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Abstract
In this work, we focus on the computation of the zeros of a monic Laguerre–Sobolev
orthogonal polynomial of degree n. Taking into account the associated four–term
recurrence relation, this problem can be formulated as a generalized eigenvalue prob-
lem, involving a lower bidiagonal matrix and a 2–banded lower Hessenberg matrix
of order n. Unfortunately, the considered generalized eigenvalue problem is very
ill–conditioned, and classical balancing procedures do not improve it. Therefore,
customary techniques for solving the generalized eigenvalue problem, like the QZ
method, yield unreliable results. Here, we propose a novel balancing procedure that
drastically reduces the ill–conditioning of the eigenvalues of the involved matrix pen-
cil. Moreover, we propose a fast and reliable algorithm, with O(n2) computational
complexity and O(n) memory, exploiting the structure of the considered matrix pen-
cil.

Keywords Laguerre–Sobolev orthogonal polynomials · Zeros of polynomials ·
Generalized eigenvalue problem

Mathematics Subject Classification (2010) 33C47 · 65D32 · 65F15

1 Introduction

Given two probability measures ν0 and ν1 supported on the real line, the inner product

〈 f , g〉S =
∫

f (x)g(x)dν0(x) + s
∫

f ′(x)g′(x)dν1(x), s > 0, (1)
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defined in the linear space of polynomials, is known to be very important from theo-
retical and practical points of view. In the literature it is known as a weighted Sobolev
inner product. By using the Gram–Schmidt orthogonalization method for the mono-
mial basis {xn}n≥0, a sequence of monic orthogonal polynomials (MOPs, in short)
with respect to such an inner product can be generated. This sequence of polyno-
mials is called a Sobolev orthogonal polynomial sequence and in recent years it has
received the attention of many researchers (see, the survey paper [22] and the refer-
ences therein). Numerical methods for the construction of such a polynomial sequence
are given in [9, 25]. These are general purpose methods and do not exploit additional
properties a Sobolev inner product might have.

In [14] some particular pairs of measures are introduced in connection with the
Fourier expansions of functions with respect to the above Sobolev inner product. The
name coherent pairs of positive measures is introduced in [13], where the concepts
of coherent and symmetric coherent pairs of measures supported on the real line are
described.

A pair of positivemeasures {ν0, ν1} is said to be a coherent pair of positivemeasures
supported on the real line if the corresponding sequences of MOPs satisfy

Pn(ν1; x) = 1

n + 1

[
P ′
n+1(ν0; x) − ρn−1P

′
n(ν0; x)

]
, ρn−1 �= 0, n ≥ 2. (2)

A pair of positive and symmetric measures {ν0, ν1} is said to be a symmetric coherent
pair of positive measures on the real line if the corresponding sequences of MOPs
satisfy

Pn(ν1; x) = 1

n + 1

[
P ′
n+1(ν0; x) − �n−1P

′
n−1(ν0; x)

]
, �n−1 �= 0, n ≥ 2. (3)

In case ν0 = ν1, the measure ν0 is called self–coherent [22]. All coherent (resp.
symmetric) pairs of positive measures on the real line were completely determined by
H. G. Meijer in 1997 [23]. Indeed, if {ν0, ν1} is a coherent pair of measures on the real
line, then one of themeasuresmust be classical (either Jacobi orLaguerre) and the other
one is a rational perturbation of it. In particular, if dν0 = dν1 = e−x xα, α > −1, is
the absolutely continuous measure associated with the gamma distribution supported
in (0,+∞), the MOPs studied in [21] are obtained. In the literature, they are known
as Laguerre–Sobolev orthogonal polynomials and all their zeros are real. Moreover,
if {ν0, ν1} is a symmetric coherent pair of measures on the real line, then one of the
measures must be classical (either Gegenbauer or Hermite) and the other one is a
rational perturbation of it. In particular, when dν0 = dν1 is the Lebesgue measure
supported in (−1, 1), the Althammer MOPs studied in [3] are obtained, which are
also called Legendre–Sobolev orthogonal polynomials.

Sobolev orthogonal polynomials appear in a natural way in the study of spectral
methods for boundary value problems for elliptic Ordinary Differential Equations
when dealing with the variational formulation of such problems. The competitive
advantages of using Sobolev orthogonal polynomials, instead of the standard orthog-
onal ones, has been pointed out in recent contributions ([2, 7, 8, 26] in the Jacobi case,
and [20] in the Hermite case).
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It is well known that the zeros of an orthogonal polynomial sequence with respect to
a probabilitymeasure supported on an infinite subset E of the real line are real and sim-
ple, interlace and are located in the interior of the convex hull of E .As a consequence of
the fact that such an orthogonal polynomial sequence satisfies a three–term recurrence
relation (TTRR, in short), the zeros of the polynomial of degree n are the eigenvalues
of a tridiagonal matrix of order n and, thus, they can be computed by using the classical
Golub–Welsch algorithm [10]. Unfortunately, such a kind of recurrence relation does
not hold for a sequence {Sn(x)}n≥0 of monic Sobolev orthogonal polynomials, which
satisfy a higher order recurrence relation xSn(x) = Sn+1(x)+∑n

k=0 cn,k Sk(x), n ≥ 0.
Consequently, the zeros of Sn are the eigenvalues of a lower Hessenberg matrix having
the entries in the first superdiagonal equal to 1.

Very recently, the problem of computing the zeros of Sn(x) has been formulated as
a Hessenberg inverse eigenvalue problem [25]. Two methods are proposed to solve it.
The first one is based on the Arnoldi iteration with full reorthogonalization. The other
one is based on a proceduremaking use of plane rotations. Besides this formulation, an
alternativemethod to compute the zeros of Legendre–Sobolev orthogonal polynomials
is analyzed in [17], where the Hessenberg matrix is first transformed into a similar
symmetric tridiagonal one, and then the zeros are computed as the eigenvalues of the
latter tridiagonal matrix.

In this contribution, we propose an algorithm to compute the zeros of the monic
Laguerre–Sobolev orthogonal polynomial of degree n as the eigenvalues of a gener-
alized eigenvalue problem associated with the pencil x Bn − An, where Bn and An are
lower bidiagonal and two–banded lower Hessenberg matrices of order n, respectively.
The Laguerre–Sobolev inner product is a coherent pair, and therefore we can obtain
the entries of these matrices from a four–term recurrence relation. Since the consid-
ered generalized eigenvalue problem is very ill–conditioned, inspired by [15, 16], a
balancing technique is applied transforming the problem into a well–conditioned one.

The complexity and memory properties of the proposed algorithm are studied, and
some illustrative examples are provided.

2 Notations and definitions

Matrices are denoted by upper–case letters A, B, . . . ; vectors with bold lower–case
letters x, y, . . . ,ω, . . . ; scalars with lower–case letters x, y, . . . , λ, θ, . . ..

Matrices of size (m, n) are denoted by Hm,n or simply by Hm if m = n. The entry
(i, j) of a matrix A is generally denoted by ai, j and the i th entry of a vector x is
denoted by xi , if not explicitly defined.

Submatrices are denoted by the colon notation of Matlab: A(i : j, k : l) denotes
the submatrix of A formed by the intersection of rows i to j and columns k to l, and
A(i : j, :) and A(:, k : l) denote the rows of A from i to j and the columns of A and
from k to l, respectively. The function triu(A,−1) sets to zero the lower-triangular
part below the first subdiagonal of the matrix A.

The symbol Inf denotes a real value that is too large to be represented as a floating
point number.
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The identity matrix of order n is denoted by In, and its i th column, i = 1, . . . , n,

i.e., the i th vector of the canonical basis of Rn, is denoted by ei .
Let M, N ,∈ R

n×n . The square pencil λN − M is regular if det(λN − M) is not
identically zero for all values of λ.

Given M, N ,∈ R
n×n, λi ∈ C, i = 1, . . . , n, λi �= λ j , i �= j, the generalized

eigenvalues of the regular pencil [18] λN−M, and xi and yi , respectively, the right and
left eigenvectors of λi , the relative eigenvalue condition number of λi , i = 1, . . . , n,

as defined in [18], is given by

κ(λi , M, N ) =
√

‖M‖22 + ‖N‖22
| ξi |2 + | ψi |2 , (4)

where ξi = yTi Mxi/ (‖xi‖2 + ‖yi‖2) , ψi = yTi Nxi/ (‖xi‖2 + ‖yi‖2).
The defect from normality of a regular pencil λN − M, with M, N ,∈ R

n×n, with
N nonsingular, is defined as

�(M, N ) :=
n∑

i=1

σ
(r)2

i +
n∑

i=1

σ
()2

i − 2
n∑

i=1

| λi |2, (5)

where
σ

(r)
i = σi (N

−1M), σ
()
i = σi (MN−1),

are the singular values of N−1M and MN−1, respectively, and λi are the generalized
eigenvalues of the pencil λN − M, i = 1, . . . , n.

3 Laguerre–Sobolev polynomials

Let us consider the sequence of Laguerre–Sobolev polynomials {qn(x)}n≥0, orthogo-
nal with respect to the Sobolev inner product

( f , g)S =
∫ +∞

0
f (x)g(x)xαe−xdx + γ

∫ +∞

0
f ′(x)g′(x)xαe−xdx, (6)

with α > −1 and γ ≥ 0, i.e., the n–th monic Laguerre–Sobolev polynomial qn(x)
satisfies the following orthogonality conditions

(qn, x
k)S = 0, k = 0, 1, . . . , n − 1.

Taking into account that the pair of measures in (6) is a coherent pair, indeed a
self coherent pair, the sequence of monic Laguerre–Sobolev orthogonal polynomi-
als {qn(x)}n≥0 satisfies the following four–term recurrence relation

x (qn−1(x) + enqn−2(x)) = anqn(x) + bnqn−1(x) + cnqn−2(x) + dnqn−3(x), (7)
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with
an = 1
bn = 2n + α + fn(γ )

cn = n(n + α − 1) + (2n + α) fn−1(γ )

dn = n(n + α − 1) fn−2(γ )

en = fn−1(γ )

(8)

and ⎧⎪⎨
⎪⎩

f1(γ ) = 2(α+1)
γ+α+1

fn(γ ) = (n+1)(n+α)
n(2+γ )+α− fn−1(γ )

, n = 2, 3, . . . .

As pointed out in [21], the coefficient fn(γ ) can be expressed as

fn(γ ) = (n + 1)(n + α)
qn−1(γ )

qn(γ )
,

where the polynomials {qn(γ )}n≥0 satisfy the TTRR

⎧⎨
⎩
q0(γ ) = 1,
q1(γ ) = γ + α + 1,
qn(γ ) = (nγ + 2n + α)qn−1(γ ) − n(n + α − 1)qn−2(γ ), n ≥ 2.

(9)

Denoting rn(γ ) = qn(2γ − 2), the above expression can be formulated in terms of
monic polynomials as

⎧⎨
⎩
r0(γ ) = 1,
r1(γ ) = γ + α−1

2 ,

rn(γ ) = (
γ + α

2n

)
rn−1(γ ) − n+α−1

4(n−1) , n ≥ 2.
(10)

If we compare the above recurrence formula with the TTRR satisfied by the monic
generalized Pollaczek polynomials ([5, p. 185]), then we deduce that the polynomials
{rn(γ )}n≥0 are the co–recursive polynomials with parameter 1/2 for the generalized
Pollaczek polynomials.
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Written in a matrix form, (7) reads

⎛
⎜⎜⎜⎜⎜⎜⎝
x

⎡
⎢⎢⎢⎢⎢⎣

1
e2 1

. . .
. . .

en−1 1
en 1

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 1
c2 b2 1

d3 c3
. . .

. . .

. . .
. . . bn−1 1
dn cn bn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q0(x)
q1(x)
q2(x)

...

qn−2(x)
qn−1(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= qn(x)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦



(x Bn − An)qn(x) = qn(x)en



(x Bn,n+1 − An,n+1)

[
qn(x)
qn(x)

]
= 0,

where Bn,n+1 := [Bn | 0] and An,n+1 := [An | en].
Therefore, x̄ is a zero of qn(x), i.e., qn(x̄) = 0, if and only if x̄ is a generalized

eigenvalue of
(x Bn − An)qn(x) = 0, (11)

with qn(x̄) the corresponding eigenvector.

On the other hand, for any x ∈ R, x Bn,n+1 − An,n+1 is full row rank and
[
qn(x)
qn(x)

]
is the only vector spanning its right null–space.

4 Proposed algorithms

Here, we propose two algorithms for computing the zeros of the Laguerre–Sobolev
polynomials.

4.1 Algorithm 1

The zeros of the Laguerre–Sobolev polynomials, that are the eigenvalues of B−1
n An

as well as the generalized eigenvalues of (11), are real [21, Th. 6.1].
Taking into account the relative condition numbers for the eigenvalues λi , i =

1, . . . , n, defined in Section 2, it turns out that (11) is very ill–conditioned for any
value of α and γ (see, for example, κ(xi , An, Bn), denoted by “∗” in Fig. 1, left
plot), and customary methods to compute its generalized eigenvalues, such as the QZ
algorithm [19], yield unreliable results (see xi (An, Bn), denoted by “∗” in Fig. 1, right
plot).

In order to overcome this issue,we propose a new algorithmwhose first step consists
of determining a diagonal matrix �n = diag(δ1, . . . , δn), balancing both matrices Bn

and An as follows,

B̂n = �−1
n Bn�n, Ân = �−1

n An�n, (12)
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Fig. 1 Relative eigenvalue condition numbers (left) and eigenvalues computed by the QZ method (right)
of problems (11) and (13), with n = 60, α = −.5, γ = 1, on a logarithmic scale

such that triu(B̂−1
n Ân,−1) is symmetric. The generalized eigenvalue problem (11)

is thus transformed into the following equivalent one

(x B̂n − Ân)q̂n(x) = 0, (13)

denoted also by
( Ân, B̂n), (14)

with q̂n(x) = �−1
n qn(x), which turns out to be well–conditioned (see κ(xi , B̂n, Ân),

denoted by “+” in Fig. 1, left plot). In this case the QZ algorithm provides reliable
results (see xi ( Ân, B̂n), denoted by “+” in Fig. 1, right plot).

This balancing is in fact a renormalization of the polynomial sequence. The bal-
ancing matrix �n can be obtained directly from the four–term recurrence relation, see
the Matlab–like algorithm displayed in Table 1. Although the proposed balancing
algorithm drastically reduces the conditioning of (11), it is worth stressing that the

Table 1 Computation of the balancing matrix �n

function [�n ]=balanceD(b, c, e)

% Computation of the diagonal balancing matrix �n

% Input: b, c, d, the main diagonal, the first and second subdiagonal of An

% e, the first subdiagonal of Bn
% Output: �n , the diagonal balancing matrix

δ(1) = 1; v(1) = 0; e(1) = 0;
for i=2:n

v(i) = c(i) − e(i)(b(i − 1) − e(i − 1));
δ(i) = δ(i − 1)

√
v(i);

end

�n = diag(δ(1), δ(2), . . . , δ(n));

123



Numerical Algorithms

Fig. 2 Growth of the entries in the balancingmatrix�n , δi (“∗”) and δ̂i , (“+”) i = 1, . . . , 60, α = −.5, γ =
1, on a logarithmic scale. The values δi grow exponentially, leading to computational difficulties, while the
values based on ratios, δ̂i , remain small

entries of �n , denoted by “∗” in Fig. 2, grow exponentially, for any value of α and γ,

causing overflow for n > 200.
In order to prevent this phenomenon, taking into account that

Ân =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1
δ2
δ1

c2
δ1
δ2

b2
δ3
δ2

d3
δ1
δ3

c3
δ2
δ3

. . .
. . .

. . .
. . . bn−1

δn
δn−1

dn
δn−2
δn

cn
δn−1
δn

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

and

B̂n =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
e2

δ1
δ2

1
. . .

. . .

en−1
δn−2
δn−1

1

en
δn−1
δn

1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (16)

imposing δ0 = 1, it is sufficient to compute the ratios

δ̂i = δi

δi−1
, i = 1, . . . , n,
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denoted by “+” in Fig. 2, which do not exhibit an exponential growth. Therefore,
matrices (15) and (16) can be written as follows, without constructing the balancing
matrix �n ,

Ân =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 δ̂2
c2
δ̂2

b2 δ̂3

d3
δ̂2 δ̂3

c3
δ̂3

. . .
. . .

. . .
. . . bn−1 δ̂n
dn

δ̂n−1 δ̂n

cn
δ̂n

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

B̂n =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
e2
δ̂2

1

. . .
. . .
en−1

δ̂n−1
1
en
δ̂n

1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The elements of the matrices Ân and B̂n are computed by the Matlab–like algorithm
displayed in Table 2.

We observe that the computation of the matrices Ân and B̂n involves only multi-
plications and divisions by δ̂i , i ∈ {1, . . . , n}. Hence, they are computed with high
relative accuracy.

The second step of the proposed algorithm consists in applying the QZ method to
the well–conditioned generalized eigenvalue problem (13) to compute the zeros of the
Laguerre–Sobolev polynomial of degree n.

Algorithm 1 can be summarized in the following steps:

Algorithm 1
Step 1. construct the matrices Bn and An
Step 2. compute the matrices B̂n and Ân as in (12)
Step 3. solve the generalized eigenvalue problem (13)

by the QZ algorithm (eig.m of Matlab)

Its complexity is O(n3), requiring O(n2) memory.

4.2 Algorithm 2

Here, we propose a more efficient variant of Algorithm 1, replacing the QZ method
by a variant of the Ehrlich–Aberth method [1, 4, 6].
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Table 2 Computation of the matrices Ân and B̂n

function [â, b̂, ĉ, d̂, ê]=balanceD1(b, c, d, e)

% Computation of entries of Ân and B̂n , balanced by �n

% Input: b, c, d, the main diagonal, the first and second subdiagonal of An

% e, the first subdiagonal of Bn

% Output: â, b̂, ĉ, d̂, the first superdiagonal, the main diagonal,

% the first and second subdiagonal of Ân

% ê, the first subdiagonal of B̂n

δ̂(1) = 0; v(1) = 0;
for i=2:n

v(i) = c(i) − e(i)(b(i − 1) − e(i − 1));
δ̂(i) = √

v(i);
end

for i=2:n

â(i) = δ̂(i);
b̂(i) = b(i);
ĉ(i) = c(i)/δ̂(i);
ê(i) = e(i)/δ̂(i);
if i>2

d̂(i) = d(i)/
(
δ̂(i)δ̂(i − 1)

)
;

end

end

Starting from a vector of initial approximations x(0) of the zeros of q̂n(x), its entries,
at the (i + 1)th iteration, i = 0, 1, . . . , of the Ehrlich–Aberth method, are updated as
follows

x (i+1)
j = x (i)

j −

q̂n(x
(i)
j )

q̂ ′
n(x

(i)
j )

1 − q̂n(x
(i)
j )

q̂ ′
n(x

(i)
j )

n∑
k=1
k �= j

1

x (i)
j − x (i)

k

,

⎧⎨
⎩

j = 1, . . . , n,

i = 0, 1, . . . .
(17)

Good choices for the initial approximation x(0) and howwe compute q̂ ′(x) is discussed
below. The computed approximations x (i)

j converge cubically to the generalized eigen-
values of (13), or even faster if the method is implemented in a Gauss–Seidel fashion,
since the zeros of q̂n(x) are simple [4].

To ensure a fast convergence of the Ehrlich–Aberth method, a good set of ini-
tial approximations for the zeros and a fast and reliable computation of the Newton
correction q̂n(x)/q̂ ′

n(x) are needed.
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Let {L(α)
i (x)}i≥0, be the Laguerre–Sonine polynomials, orthogonal with respect to

the inner product

( f , g) =
∫ +∞

0
f (x)g(x)xαe−xdx, α > −1.

A good set of initial approximations x(0) for the zeros of q̂n(x) can be obtained by
considering the following Theorem 1 [21, Th. 6.1].

Theorem 1 Let γ > 0, then the polynomial q̂n(x), n ≥ 2, has exactly n different
real zeros, and at least n − 1 of them are positive. When α ≥ 0, all the zeros are
positive. Moreover, the roots of q̂n(x) separate those of L(α)

n (x). If we denote by
x1,n < x2,n < · · · < xn,n the zeros of L(α)

n (x) and by x̂1,n < x̂2,n < · · · < x̂n,n those
of q̂n(x), then

x̂1,n < x1,n < x̂2,n < x2,n < · · · < xn−1,n < x̂n,n < xn,n . (18)

Considering the interlacing property of the zeros of {L(α)
i (x)}i≥0 and (18), we pro-

pose four different choices for the vector x(0) := [x (0)
1,n, x

(0)
2,n, . . . , x

(0)
n,n]T of initial

approximations of the zeros of q̂n(x):

I1: x(0) := [x1,n, x2,n, . . . , xn,n]T , i.e., the zeros of L(α)
n (x);

I2: x(0) := [x1,n+1, x2,n+1, . . . , xn,n+1]T , i.e., the smallest n zeros of L(α)
n+1(x);

I3: ⎧⎪⎨
⎪⎩
x (0)
1,n = 0, if α < 0,

x (0)
1,n = x1,n

2 , if α ≥ 0,

x (0)
i,n = xi−1,n + xi,n

2 , i = 2, . . . , n.

The zeros of L(α)
n (x) can be computed by the Golub–Welsch algorithm, withO(n2)

computational complexity andO(n) memory or exploiting the technique described in
[12].

Observe that
lim

γ→0+ x̂i,n = xi,n, i = 1, . . . , n.

Therefore, the initial vector x(0) should be chosen equal to I1 for small values of γ.

A comparison, in terms of efficiency, of the Ehrlich–Aberth method when adopting
the different aforementioned initial vectors, is reported in Section 5.

In order to efficiently compute (17), let

B̂n,n+1 = �−1
n Bn,n+1�n+1,

Ân,n+1 = �−1
n An,n+1�n+1,

M̂n,n+1(x) = x B̂n,n+1 − Ân,n+1,

(19)
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with �n+1 = diag(δ1, . . . , δn, δn+1) such that triu(�−1
n+1B

−1
n+1An+1�n+1,−1) is a

symmetric tridiagonal matrix of order n + 1.

Let q̂n+1(x) :=

⎡
⎢⎢⎢⎢⎢⎣

q̂0(x)
q̂1(x)

...

q̂n−1(x)
q̂n(x)

⎤
⎥⎥⎥⎥⎥⎦

= �−1
n+1qn+1(x), with qn+1(x) :=

[
qn(x)
qn(x)

]
. Then

M̂n,n+1(x)q̂n+1(x) = 0n+1 (20)

defines a four–term recurrence relation for the sequence of polynomials q̂i (x), i =
0, 1, . . . , n. Since q̂n(x) = qn(x)/δn+1, the zeros of the polynomial q̂n(x) are the
zeros of qn(x).

Moreover, by (20), the vector q̂n+1(x) spans the right null–space of M̂n,n+1(x), for
any x ∈ R.

Given a point x ∈ R, the Newton correction q̂n(x)/q̂ ′
n(x) in (17) can be efficiently

computed as follows.
The vector spanning the right null–space can be computed by applying a sequence

of Givens rotations

Gi =

⎡
⎢⎢⎣
Ii−1

ci si
−si ci

In−i−1

⎤
⎥⎥⎦ ∈ R

(n+1)×(n+1), i = 1, . . . , n,

to the right of M̂n,n+1, chosen such that the matrix

M̂n,n+1G
T
1 G

T
2 · · ·GT

i , i = 1, . . . , n,

has the entry (i, i + 1) annihilated.
This shows that the null–space is spanned by

q̂Tn+1 = δn+1r̂Tn+1,

where

r̂n+1 =

⎡
⎢⎢⎢⎢⎢⎣

r̂0(x)
r̂1(x)

...

r̂n−1(x)
r̂n(x)

⎤
⎥⎥⎥⎥⎥⎦

= GT
1 G

T
2 · · ·GT

n−1G
T
n en+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(−1)n+1s1s2 · · · sn−1sn
(−1)nc1s2 · · · sn−1sn

...

cn−2sn−1sn
−cn−1sn

cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is the vector spanning the null–space of M̂n,n+1, and δn+1 is a normalization factor.
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The number of required floating point operations for computing r̂n+1 is 13n.

In order to compute q̂ ′
n(x) we consider the derivative of (20):

M̂ ′
n,n+1(x)q̂n+1(x) + M̂n,n+1(x)q̂′

n+1(x) = 0n, (21)

where M̂ ′
n,n+1(x) =

(
x B̂n,n+1 − Ân,n+1

)′ = B̂n,n+1. Furthermore, since q̂ ′
0(x) = 0

and B̂n,n+1en+1 = 0n, (21) becomes:

M̃n q̂′
n+1(2 : n + 1) = −B̂n q̂n+1(1 : n), (22)

with M̃n = M̂n,n+1

[
0
In

]
a four–band lower triangular matrix of order n.

Instead of solving (22), we solve

M̃n r̂′
n+1(2 : n + 1) = −B̂n r̂n+1(1 : n), (23)

with

r̂′
n+1 =

⎡
⎢⎢⎢⎢⎢⎣

r̂ ′
0(x)
r̂ ′
1(x)
...

r̂ ′
n−1(x)
r̂ ′
n(x)

⎤
⎥⎥⎥⎥⎥⎦

= q̂′
n+1

δn+1
.

This is enough, since
q̂n(x)

q̂ ′
n(x)

= δn+1r̂n(x)

δn+1r̂ ′
n(x)

= r̂n(x)

r̂ ′
n(x)

.

The computation of the right–hand side of (23) requires 3n floating point operations.
Moreover, forward substitution [11, p. 106] can be used to solve the linear system

(23), requiring 7n floating point operations.
Algorithm 2 can be summarized in the following steps:

Algorithm 2
Step 1. construct the matrices Bn and An;
Step 2. compute the matrices B̂n and Ân as in (12)
Step 3. compute the zeros of q̂n(x) by a variant

of the Ehrlich-Aberth method [1, 4, 6].

Its complexity is O(n2), requiring O(n) memory.

5 Numerical results

In this section we report some numerical tests in order to compare the performance
of the algorithms described in Section 4 in terms of efficiency and accuracy. All
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the computations are performed in Matlab R2022a, with machine precision ε ≈
2.22 × 10−16.

In all the examples, the generalized eigenvalues of (11), for different values of n, α

and γ, are computed by Algorithms 1 and 2, and are denoted, respectively, by x (A1)
i

and x (A2)
i , i = 1, . . . , n.

The generalized eigenvalues of (11) are also computed by the AdvanpixMultipreci-
sion Computing Toolbox1 for Matlab [24], with precision of 800 digits and rounded
in double precision by the Matlab function double.m. These values, denoted by
x (exact)
i , i = 1, . . . , n, are assumed to be the exact ones.

Example 1 The first numerical test is aimed to select the initial vector, among those
listed in Subsection 4.2, for which the Ehrlich–Aberth method requires less iterations.
The results are displayed in Table 3, setting n = 100, and considering different values
of α and γ, reported in columns 1 and 2, respectively. In columns 3–5, the means
of the number of iterations required by the Ehrlich–Aberth method when adopting
the different initial vectors I1, I2 and I3 are displayed. Finally, in columns 6 and
7, the defect from normality (5) for the generalized eigenvalue problems (11) and
(13), are shown. A small defect from normality is desirable, since it implies that the
sensitivity of the generalized eigenvalues is small as well [18]. In general, Algorithm
2 performs similarly for any choice of the initial vector. Nevertheless, as highlighted
in Subection 4.2, Algorithm 2 performs best in terms of efficiency when choosing I1
as initial vector, for small values of γ. Furthermore, Algorithm 2 with initial vector I1
requires, on average, a smaller number of iteration for α ≥ 102.

In the other considered cases, Algorithm 2 with initial vector I3, turns out to be
slightly faster.

Concerning the defect from normality, as reported in [21], fixed n ∈ N,

lim
γ→∞ fn(γ ) = 0,

and, hence, by (8), also
lim

γ→∞ dn = 0, lim
γ→∞ en = 0,

from which it follows that

lim
γ→∞ Bn = In, lim

γ→∞ An =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 1
c2 b2 1

c3
. . .

. . .

. . . bn−1 1
cn bn

⎤
⎥⎥⎥⎥⎥⎥⎦

=: Ãn .

Therefore, for γ → ∞, the defect from normality of the regular pencil λBn − An

reduces to the defect from normality of the pencil λIn − Ãn, with Ãn a tridiagonal

1 We preferred to consider the eigenvalues computed by Advanpix Multiprecision Computing Toolbox as
the exact ones since the eigenvalues computed by using variable precision arithmetic of Matlab where
not reliable for matrices of size equal to 200.
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Table 3 Means of the numbers of iterations required by the Ehrlich–Aberth method when considering
I1, I2 and I3 as initial vector (columns 3 − 5), for n = 100 and different values of α (column 1) and γ

(column 2); defect from normality (5) of �(An , Bn) and �( Ân , B̂n) (columns 6 − 7)

Mean Defect from normality
α γ i t(I1) i t(I2) i t(I3) �(An , Bn) �( Ân , B̂n)

−.99 10−6 3.03 4.62 6.74 Inf 4.42 × 107

−.99 10−3 3.30 4.72 6.12 Inf 1.29 × 105

−.99 100 4.48 4.84 4.46 1.51 × 10231 4.03 × 102

−.99 101 4.75 4.62 4.17 4.14 × 10108 1.05 × 102

−.99 102 4.82 4.87 4.09 3.71 × 109 1.02 × 102

−.99 103 4.82 4.67 4.09 3.71 × 109 1.02 × 102

−.99 109 4.83 4.65 4.09 3.71 × 109 1.02 × 102

0 10−6 2.66 4.79 6.84 Inf 9.84 × 105

0 10−3 3.25 4.78 6.16 Inf 1.47 × 105

0 100 4.43 4.82 4.40 1.18 × 10234 3.11 × 102

0 101 4.72 4.63 4.10 2.32 × 10110 6.29 × 100

0 102 4.77 4.61 4.03 3.80 × 109 2.96 × 100

0 103 4.78 4.66 4.02 3.80 × 109 2.99 × 100

0 109 4.78 4.55 4.02 3.80 × 109 3.00 × 100

100 10−6 2.28 4.65 6.90 Inf 4.94 × 105

100 10−3 3.18 4.61 6.30 Inf 1.51 × 105

100 100 4.42 4.81 4.43 4.21 × 10236 3.16 × 102

100 101 4.71 4.46 4.12 1.37 × 10112 5.85 × 100

100 102 4.77 4.84 4.05 3.90 × 109 2.42 × 100

100 103 4.77 4.83 4.05 3.90 × 109 2.49 × 100

100 109 4.78 4.65 4.05 3.90 × 109 2.50 × 100

102 10−6 2.00 4.85 7.04 Inf 9.93 × 103

102 10−3 2.99 4.71 7.20 Inf 9.88 × 103

102 100 3.99 4.62 5.14 8.85 × 10287 7.85 × 102

102 101 3.99 4.38 5.00 6.07 × 10197 1.28 × 101

102 102 3.99 4.59 5.00 1.89 × 1036 1.24 × 100

102 103 3.99 4.42 5.00 2.00 × 1010 1.68 × 100

102 109 3.99 4.40 5.00 2.00 × 1010 2.01 × 100

103 10−6 3.16 6.09 8.14 Inf 1.01 × 103

103 10−3 3.16 5.95 7.98 Inf 1.01 × 103

103 100 4.96 6.67 8.89 Inf 6.92 × 102

103 101 5.59 6.72 7.48 5.30 × 10283 7.79 × 101

103 102 5.33 6.18 6.53 1.33 × 10180 3.58 × 100

103 103 5.33 6.22 6.50 2.39 × 1012 1.01 × 100

103 109 6.41 7.26 7.52 7.57 × 1011 2.00 × 100
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Table 4 Absolute errors of the generalized eigenvalues computed by Algorithm 1 for different values of α

(column 1), γ (column 2) and n (column 3 − 5)

maxi | x(A1)
i − x(exact)

i |
α γ n = 100 n = 200 n = 300

−.99 10−6 4.4062 × 10−12 8.25 × 10−12 1.18 × 10−11

−.99 10−3 9.7078 × 10−13 3.41 × 10−12 1.25 × 10−10

−.99 100 1.0072 × 10−11 1.82 × 10−12 4.07 × 10−11

−.99 101 7.3896 × 10−13 3.67 × 10−10 5.00 × 10−12

−.99 102 1.2506 × 10−12 4.61 × 10−10 4.34 × 10−12

−.99 103 6.8212 × 10−13 5.70 × 10−10 6.40 × 10−12

−.99 109 4.6043 × 10−12 5.82 × 10−10 2.98 × 10−11

0 10−6 1.0232 × 10−12 3.84 × 10−12 7.73 × 10−12

0 10−3 1.5348 × 10−12 1.09 × 10−11 1.33 × 10−11

0 100 1.0800 × 10−12 3.52 × 10−12 5.00 × 10−12

0 101 1.0232 × 10−12 2.27 × 10−12 5.23 × 10−12

0 102 5.6843 × 10−13 1.82 × 10−12 2.96 × 10−12

0 103 6.2528 × 10−13 3.30 × 10−12 2.50 × 10−12

0 109 4.3201 × 10−12 1.53 × 10−11 3.12 × 10−11

100 10−6 1.3642 × 10−12 2.96 × 10−12 7.50 × 10−12

100 10−3 1.6094 × 10−12 2.61 × 10−12 7.05 × 10−12

100 100 8.5265 × 10−13 2.16 × 10−12 4.09 × 10−12

100 101 7.9581 × 10−13 4.21 × 10−12 8.64 × 10−12

100 102 1.1369 × 10−12 2.16 × 10−12 5.46 × 10−12

100 103 7.9581 × 10−13 1.93 × 10−12 4.21 × 10−12

100 109 4.3769 × 10−12 1.49 × 10−11 2.96 × 10−11

102 10−6 9.0949 × 10−13 5.23 × 10−12 8.64 × 10−12

102 10−3 1.5916 × 10−12 5.34 × 10−12 9.55 × 10−12

102 100 1.5916 × 10−12 4.43 × 10−12 4.32 × 10−12

102 101 1.5916 × 10−12 2.39 × 10−12 9.32 × 10−12

102 102 1.1369 × 10−12 2.73 × 10−12 4.55 × 10−12

102 103 1.4779 × 10−12 4.09 × 10−12 4.55 × 10−12

102 109 5.7412 × 10−12 1.83 × 10−11 3.46 × 10−11

103 10−6 5.0022 × 10−12 1.41 × 10−11 1.82 × 10−11

103 10−3 4.7748 × 10−12 8.41 × 10−12 1.86 × 10−11

103 100 4.0927 × 10−12 5.91 × 10−12 8.19 × 10−12

103 101 4.3201 × 10−12 5.91 × 10−12 8.64 × 10−12

103 102 4.0927 × 10−12 9.09 × 10−12 8.64 × 10−12

103 103 3.4106 × 10−12 7.28 × 10−12 8.19 × 10−12

103 109 1.9099 × 10−11 4.68 × 10−11 7.82 × 10−11
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Table 5 Absolute errors of the generalized eigenvalues computed by Algorithm 2 for different values of α

(column 1), γ (column 2) and n (column 3 − 5)

maxi | x(A2)
i − x(exact)

i |
α γ n = 100 n = 200 n = 300

−.99 10−6 8.0908 × 10−14 4.36 × 10−13 6.35 × 10−13

−.99 10−3 6.2630 × 10−14 2.18 × 10−13 2.59 × 10−13

−.99 100 2.8422 × 10−14 1.17 × 10−13 1.14 × 10−13

−.99 101 1.4211 × 10−14 5.68 × 10−14 2.27 × 10−13

−.99 102 5.6843 × 10−14 1.14 × 10−13 1.14 × 10−13

−.99 103 2.8422 × 10−14 1.14 × 10−13 1.14 × 10−13

−.99 109 1.4211 × 10−14 1.14 × 10−13 2.27 × 10−13

0 10−6 1.1034 × 10−13 5.80 × 10−13 6.86 × 10−13

0 10−3 4.9627 × 10−14 1.76 × 10−13 2.91 × 10−13

0 100 5.6843 × 10−14 1.14 × 10−13 2.27 × 10−13

0 101 2.8422 × 10−14 5.68 × 10−14 1.14 × 10−13

0 102 5.6843 × 10−14 1.14 × 10−13 1.14 × 10−13

0 103 5.6843 × 10−14 5.68 × 10−14 5.68 × 10−14

0 109 5.6843 × 10−14 1.14 × 10−13 1.14 × 10−13

100 10−6 1.0242 × 10−13 3.87 × 10−13 8.43 × 10−13

100 10−3 1.3869 × 10−13 1.14 × 10−13 3.66 × 10−13

100 100 2.8422 × 10−14 5.68 × 10−14 2.27 × 10−13

100 101 2.8422 × 10−14 1.17 × 10−13 2.27 × 10−13

100 102 2.8422 × 10−14 5.68 × 10−14 2.27 × 10−13

100 103 1.4211 × 10−14 5.68 × 10−14 1.14 × 10−13

100 109 3.5527 × 10−11 5.68 × 10−14 1.14 × 10−13

102 10−6 5.6843 × 10−14 1.14 × 10−13 2.27 × 10−13

102 10−3 5.6843 × 10−14 1.60 × 10−13 2.63 × 10−13

102 100 5.6843 × 10−14 1.14 × 10−13 1.10 × 10−13

102 101 5.6843 × 10−14 1.14 × 10−13 2.27 × 10−13

102 102 5.6843 × 10−14 5.68 × 10−14 2.27 × 10−13

102 103 5.6843 × 10−14 1.14 × 10−13 2.27 × 10−13

102 109 5.6843 × 10−14 1.14 × 10−13 2.27 × 10−13

103 10−6 1.1369 × 10−13 2.27 × 10−13 4.55 × 10−13

103 10−3 1.1369 × 10−13 2.27 × 10−13 2.27 × 10−13

103 100 2.2737 × 10−13 2.27 × 10−13 4.55 × 10−13

103 101 1.1369 × 10−13 2.27 × 10−13 2.27 × 10−13

103 102 1.1369 × 10−13 4.55 × 10−13 1.14 × 10−13

103 103 2.2737 × 10−13 2.27 × 10−13 4.55 × 10−13

103 109 2.2737 × 10−13 4.55 × 10−13 2.27 × 10−13
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matrix. By (8), while the entries of the first superdiagonal of Ãn are equal to 1, the
entries of the main diagonal and those on the first subdiagonal grow linearly and
quadratically, respectively.

The matrix pencil λIn − Ān, obtained by applying the function balanceD1 in
Section 4 to λIn − Ãn, has, hence, defect from normality equal to 0.

Summarizing, for a fixed n ∈ N, the defect from normality of the regular pencil
λBn − An is a decreasing function of γ and it tends to be a constant of order 109, as
γ → ∞.

We observe that �(An, Bn) is approximately a decreasing function of γ and it is
huge for 0 < γ < 100, while �( Ân, B̂n) is bounded by 103.

Example 2 In this example we compute the absolute errors of the generalized eigen-
values of (11) obtained when applying Algorithms 1 and 2 with initial vector I3, for
n = 100, 200, and 300, and the same values of α and γ considered in Example 1.

The results are reported in Table 4 for Algorithm 1 and in Table 5 for Algorithm 2.
We observe that Algorithm 2 performs best in terms of accuracy.

6 Conclusions

The computation of the zeros of the Laguerre–Sobolev polynomial of degree n can be
formulated as a generalized eigenvalue problem, involving a lower bidiagonal matrix
and a 2–banded lower Hessenberg matrix of order n.

Customary techniques for solving such a problem, as the QZ method, yield unre-
liable results since the generalized eigenvalues are very ill-conditioned.

Here, two algorithms are proposed based on a novel balancing procedure that dras-
tically reduces the ill–conditioning of the eigenvalues. The first algorithm computes
the generalized eigenvalues of the balanced problem by the QZ method, while the
second one is based on a variant of the Ehrlich–Aberth method.

The numerical experiments show that the second algorithm outperforms the first
one in terms of accuracy. Moreover, its complexity and required memory are of the
order of O(n2) and O(n), respectively, rather than O(n3) and O(n2), characterizing
the first algorithm.
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