matrix is, in fact, very
nearly singular and gets more nearly so as n increases. Note, for example, that



























−1 +1 · · · · · · +1

0
. . .

. . .
...

...
. . .

. . .
. . .
. . .

. . .
...

...
. . .

. . . +1
0 · · · · · · 0 −1







































1
2−1

...
2−n+1













=













−2−n+1

−2−n+1

...
−2−n+1













→













0
0
...
0













(n → +∞).

Moreover, adding 2−n+1 to every element in the first column of A gives an exactly singular
matrix. Arriving at such a matrix by, say Gaussian elimination, would give no hint as to the
near-singularity. However, it is easy to check that σn(A) behaves as 2−n+1. A corollary for control
theory: eigenvalues do not necessarily give a reliable measure of “stability margin.” As an aside
it is useful to note here that in this example of an invertible matrix, the crucial quantity, σn(A),
which measures nearness to singularity, is simply 1/‖A−1‖, and the result is familiar from standard
operator theory. There is nothing intrinsic about singular values in this example and, in fact, ‖A−1‖
might be more cheaply computed or estimated in other matrix norms. This is precisely what is
done in estimating the condition of linear systems in LINPACK where ‖ · ‖1 is used [33].

Since rank determination, in the presence of roundoff error, is a nontrivial problem, all the same
difficulties will naturally arise in any problem equivalent to or involving rank determination, such
as determining the independence of vectors, finding the dimensions of certain subspaces, etc. Such
problems arise as basic calculations throughout systems, control, and estimation theory. Selected
applications are discussed in more detail in [105].

Finally, let us close this section with a brief example illustrating a totally inappropriate use of
SVD. The rank condition

rank [B, AB, · · · , An−1B] = n (26)

for the controllability of (1) is too well-known. Suppose

A =

[

1 µ
0 1

]

, B =

[

1
µ

]

with |µ| <
√

ε. Then

fl[B, AB] =

[

1 1
µ µ

]

and now even applying SVD, the erroneous conclusion of uncontrollability is reached. Again the
problem is in just forming AB; not even SVD can come to the rescue after that numerical faux pas.
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4 Applications to Systems and Control

A reasonable approach to developing numerically reliable algorithms for computational problems
in linear system theory would be to reformulate the problems as concatenations of subproblems
for which numerically stable algorithms are available. Unfortunately, one cannot ensure that the
stability of algorithms for the subproblems results in stability of the overall algorithm. This requires
separate analysis which may rely on the sensitivity or conditioning of the subproblems. In the next
section we show that delicate (i.e., badly conditioned) subproblems should be avoided whenever
possible; a few examples are given where a possibly badly conditioned step is circumvented by
carefully modifying or completing existing algorithms (see also [183], [184]).

A second type of difficulty is the ill-posedness of some of the problems occurring in linear system
theory [201]. Two approaches can be adopted here. One can develop an acceptable perturbation
theory for such problems, making use of a concept such as restricted conditioning which is condi-
tioning under perturbations for which a certain property holds, e.g., fixed rank [89], [184]. One
then looks for restricting assumptions that make the problem well-posed. Another approach is to
delay any such restricting choices to the end and leave it to the user as to what choice to make by
looking at the results. The algorithm then provides quantitative measures that help the user make
this choice (see, e.g., [148], [111], [147]). By this approach one may avoid artificial restrictions of
the first approach that sometimes do not respect the practical significance of the problem.

A third possible pitfall is that many users almost always prefer fast algorithms to slower ones.
However, it is often the case that slower algorithms are more reliable; see, e.g., [42], [21].

In the subsections that follow, we survey a representative selection of numerical linear algebra
problems arising in linear systems, control, and estimation theory, which have been examined using
some of the techniques described in the preceding sections. Many of these topics are discussed
in more detail in the papers included in this book. It is worth noting that some of the scalar
algorithms that are discussed here do not extend trivially to the matrix case. When they do, we
shall only mention the matrix case. We shall only discuss the numerical aspects here; for the system
theoretical background, we refer the reader to the control and systems literature.

4.1 Some Typical Techniques

Most of the reliable techniques in numerical linear algebra are based on the use of orthogonal
transformations. Typical examples of this are the QR decomposition for least squares problems,
the Schur decomposition for eigenvalue and generalized eigenvalue problems, and the singular value
decomposition for rank determinations and generalized inverses. The use of orthogonal transfor-
mations is also very much in evidence in most of the reliable linear algebra techniques for control
theory. This is partly due to the direct application of existing linear algebra decompositions to
problems in control. Obvious examples of this are the Schur approach for solving algebraic Riccati
equations, both continuous and discrete time [111], [156], [185], for solving Lyapunov equations
[12], and for performing pole placement [194]. But new orthogonal decompositions have also been
introduced which rely heavily on the same principles, but were specifically developed for problems
encountered in control. Orthogonal state-space transformations on a system {A, B, C} result in
a new state-space representation {UHAU, UHB, CU} where U is chosen to perform some kind of
decomposition on the matrices A, B, and C. These special forms have been termed “condensed
forms” and include:

• the state Schur form [194],
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• the state Hessenberg form [115],

• the observer Hessenberg form [187], [139],

• the controller Hessenberg form [191], [134], [159].

Staircase forms or block Hessenberg forms are other variants of these condensed forms which have
proven to be very useful in dealing with MIMO systems [184], [158], [151], [106].

The main reasons for using these orthogonal state-space transformations are twofold:

• The numerical sensitivity of the control problem being solved is not affected by these trans-
formations. This is because sensitivity is typically measured by norms or angles of certain
spaces and such things are unaltered by orthogonal transformations.

• Orthogonal transformations have minimum condition number, which is essential in proving
bounded error propagation, and establishing numerical stability of the algorithm that uses
such transformations.

More details on this are given in the paper [190], and in subsequent sections where some of these
condensed forms are used for particular applications.

4.2 Transfer Functions, Poles and Zeros

In this section, we discuss important structural properties of linear systems and the numerical
techniques that are available for determining them. The transfer function R(λ) of a linear sys-
tem is given by a polynomial representation V (λ)T−1(λ)U(λ) + W (λ) or by a state-space model
C(λI − A)−1B + D. The results in this subsection hold for both the discrete-time case (where λ
stands for the shift operator z) and the continuous-time case (where λ stands for the differentiation
operator D).

A. The Polynomial Approach (see [107] and references therein)

One is interested in a number of structural properties of the transfer function R(λ) such as poles,
transmission zeros, decoupling zeros, etc. In the scalar case, where {T (λ), U(λ), V (λ), W (λ)} are
scalar polynomials, all this can be found with a GCD extraction routine and a rootfinder, for which
reliable methods exist; see, e.g., [107], [83], [16], [78], and references therein. In the matrix case the
problem becomes much more complex and the basic method for GCD extraction — the Euclidean
algorithm — becomes unstable (see [184]). Moreover, other structural elements (null spaces, etc.)
come into the picture, which makes the polynomial approach less attractive than the state-space
approach [184], [189].

B. The State-Space Approach (see [201], [184], and references therein)

The structural properties of interest are poles and zeros of R(λ), decoupling zeros, controllable and
unobservable subspaces, supremal (A, B)-invariant and controllability subspaces, factorizability of
R(λ), left and right null spaces of R(λ), etc. These concepts play a fundamental role in several
design problems and have received considerable attention over the last few years [170], [184], [151],
[105], [148], [111], [147], [172], [189]. In [184] and [186], it is shown that all the concepts mentioned
above can be considered as generalized eigenstructure problems and that they can be computed
via the Kronecker canonical form of the pencils

[ λI − A ] [ λI − A | B ]
[

λI − A

−C

] [

λI − A B

−C D

]

(27)
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or from other pencils derived from them. Backward stable software is also available for computing
the Kronecker structure of an arbitrary pencil [183], [13]. A remaining problem here is that the
determination of several of the structural properties listed above may be ill-posed in some cases and
that one has to develop the notion of restricted conditioning in these cases (see [184]). Sensitivity
results in this area are still few but are slowly emerging [183], [43]. A completely different approach
is to reformulate the problem as an approximation or optimization problem for which quantitative
measures are derived, leaving the final choice to the user. Results in this vein are obtained for con-
trollability, observability [147], [151], [158], (almost) (A, B)-invariant and controllability subspaces
[148], [43].

4.3 Controllability and Other “Abilities”

Basic to the study of linear control and system theory are the various “abilities” such as control-
lability, observability, reachability, reconstructibility, stabilizability, and detectability [201]. These
concepts can also be viewed in terms of the concepts of decoupling zeros, controllable and unob-
servable subspaces, controllability subspaces, etc. that were mentioned in the previous section. Our
remarks here are confined, but not limited, to the notion of controllability.

A large number of algebraic and dynamic characterizations of controllability have been given;
see [114] for a sample. But each and every one of these has difficulties when implemented in finite
arithmetic. For a survey of this topic and numerous examples, see [151]. Part of the difficulty in
dealing with controllability numerically lies in the intimate relationship with the invariant subspace
problem [74]. The controllable subspace associated with (1) is the smallest A-invariant subspace
(subspace spanned by eigenvectors or principal vectors) containing the range of B. Since A-invariant
subspaces can be extremely sensitive to perturbation, it follows that, so too, is the controllable
subspace. Similar remarks apply to the computation of the so-called controllability indices. The
example discussed in the third paragraph of Section 2 can be used to illustrate these remarks
dramatically. The matrix A has but one eigenvector (associated with 0) whereas the slightly
perturbed A has n eigenvectors associated with the n distinct eigenvalues.

Recently, attempts have been made to provide numerically stable algorithms for the pole place-
ment problem. This problem will be discussed in a later section. It suffices to mention here that
the problem of pole placement by state feedback is closely related to controllability. Recent work
on developing numerically stable algorithms for pole placement is based on the reduction of A to
a Hessenberg form; see, e.g., [134], [159]. In the single-input case, a good approach is to use the
controller Hessenberg form mentioned in Section 4.1, where the state matrix A is upper Hessenberg
and the input vector B is a multiple of (1, 0, · · · , 0)T . The pair (A, B) is then controllable if and
only if all (n− 1) subdiagonal elements of A are nonzero. If a subdiagonal element is 0, the system
is uncontrollable and a basis for the uncontrollable subspace is easily constructed. The transfer
function gain or first nonzero Markov parameter is also easily constructed from this “canonical
form.” In fact, the numerically more robust system Hessenberg form is playing and will continue
to play an ever-increasing role in system theory in replacing the numerically more fragile special
case of the companion or rational canonical or Luenberger canonical form.

A more important aspect of controllability is to better understand topological notions such
as “near-uncontrollability.” But there are numerical difficulties lurking here also, and we refer to
Parts 3 and 4 for further details. Related to this is an interesting system-theoretic concept called
“balancing” which is discussed in the paper by Moore in Part 3. The computation of “balancing
transformations” is discussed in [112], [121].

There are at least two distinct notions of near-uncontrollability [114]: in the parametric sense
and in the energy sense. In the parametric sense a controllable pair (A, B) is said to be near-
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uncontrollable if the parameters of (A, B) need be perturbed by only a relatively small amount for
(A, B) to become uncontrollable. In the energy sense, a controllable pair is near-uncontrollable if
large amounts of control energy (

∫

uT u) are required to effect a state transfer. The pair

A =



















0 1 · · · 0
...

. . .
. . .

...

...
. . . 1

0 · · · · · · 0



















, B =













0
...
0
1













is very near uncontrollable in the energy sense but not as badly so in the parametric sense. Of
course, both measures are coordinate dependent and “balancing” is one attempt to try to remove
this coordinate bias. The pair (A, B) above is in “controllable canonical form”, and it is now
known that matrices in this form (specifically, the A matrix in rational canonical form) almost
always exhibit poor numerical behavior and are “close to” uncontrollable (unstable, etc.) as the
size n increases. For details, see [94].

4.4 Identification

A. Realization ([42] and references therein).

Let R(z) be an m×n transfer function of a discrete-time causal system, and let its impulse response
be given by

R(z) =
∞
∑

i=0

Hi z−i. (28)

The realization problem is to find the transfer function R(z) in, e.g., polynomial description
P (z)Q−1(z) or state-space description R(z) = D + C(zI − A)−1B, when the impulse response
sequence {Hi} is given. In a later stage one might also be interested in the poles and zeros of R(z).
In the scalar case this problem is in fact the Padé approximation problem, for which fast methods
exist (see [42], [20] for a survey). In [42], it is shown that these methods are unstable and that they
all reduce to factoring the Hankel matrix

H =















H1 H2 · · · Hn

H2 ..
.

..
. ...

... ..
.

..
. ...

Hn · · · · · · H2n−1















(29)

where n is an upper bound for the McMillan degree of R(z). In [42] a stable but slower algorithm is
given for finding a polynomial and a state-space description of R(z). A typical state-space method
based on the singular value decomposition of H was given in [204] and shown to be stable in
[108]. As shown in [147], [108] the realization {Ã, B̃, C̃, D̃} computed is balanced, which has the
nice property of being less sensitive to rounding errors in Hi than the models used in [42]. Here a
typical example can be given of the first difficulty discussed in the introduction to Section 4. For
computing the poles of R(z) one could compute its Padé approximation and then compute the zeros
of Q(z). The construction of this intermediate result can be very sensitive to rounding errors in
Hi, which endangers the computation of the zeros of Q(z). As reported in [147], [108], the method
using the eigenvalues of A is less prone to rounding errors. This problem is also related to that of
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optimal approximation in the Hankel norm [1], [68], and has led to a renewed interest in the partial
realization problem and related topics [4].

Very often one does not have access to the impulse response of the system but only to a sequence
of inputs {ui} and corresponding outputs {yi}. In such cases a novel algorithm was recently derived
[145] based on the following Hankel matrix:

H =


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







z1 z2 · · · zm

z2 ..
.

..
. ...

... ..
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..
. ...

zk · · · · · · zm+k−1


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







, where zi =

[

ui

yi

]

. (30)

The matrix is split rowwise into two blocks Hup and Hlo and the intersection of the rowspaces
of these two blocks is then computed which amounts to a particular rank factorization. In the
case that the input-output pairs are sufficiently “rich” signals (called persistence of excitation) one
can show [145] that the dimension of this intersection is the state dimension of the underlying
state-space model, and one can then identify the matrices {A, B, C, D} via a least squares problem
derived from these factorizations.

Both the above approaches are very general in the sense that they apply to MIMO systems. In
the case of SISO systems several methods have been derived that also assume a particular noise
model and then reduce the identification problem to a minimum variance problem of the noise
process (see [126] for a survey). Only in a special case does this actually reduce to a least-squares
problem that can be solved in much the same way as the above Hankel I/O method. In general,
though, the minimization of the noise process reduces to a nonlinear minimization which can only
be solved iteratively. Moreover, extensions of these approaches to the MIMO case considerably
increase the complexity of this minimization approach.

B. Linear prediction ([129] and references therein)

The problem here is to model a given time signal {yk} with z transform Y(z) as the output of a
linear time-invariant system

Y (z) =
g

a(z)
U(z) (31)

where a(z) = 1 + a1 z−1 + · · · + ap z−p and U(z) is the z transform of a periodic pulse train or
of white noise, depending on the application [129]. The so-called autocorrelation method converts
this problem to one of factoring or inverting the positive definite Toeplitz matrix

T =











r(0) · · · r(p)

...
. . .

...

r(p) · · · r(0)











; r(i) =
+∞
∑

n=−∞

ynyn+i (32)

where r(i) is the autocorrelation function of the signal {yk}. The Cholesky factorization of this
matrix requires O(n3) operations, while the Levinson-Durbin algorithm requires only O(n2) oper-
ations by efficiently exploiting the Toeplitz structure of T. For quite some time the stability and
conditioning issues of this approach have been a point of controversy [37]. However, a rigorous
numerical treatment of the problem has shown that the algorithm is reasonably stable, but that
the problem is quite often badly conditioned [37], [19]. We notice that the problem (31) is in fact
an approximation problem, whose solution is given by the above Toeplitz factorization. An error
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analysis in [37], [19] only refers to errors in the factorization, not to the approximation error. We
point out that the lattice algorithm of Itakura and Saito [82] — which computes the same Cholesky
factor by directly working on the data {yi} arranged in a Toeplitz matrix — is also stable in the
same sense [38]. Moreover, it avoids the construction of the Toeplitz matrix T which could lead to
problems in extremely badly conditioned cases (see [38] for more details).

C. Spectral factorization (see [200], [2] and references therein).

An alternative to (31) is to allow for a more general type of transfer function between Y (z) and
U(z):

Y (z) = g
b(z)

a(z)
U(z). (33)

This can now be converted to a spectral factorization problem [200], [2] of the rational transfer
function

Φ(z) = Rp(z) + Rp(z
−1) = g2 b(z−1)b(z)

a(z−1)a(z)
(34)

where Rp(z) is a p-th order approximation of the impulse response R(z):

R(z) ≈ r(0)

2
+ r(1) z−1 + r(2) z−2 + · · · (35)

Here again the original problem is one of approximation for which (34), (35) is a proposed solution.
A polynomial approach would yield a(z) during the realization step (35), and b(z) during the
spectral factorization step, which can be converted to a polynomial spectral factorization problem
(see, e.g., [107]):

ΦN (z) = g2 b(z−1) b(z); (36)

where

ΦN (z) = Φpz
−p + · · · + Φ1z

−1 + Φ0 + Φ1z + · · · + Φpz
p (37)

is derived from Φ(z).
Bauer has shown that b(z) can be obtained from the rows of the Cholesky factor B of the infinite
(positive definite) Toeplitz matrix

TΦ =
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0















. (38)

Unfortunately, the convergence of b(i)(z) to b(z) and the conditioning of the solution b(z) is rather
bad when some of the roots of b(z) get close to the unit circle. The same problems occur with the
improved Bauer algorithm [166], and with Vostry’s Newton-type scheme [196]:

b(i+1)(z) =
1

2
[b(i)(z) + x(i)(z)] (39)
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where
b(i)(z−1)x(i) + b(i)(z)x(i)(z−1) = 2ΦN (z). (40)

The solution of (39), (40) requires O(p2) operations per iteration step and the convergence of b(i)(z)
to b(z) is quadratic when no roots of b(z) are close to the unit circle. The stability of Vostry’s
method is good since it is a method of iterative refinement using the original data ΦN (z) for
computing the correction [198]. A third method — suffering from similar problems of convergence
— is the one described by Henrici using the FFT algorithm [78], but it also allows for an implicit
stability criterion.

A completely different and conceptually very simple approach is to compute the roots of zpΦN (z)
and perform the factorization by grouping the roots inside the unit circle. This method is quite
fast — O(n2) operations independently of the location of the zeros — and backward stable when
the deflations are implemented carefully [83]. A similar approach in the state-space domain has
been developed recently [186], and is based on the computation of a stable deflating subspace of
the pencil

z







0 0 0
0 AT 0
0 BT 0






−







A 0 B
0 I CT

C 0 D + DT






(41)

where Rp(z) = C(zIp − A)−1B + D. Backward stable software for solving this generalized eigen-
value problem can also be found in [186]. The method also applies to the matrix case and avoids
the construction of ΦN (z). In the matrix case, this approach is to be preferred over the matrix
generalization of (38) and (39), (40) — such as that described in [84] — since, in the latter there
is no guarantee of numerical stability.

4.5 Computation of Objects Arising in the Geometric Theory of Linear Multi-

variable Control

A great many numerical problems arise in the geometric approach [201] to control of systems
modeled as (1), (2). Some of these are discussed in the papers by Klema and Laub [105] and Van
Dooren [184] in Part 2. Wonham’s text [201] remains a fertile source of numerical problems. In fact,
the power of the geometric approach derives in large part from the fact that it is independent of
specific coordinate systems or matrix representations. Numerical issues are a separate concern. Two
of the more elaborate but still fundamental objects in that theory are supremal (A, B)-invariant
and controllability subspaces contained in a given subspace. An initial attempt at characterizing
these spaces in terms of eigenvectors and a generalized eigenvalue problem was given in [148].

However, a rather different and very thorough numerical treatment of the problem has been
given by Van Dooren [183], [184], [88]. This work has implications for most calculations done
with linear state-space models. For example, one byproduct is an extremely reliable algorithm
(which is similar to an orthogonal version of Silverman’s structure algorithm) for the computation
of multivariable system zeros [51]. Like [122] this method involves a generalized eigenvalue problem
(the Rosenbrock pencil) but the “infinite zeros” are first removed by deflating the given matrix
pencil.

4.6 Frequency Response Calculations

Many properties of a linear system (1), (2) are known in terms of its frequency response matrix

G(jω) : = C(jωI − A)−1B + D; (ω ≥ 0) (42)
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(or G(ejθ); θ ∈ [0, 2π] for (3), (4)). In fact, various norms of the return difference matrix I +G(jω)
and related quantities have been investigated in control and system theory as providing measures
of robustness of a linear system with respect to stability, noise response, disturbance attenuation,
sensitivity, etc. See [113] for some of the numerical aspects and [50], [168] for surveys of some of
the control aspects.

It is thus a problem of considerable computational interest to compute G(jω) efficiently, given
A, B, and C for a (possibly) large number of values of ω (for convenience we shall take D to be
0 since if it is nonzero it is trivial to add to G). An efficient and generally applicable algorithm
for this problem is presented in [115]. Rather than solving the linear equation (jωI − A)X = B
with dense unstructured A, which would require O(n3) operations for each successive value of ω,
the new method does an initial reduction of A to upper Hessenberg form H. The orthogonal
state-space coordinate transformations used to obtain the Hessenberg form of A are incorporated
into B and C giving B̃ and C̃. Now as ω varies, the coefficient matrix in the linear equation
(jωI − H)X = B̃ remains in upper Hessenberg form. The advantage is that X can now be found
in O(n2) operations rather than O(n3) as before, a substantial saving. Moreover, the method
is numerically very stable (via either LU or QR factorization) and has the advantage of being
independent of the eigenstructure (possibly ill-conditioned) of A. Portable mathematical software,
in a sense to be discussed later, is also available for this problem [118]. A systolic version of the
algorithm based on QR factorization is described in [25]. Another efficient and reliable algorithm
for frequency response computation [139] uses the observer Hessenberg form mentioned in Section
4.1 together with a determinant identity and a property of the LU decomposition of a Hessenberg
matrix.

We note here that the above methods can also be extended to state-space models in implicit
form, i.e., where (1) is replaced by

Eẋ = Ax + Bu. (43)

Then (42) is replaced with
G(jω) = C(jωE − A)−1B + D (44)

and the initial triangular/Hessenberg reduction employed in [143], or the condensed form in [138],
can be employed to again reduce the problem to one of updating the diagonal of a Hessenberg
matrix and consequently an O(n2) problem.

A recent advance for the frequency response evaluation problem is the use of matrix interpolation
methods to achieve even greater computational efficiency. The basic algorithm is described in [101]
while its extension to the implicit or descriptor form is in [180].

4.7 Numerical Solution of Linear Ordinary Differential Equations and Matrix

Exponentials

The “simulation” or numerical solution of linear systems of ordinary differential equations (ODE’s)
of the form

ẋ(t) = Ax(t) + f(t); x(0) = x0 (45)

is a standard problem that arises in finding the time response of a system given in state-space form.
However, there is still debate as to what is the most effective numerical algorithm, particularly
when A is defective (a deficiency of eigenvectors) or nearly defective. The most common approach
involves computation of the matrix exponential etA, since the solution of (45) can be written simply
as

x(t) = etAx0 +

∫ t

0
e(t−s)Af(s) ds.
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A delightful survey of computational techniques for matrix exponentials is given in [144]. Nineteen
“dubious” ways are explored (there exist many more ways which are not discussed) but no clearly
superior algorithm is singled out. Methods based on Padé approximation or reduction of A to real
Schur form are seen as generally attractive while methods based on Taylor series or the characteristic
polynomial of A are generally found to be unattractive. An interesting open problem is the design
of a special algorithm for the matrix exponential when the matrix is known a priori to be stable
(Λ(A) in the left half of the complex plane).

The reason for the adjective “dubious” in the title of [144] is that in many (maybe even most)
circumstances, it is better to treat (45) as a system of differential equations, typically stiff, and to
apply various ODE techniques, specially tailored to the linear case. This approach is discussed in
[52], [30], [195]. ODE techniques are clearly to be preferred when A is large and sparse for, in general,
etA will be unmanageably large and dense. The relationship between ODE techniques and matrix
exponential techniques when A has an ill-conditioned eigenstructure or when the “exponential
problem” is ill-conditioned [87], [193] is not well understood.

4.8 Lyapunov, Sylvester, and Riccati Equations

Certain matrix equations arise naturally in linear control and system theory. Among those fre-
quently encountered in the analysis and design of continuous-time systems are the Lyapunov equa-
tion

AX + XAT + Q = 0, (46)

and the Sylvester equation
AX + XF + Q = 0. (47)

The appropriate discrete-time analogs are

AXAT − X + Q = 0 (48)

and
AXF − X + Q = 0. (49)

Various hypotheses are made on the coefficient matrices A, F, Q to ensure certain properties of
the solution X.

There is a voluminous literature in control and system theory on these equations but most of
that is ad hoc, at best, from a numerical point of view, with little attention paid to questions of
numerical stability, conditioning, machine implementation, and the like.

For the Lyapunov equation the overall best algorithm in terms of efficiency, accuracy, reliability,
availability, and ease of use appears to be that of Bartels and Stewart [12]. The basic idea is to
reduce A to quasi-upper-triangular form [or real Schur form (RSF)] and perform a back substitution
for the elements of X.

An attractive algorithm for solving Lyapunov equations has been proposed by Hammarling
[75]. This algorithm is a variant of the Bartels-Stewart algorithm but instead solves directly for
the Cholesky factor Y of X: Y T Y = X and Y is upper triangular. Clearly, given Y , X is easily
recovered if necessary. But in many applications, for example [121], only the Cholesky factor is
required.

For the Lyapunov equation, when A is stable, the solutions of the above equations are also
equal to the reachability and observability Grammians Pr(T ) and Po(T ), respectively, for T = +∞
for the system {A, B, C}:
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Pr(T ) =
∫ T
0 etABBT etAT

dt ; Po(T ) =
∫ T
0 etAT

CT CetAdt

Pr(T ) =
∑T

k=0 AkBBT (AT )k ; Po(T ) =
∑T

k=0 (AT )kCT CAk.
(50)

These can be used along with some additional transformations (see [147], [108], [112], [121]) to
compute so-called balanced realizations {Ã, B̃, C̃}. For these realizations both Po and Pr are equal
and diagonal. These realizations have some nice sensitivity properties with respect to poles, zeros,
truncation errors in digital filter implementations, etc. [147], [108], [149]. They are therefore
recommended whenever the choice of a realization is left to the user. When A is not stable one
can still use the finite range Grammians (50) for T < +∞ for the purpose of balancing [147]. A
reliable method for computing integrals and sums of the type (50) can be found in [192], [5]. A
sensitivity analysis of the matrix exponential can be found in [193], [95], [99]. It is also shown in
[147] that the reachable subspace and the unobservable subspace are the image and the kernel of
Pr(T ) and Po(T ), respectively. From these relationships, sensitivity properties of the spaces under
perturbations of Pr(T ) and Po(T ) can be derived.

For the Sylvester equation, the Bartels-Stewart algorithm reduces both A and F to real Schur
form (RSF) and then a back substitution is done. It has been demonstrated in [71] that some
improvement in this procedure is possible by only reducing the larger of A and F to upper Hessen-
berg form. The stability of this method has been analyzed in [71]. Although only weak stability is
obtained, this is satisfactory in most cases.

Algorithms and software for the more general Sylvester equation

A1XF1
T + A2XF2

T + Q = 0

and its symmetric Lyapunov counterpart

AXF T + FXAT + Q = 0

are given in [65], [66].
Open questions remain concerning estimating the condition of Lyapunov and Sylvester equations

efficiently and reliably in terms of the coefficient matrices, but one major result has been obtained
in [80]. There the condition of, say, (46) is related to the norm of the solution of the same equation
with Q replaced by I. Many other interpretations of this fundamental result are also given.

A deeper analysis of the Lyapunov and Sylvester equations is probably a prerequisite to at least
a better understanding of conditioning of the Riccati equation for which again, there is considerable
theoretical literature but not as much known from a purely numerical point of view. The symmetric
n × n algebraic Riccati equation takes the form

Q + AX + XAT − XGX = 0 (51)

for continuous-time systems and

AT XA − X − AT XG1(G2 + GT
1 XG1)

−1GT
1 XA + Q = 0 (52)

for discrete-time systems. These equations appear in several design/analysis problems such as
optimal control, optimal filtering, spectral factorization; see, e.g., [11], [187], [185], [111], [156], [23]
and references therein. Again, appropriate assumptions are made on the coefficient matrices to
guarantee the existence and/or uniqueness of certain kinds of solutions X. Nonsymmetric Riccati
equations of the form

Q + A1X + XA2 − XGX = 0 (53)
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for the continuous-time case (along with an analog for the discrete-time case) are also studied and
can be solved numerically by the techniques discussed below.

Several algorithms have been proposed based on different approaches [11], [185], [111], [23]. One
of the more reliable general-purpose methods for solving Riccati equations is the Schur method [110],
[111]. For the case of (51), for example, this method is based upon the reduction of the associated
2n × 2n Hamiltonian matrix

(

A −G
−Q −AT

)

(54)

to RSF. If the RSF is ordered so that its stable eigenvalues (there will be exactly n of them under
certain standard assumptions) are in the upper left corner, the corresponding first n vectors of the
orthogonal matrix which effects the reduction will form a basis for the stable eigenspace from which
the nonnegative definite solution X is then easily found.

Extensions to the basic Schur method have been made [156], [185] which were motivated by the
following situations:

• G in (51) is of the form BR−1BT where R may be nearly singular, or G2 in (52) may be
exactly or nearly singular.

• A in (52) is singular [A−1 is required in the classical approach involving a symplectic matrix
which plays a role analogous to (54)].

This resulted in the generalized eigenvalue approach requiring the computation of a basis for
the deflating subspace corresponding to the stable generalized eigenvalues. For the solution of (51),
the generalized eigenvalue problem is given by

λ







I 0 0
0 I 0
0 0 0






−







A 0 B
−Q −AT 0
0 BT R






; (55)

while for (52), the corresponding problem is

λ







I 0 0
0 AT 0

0 G1
T 0






−







A 0 −G1

−Q I 0
0 0 G2






. (56)

The above extensions can be generalized even further [117], as the following problem will illus-
trate. Consider the optimal control problem

min
1

2

∫ +∞

0
[xT Qx + 2xT Su + uT Ru]dt (57)

subject to Eẋ = Ax + Bu. (58)

The Riccati equation associated with (57), (58) then takes the form

ET XBR−1BT XE − (A − BR−1ST )T XE − ET X(A − BR−1ST ) − Q + SR−1ST = 0 (59)

or
(ET XB + S)R−1(BT XE + ST ) − AT XE − ET XA − Q = 0. (60)
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This so-called “generalized” Riccati equation can be solved by considering the associated matrix
pencil







A 0 B
−Q −AT −S
ST BT R






− λ







E 0 0
0 ET 0
0 0 0






. (61)

Note that S in (57) and E in (58) are handled directly and no inverses appear. It is worth
emphasizing here that the presence of a nonsingular E in state-space models of the form (58) adds
no particular difficulty to the solution process and is numerically the preferred form if E is, for
example, near-singular or even sparse. Similar remarks apply to the frequency response problem
in (43), (44) and, indeed, throughout all of linear control and system theory. The stability and
conditioning of these approaches are discussed in [185], [111], [174] while scaling strategies are
addressed in [102]. Other methods, including Newton’s method and iterative refinement, have been
analyzed in, for example, [23], [7], and [103]. Numerical algorithms for handling (55), (56), (61),
and a large variety of related problems are described in [8], [124], [185], [186] and a thorough survey
of the Schur method, generalized eigenvalue/eigenvector extensions, and the underlying algebraic
structure in terms of “Hamiltonian pencils” and “symplectic pencils” is described in [119]. Other
valuable surveys on these problems are [22], [131].

Schur techniques can also be applied to Riccati differential and difference equations [116] and
to nonsymmetric Riccati equations which arise in, for example, invariant imbedding methods for
solving linear two-point boundary value problems [117]. Other algorithms for Riccati differen-
tial equations are surveyed in [104] and a new family of algorithms for matrix-valued differential
equations, including Riccati equations, is developed in [31].

As with the linear Lyapunov and Sylvester equations, only recently have satisfactory results
been obtained concerning conditioning of Riccati equations, a topic of great interest independent
of what solution method is used, be it a Schur-type method or one of numerous alternatives. A
number of early attempts to estimate condition numbers are compared and evaluated in [7] along
with numerous examples which illustrate deficiencies in each known condition estimate. The most
useful recent study of this problem is found in [93].

A very interesting class of invariant-subspace-based algorithms for solving the Riccati equation
and related problems makes use of the so-called matrix sign function. These methods, which are
particularly attractive for very large order problems, are described in detail in [63], [120], [29], [64],
[100], and the references therein. These algorithms are based on Newton’s method applied to a
certain matrix equation. A new family of iterative algorithms of arbitrary order convergence has
been developed in [97]. This family of algorithms can be parallelized easily and yields a viable
method of solution for very high order Riccati equations. Parallel implementations of general
matrix sign methods for the Riccati equation are described in [152], and further enhancements
and description of a specific application involving the solution of a 556th-order Riccati equation
by these methods are contained in [155]. A thorough study of the conditioning of the matrix sign
function is given in [96] while scaling strategies are developed in [98].

4.9 Pole Assignment and Observer Design

The problem of designing state or output feedback for a linear system so that the resulting closed-
loop system has a desired set of poles can be considered as an inverse eigenvalue problem [136],
[159]. The state feedback pole assignment problem is as follows: Given a pair (A, B), one looks for
a matrix F such that the eigenvalues of the matrix

AF = A + BF
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lie at specified locations or in specified regions. Many approaches have been developed for solving
this problem. However, only recently has the emphasis shifted towards numerically reliable methods
and consideration of the numerical sensitivity of the problem [92], [194], [161], [134], [136], [159],
[137], [40]. Special cases of the pole assignment problem arise in observer design [188] and in
deadbeat control for discrete-time systems (where A+BF is required to be nilpotent) [187]. Part 6
contains some of the key papers in the area of pole assignment and observer design. The numerically
reliable methods for pole assignment are based on the reduction of A to either a real Schur form
[194], or to a Hessenberg or block Hessenberg (staircase) form [136], [159], [160], [161], [40], [137],
[6]. The latter may be regarded as a numerically robust alternative to the use of a controllable or
Luenberger canonical form whose computation is known to be numerically unreliable [197], [94].
For multi-input systems, the additional freedom available in the state-feedback matrix can be used
for eigenvector assignment [146], and sensitivity minimization for the closed-loop poles [92], [24].
There the resulting matrix AF is not computed directly but instead the matrices Λ and X of the
decomposition

AF = XΛX−1

are computed via an iterative technique. The iteration aims at minimizing the sensitivity of the
placed eigenvalues λi or at maximizing the orthogonality of the eigenvectors xi.

The problem of pole assignment by output feedback is a much more difficult problem both theo-
retically as well as computationally, and consequently there are few numerically reliable algorithms
available [140], [135]. Other recent work on pole assignment has been concerned with generalized
state-space or descriptor systems [55], [32], [91].

The problem of observer design for a given state-space system {A, B, C} amounts to finding
matrices T , AK , and K such that

TAK − AT = KC (62)

whereby the spectrum of AK is specified. Because this is an underdetermined (and nonlinear)
problem in the unknown parameters of T , AK , and K, one typically sets T = I and (62) becomes
then

AK = A + KC

which is essentially a transposed pole placement problem. In this case the above techniques of pole
placement automatically apply here. In reduced order design, T is nonsquare and cannot thus be
put equal to the identity matrix. One can still solve (62) via a recurrence relation when assuming
AK to be in Schur form [188]. Other approaches solve this via reduced systems of equations obtained
from a preliminary rank reduction [125], [10].

A more elaborate problem is that of assigning not only the eigenvalues of AF and AK but
also their associated Jordan structure in case there are multiple eigenvalues and freedom to choose
between different structures. Methods that address this problem (see, e.g., [181], [182]) are definitely
more involved and their numerical reliability is also not well understood yet.

4.10 Robust Control

In the last decade, there has been very significant growth in the theory and techniques of robust
control. The reprint books [46] and [47] provide an excellent coverage of these developments. It
should be noted, however, that the area of robust control is still evolving and its numerical aspects
have only just begun to be addressed [154]. Consequently, it would be premature to give a survey
of reliable numerical algorithms in the area. However, to give a flavor of the kind of numerical
and computational issues that are involved, we consider in this section two developments in robust
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control which have attracted a great deal of attention. These are the H∞ [203] and structured
singular value [49] approaches. They have provided a powerful framework for synthesizing robust
controllers for linear systems. The controllers are robust in the sense that they achieve desired
system performance in the presence of a significant amount of uncertainty in the system.

In this section, we denote by IR(s)n×m the set of proper real rational matrices of dimension
n × m. The H∞ norm of a stable matrix G(s) ∈ IR(s)n×m is defined as

‖G(s)‖∞ := sup
ω∈IR

σmax[G(jω)] (63)

where σmax[·] denotes the largest singular value of a (complex) matrix. Iterative methods are
available for computing this norm; see, e.g., [15], [167], [18]. In [15], a relationship is established
between the singular values of G(jw) and the imaginary eigenvalues of a Hamiltonian matrix
obtained from a state-space realization of G(s). This result is then used to develop an efficient
bisection algorithm for computing the H∞ norm of G(s).

A. The H∞ Control Problem
Consider a linear, time-invariant system described by the state-space equations

ẋ(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) + D11w(t) + D12u(t), (64)

y(t) = C2x(t) + D21w(t) + D22u(t),

where x(t) ∈ IRn denotes the state vector; w(t) ∈ IRm1 is the vector of disturbance inputs; u(t) ∈
IRm2 is the vector of control inputs; z(t) ∈ IRp1 is the vector of error signals; and y(t) ∈ IRp2 is the

vector of measured variables. The transfer function relating the inputs

[

w
u

]

to the outputs

[

z
y

]

is given by

G(s) :=

[

G11(s) G12(s)
G21(s) G22(s)

]

(65)

=

[

D11 D12

D21 D22

]

+

[

C1

C2

]

(sI − A)−1
[

B1 B2

]

. (66)

Implementing a feedback controller defined by

u = K(s)y (67)

where K(s) ∈ IR(s)m2×p2 , we get the closed-loop transfer matrix Tzw(s) ∈ IR(s)p1×m1 from the
disturbance w to the regulated output z

Tzw := G11 + G12K(I − G22K)−1G21. (68)

Next, define the set K of all internally stabilizing feedback controllers for the system in (64), i.e.,

K := {K(s) ∈ IR(s)m2×p2 : Tzw(s) is internally stable}.

Now let K(s) ∈ K and define
γ := ‖Tzw(s)‖∞. (69)
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Then the H∞ control problem is to find a controller K(s) ∈ K which minimizes γ. The optimal
value of γ is defined as

γopt := inf
K∈K

‖Tzw(s)‖∞. (70)

The original formulation of this problem was in an input-output setting, and the early methods
for computing γopt either used an iterative search involving spectral factorization and solving the
resulting Nehari problem [59], [27], [28], or computed the spectral norm of the associated Hankel
plus Toeplitz operator [86]. A recent state-space formulation for computing γopt that is promising
from the point of view of numerical computation is given in [48]. In this approach, the problem
is formulated in terms of two algebraic Riccati equations which depend on a gain parameter γ.
Then, under certain assumptions (see [48], [154] for details), it can be shown that for a controller
K(s) ∈ K to exist such that ‖Tzw‖∞ < γ, three conditions have to be satisfied, namely, stabilizing
solutions exist for the two Riccati equations, and the spectral radius of the product of the solutions
is bounded by γ2. If these conditions are satisfied for a particular value of γ, the corresponding
controller K(s) can be obtained from the solutions of the Riccati equations [69]. The optimal gain,
γopt, is the infimum over all suboptimal values of γ such that the three conditions are satisfied.

The above approach immediately suggests a bisection-type algorithm for computing γopt. How-
ever, such an algorithm can be very slow in the neighborhood of the optimal value. To obtain
speedup near the solution, a gradient approach is proposed in [153], [154]. The behavior of the
Riccati solution as a function of γ is used to derive an algorithm that couples a gradient method
with bisection. It has been pointed out in [154] that the Riccati equation can become ill-conditioned
as the optimal value of γ is approached. It is therefore recommended in [154] that instead of com-
puting the Riccati solutions explicitly, invariant subspaces of the associated Hamiltonian matrices
should be used.

B. Structured Singular Values
Structured singular values [49] provide a systematic framework for using information about the
structure of uncertainties or perturbations in control system analysis and design. The structured
singular value approach therefore complements the H∞ approach. The idea underlying the concept
of the structured singular value is as follows. In a linear system with multiple independent norm-
bounded perturbations, it is always possible by rearranging the system to isolate the perturbations
as a single large block-diagonal perturbation ∆. Then, denoting the transfer function from the
collective outputs of the perturbation to their inputs by M(s), the stability problem reduces to
ensuring that det(I + M∆) 6= 0 at all frequencies and for all allowable ∆. The definition of
structured singular values centers around the condition det(I + M∆) 6= 0. A formal definition is
as follows:

Let the set of allowable perturbations be denoted by Q ⊆Cn×n, and be defined as

Q = {∆ = block diag(δr
1Ik1

, . . . , δr
pIkp

, δc
1Ikp+1

, . . . , δc
qIkp+q

,

∆C
1 , . . . , ∆C

r ) : δr
i ∈ IR, δc

i ∈C, ∆C
i ∈Cci×ci}. (71)

The structured singular value of an n × n complex matrix M is then defined as

µQ(M) =











0 if det(I + M∆) 6= 0 for all ∆ ∈ Q
[

min
{∆∈Q:det(I+M∆)=0}

σmax(∆)

]−1

otherwise.
(72)

Computing µQ(M) is a difficult numerical problem. One approach, which is computationally
rather demanding, is to formulate the problem as a nondifferentiable convex optimization problem
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involving the maximum singular value of a matrix obtained from M . A more efficient scheme
is given in [53], where it is shown that the structured singular value can be obtained by solving
several smooth optimization problems that do not involve any eigenvalue or singular value compu-
tations. The computational complexity of the problem of computing µQ(M) has prompted several
researchers to look for bounds that are easier to compute; see, e.g., [54], [202], [9].

5 Mathematical Software

A. General Remarks
The previous sections have highlighted some topics from numerical linear algebra and their

applications to numerical problems arising in systems, control, and estimation theory. Of course,
these problems represent only a very small subset of numerical problems of interest in these fields
but even for problems which are apparently “simple” from a mathematical point of view, the myriad
of little details which constitute a sophisticated implementation become so overwhelming that the
only effective means of communicating an algorithm is through its embodiment as mathematical
software. Mathematical or numerical software simply means an implementation on a computing
machine of an algorithm for solving a mathematical problem. Ideally, such software would be
reliable, portable, and unaffected by the machine or system environment in which it is used.

The prototypical work on reliable, portable mathematical software for the standard eigenprob-
lem was started in 1968. EISPACK, Editions I and II ([62], [171]), were an outgrowth of that work.
Subsequent efforts of interest to control engineers include LINPACK [45] for linear equations and
linear least squares problems, FUNPACK (Argonne) for certain function evaluations, MINPACK
(Argonne) for certain optimization problems, and various ODE and PDE codes. High quality al-
gorithms are published regularly in the ACM Transactions on Mathematical Software. Recently,
LAPACK, the successor to LINPACK and EISPACK has been released [3]. This software has been
designed to run efficiently on a wide range of machines, including vector processors, shared-memory
multi-processors, and high-performance workstations.

Technology to aid in the development of mathematical software in Fortran has been assembled
as a package called TOOLPACK [132]. Mechanized code development offers other advantages with
respect to, for example, modifications, updates, versions, and maintenance. Excellent references on
portability and other aspects of mathematical software include [35], [58], [77], [132], and [162].

Inevitably, numerical algorithms are strengthened when their mathematical software is made
portable since their widespread use is greatly facilitated. Furthermore, such software has been
shown to be markedly faster by factors ranging from 10 to 50 than earlier and less reliable code.

One can list many other features besides portability, reliability, and efficiency which are char-
acteristic of “good” mathematical software. For example, one can include:

• high standards of documentation and style so as to be easily understood and used

• ease of use; ability of the user to interact with the algorithm

• consistency/compatibility/modularity in the context of a larger package or more complex
problem

• error control, exception handling

• robustness with respect to unusual situations

• graceful performance degradation as problem domain boundaries are approached
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• appropriate program size (a function of intended use, e.g., low accuracy, real-time applica-
tions)

• availability and maintenance

• “tricks” such as underflow-/overflow-proofing if necessary and implementation of columnwise
or rowwise linear algebra [142].

Clearly, the list can go on.
What becomes apparent from the above considerations is that the evaluation of mathematical

software is a highly nontrivial task; see, for example, [58]. Clearly, the quality of software is largely
a function of its operational specification. It must also reflect the numerical aspects of the algorithm
being implemented. The language used and the compiler (e.g., optimizing or not) used for that
language will both have an enormous impact on quality—both perceived and real—as will the
underlying hardware and arithmetic. Different implementations of the same algorithm can have
markedly different properties and behavior. Further discussions on this subject can be found in
[36], [58], [77], and [132].

Perhaps one of the most important and useful developments in mathematical software for most
control engineers has been the advent of very high level systems such as Matlab, Xmath, Ctrl-C,
etc. Such systems spare the engineer the drudgery of working at a detailed level with languages such
as Fortran and C and they provide a large number of powerful computational “tools” (frequently
through the availability of formal “toolboxes”). Of course, for many problems, the engineer must
still have some knowledge of the algorithmic details embodied in such a system, and many of the
papers in this volume provide the appropriate background.
B. Mathematical Software in Control

Many aspects of systems, control, and estimation theory are at the stage from which one can
start the the research and design necessary to produce reliable, portable mathematical software.
Certainly many of the underlying linear algebra tools (for example, in EISPACK, LINPACK, and
LAPACK) are considered sufficiently reliable to be used as black—or at least gray—boxes by control
engineers. Much of that theory and methodology can and has been carried over to control problems,
but this really applies to only a few basic control problems. Typical examples are Riccati equations,
Lyapunov equations, and certain basic state-space transformations and operations. Much of the
work done in control, particularly the design and synthesis aspects, is simply not amenable to nice,
“clean” algorithms and the ultimate software must have the capability to enable a dialogue between
the computing machine and the control engineer, but with the latter probably still making the final
engineering decisions.

6 Concluding Remarks

Several numerical issues and techniques from numerical linear algebra together with a number
of important applications of these ideas have been outlined. A key question in these and other
problems in systems, control, and estimation theory is what can be reliably computed and used in
the presence of parameter uncertainty or structural constraints (e.g., certain “hard zeros”) in the
original model, and roundoff errors in the calculations. However, the ultimate goal is to solve real
problems, and reliable tools (mathematical software) and experience must be available to effect real
solutions or strategies. The serious interdisciplinary effort that has been under way for the last
decade has significantly improved our understanding of the issues involved in reaching this goal,
and has resulted in some high quality control software based on numerically reliable and well-tested
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algorithms. This provides clear evidence of the fruitful symbiosis that has taken place between
numerical analysis and numerical problems from control. We expect this symbiotic relationship to
flourish as control engineering realizes the full potential of the computing power that is becoming
more widely available in the form of multi-processing systems and high-performance workstations.
However, as in other applications areas, software will continue to dominate, both as a constraint
and as a vehicle for progress. Unfortunately, exceptionally high quality software is exceptionally
expensive, in terms of both money and time.

Finally, it is important to note that in this paper we have focused only on dense numerical
linear algebra problems in systems and control, and that we have surveyed the state of the art
only in this context. Several related topics which have not been covered here are, e.g., parallel
algorithms, algorithms for sparse or structured matrices, optimization algorithms, ODE algorithms,
approximation algorithms, and so on. These areas are of course well established in their own right,
but for applications in control there is still a lot of groundwork to be done. The main reason
why we have confined ourselves to dense numerical linear algebra problems in systems and control
is that, in our opinion, this area has reached a level of maturity where definitive statements and
recommendations can be made about various algorithms and other developments. We hope that
this has been reflected well in this survey.
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