
Numerical Algorithms
https://doi.org/10.1007/s11075-022-01297-9

ORIGINAL PAPER

Computing Gaussian quadrature rules with high
relative accuracy

Teresa Laudadio1 ·Nicola Mastronardi1 ·Paul Van Dooren2

Received: 24 November 2021 / Accepted: 7 March 2022
© The Author(s) 2022

Abstract
The computation of n-point Gaussian quadrature rules for symmetric weight func-
tions is considered in this paper. It is shown that the nodes and the weights of the
Gaussian quadrature rule can be retrieved from the singular value decomposition of
a bidiagonal matrix of size n/2. The proposed numerical method allows to compute
the nodes with high relative accuracy and a computational complexity of O(n2). We
also describe an algorithm for computing the weights of a generic Gaussian quadra-
ture rule with high relative accuracy. Numerical examples show the effectiveness of
the proposed approach.

Keywords Gaussian quadrature rule · Golub and Welsch algorithm · Singular value
decomposition

1 Introduction

The Golub and Welsch algorithm [12] is the classical way to compute the nodes λi

and the weights ωi of an n-point Gaussian quadrature rule (GQR), commonly used

Teresa Laudadio, Nicola Mastronardi and Paul Van Dooren contributed equally to this work.

Dedicated to Claude Brezinski on the occasion of his 80th birthday.

� Teresa Laudadio
teresa.laudadio@cnr.it

Nicola Mastronardi
nicola.mastronardi@cnr.it

Paul Van Dooren
paul.vandooren@uclouvain.be

1 Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, via
Amendola 122/D, Bari, Italy

2 Department of Mathematical Engineering, Catholic University of Louvain, Avenue Georges
Lemaitre 4, Louvain-la-Neuve, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01297-9&domain=pdf
mailto: teresa.laudadio@cnr.it
mailto: nicola.mastronardi@cnr.it
mailto: paul.vandooren@uclouvain.be

Numerical Algorithms

to approximate integrals of the following kind,

∫ τ

−τ

f (x)ω(x)dx ≈
n∑

i=1

f (λi)ωi

where ω(x) ≥ 0 is a positive weight function in the interval [−τ, τ], with τ > 0
and f (x) is a continuous function in the same interval. It computes the nodes, also
called knots, as the eigenvalues of a symmetric tridiagonal matrix of order n, called
the Jacobi matrix, while the corresponding weights are easily obtained from the first
components of the associated eigenvectors (see [12] for more details). The nonzero
entries of the Jacobi matrix are computed from the coefficients of the three-term
recurrence relation of the orthogonal polynomials associated with the weight function
ω(x).

The Matlab function gauss is a straightforward implementation of the Golub
and Welsch algorithm [12], included in the package “OPQ: A Matlab suite of pro-
grams for generating orthogonal polynomials and related quadrature rules” by Walter
Gautschi, and it is available at https://www.cs.purdue.edu/archives/2002/wxg/codes/
OPQ.html.

In [19] it is shown that, when the weight function ω(x) is symmetric with respect
to the origin, the positive nodes of the n-point GQR are the eigenvalues of a sym-
metric tridiagonal matrix, of order n

2 if n is even and n+1
2 if n is odd, obtained by

eliminating half of the unknowns from the original eigenvalue problem. Moreover,
the Cholesky factor of the latter tridiagonal matrix of reduced order is a nonnegative
lower bidiagonal matrix of dimensions n

2 × n
2 , if n is even, and n+1

2 × n−1
2 , if n is

odd, whose entries in its main diagonal and lower subdiagonal are respectively the
odd and the even elements of the first subdiagonal of the original Jacobi matrix.

In the same paper, the authors propose modifications of the Golub and Welsch
algorithm for computing the nodes and weights of a symmetric GQR (SGQR), by
means of a three-term recurrence relation corresponding to the orthogonal polyno-
mials associated with the modified weight function. This resulted in faster Matlab
functions than gauss.

Inspired by [19], in this paper we propose to compute the positive nodes of the n-
point SGQR as the singular values of a nonnegative bidiagonal matrix. These can be
computed in O(n2) floating point operations and with high relative accuracy by the
algorithm described in [5, 6]. Moreover, the weights of the SGQR can be obtained
from the first row of the right singular vector matrix. The stability of the three-term
recurrence relation arising in computing the weights of a nonsymmetric n-point GQR
is also analyzed and a novel numerical method for computing the weights with high
relative accuracy is proposed.

A different approach for computing nodes and weights of a GQR in O(n) oper-
ations has been introduced in [10] and is implemented in the Matlab package
Chebfun [15]. This method is based on approximations of the nodes and weights
that appear to be relatively accurate in most nodes but no proof of such a result is
given. For a very large number of nodes, this method is today the most efficient one
[14, 25].

https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html

Numerical Algorithms

The paper is organized as follows. The basic notation and definitions used in
the paper are listed in Section 2. In Section 3, the main features of the Golub and
Welsch algorithm are described. In Section 4, the proposed algorithm for comput-
ing the nodes of an n-point SGQR as the singular values of a bidiagonal matrix is
described. Different techniques for computing the weights of an n-point GQR are
described in Section 5. In Section 6 we show the elementwise relative accuracy of
the weights computed by our new method and in Section 7, we give a number of
numerical examples confirming our stability results. We then end with a section of
concluding remarks.

2 Notation and definitions

Matrices are denoted by upper-case letters X, Y, . . . , �, �, . . . ; vectors with
bold lower-case letters x, y, . . . , λ, θ , . . . ; scalars with lower-case letters
x, y, . . . , λ, θ, The element i, j of a matrix A is denoted by aij and the ith
element of a vector x is denoted by xi .

Submatrices are denoted by the colon notation of Matlab: A(i : j, k : l) denotes
the submatrix of A formed by the intersection of rows i to j and columns k to l, and
A(i : j, :) and A(:, k : l) denote the rows of A from i to j and the columns of A and
from k to l, respectively. Sometimes, A(i : j, k : l) is also denoted by Ai:j,k:l and
x(i : j) by xi:j .

The identity matrix of order n is denoted by In, and its ith column, i = 1, . . . , n,
i.e., the ith vector of the canonical basis of Rn, is denoted by ei . The notation �y�
stands for the largest integer not exceeding y ∈ R+.

Given a vector x ∈ R
n, then diag(x) is a diagonal matrix of order n, with the

elements of vector x on the main diagonal. Given a matrix A ∈ R
m×n, then diag(A)

is a column vector of length i = min(m, n), whose entries are those of the main
diagonal of A.

3 Computing the zeros of orthogonal polynomials

Let p�(x) = k�x
� + ∑�−1

j=0 cj x
j , � = 0, 1, . . . , be the sequence of orthonor-

mal polynomials with respect to a positive weight function ω(x) in the interval
[−τ, τ], τ > 0, i.e.,

∫ τ

−τ

pi(x)pj (x)ω(x)dx = δij , with δij =
{
1, if i = j,

0, if i �= j,

where k� is chosen to be positive. The polynomials p�(x) satisfy the following three-
term recurrence relation [23]

⎧⎪⎨
⎪⎩

p−1(x) = 0,

p0(x) = k0 = 1√
μ0

,

γ�+1p�+1(x) = (x − θ�)p�(x) − γ�p�−1(x), � ≥ 0,

(1)

Numerical Algorithms

where

μ0 =
∫ τ

−τ

ω(x)dx,

and

⎧⎨
⎩

γ0 = 0

γ� = k�/k�−1 > 0
, θ� =

∫ τ

−τ

xp2
�(x)ω(x)dx

∫ τ

−τ

p2
�(x)ω(x)dx

, � = 1, 2,

Using (1), we can write the n-step recurrence relation

Jp(x) = xp(x) − γnpn(x)en,

where

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ0 γ1
γ1 θ1 γ2

γ2
. . .

. . .
. . . θn−2 γn−1

γn−1 θn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, p(x) =

⎡
⎢⎢⎢⎢⎢⎣

p0(x)

p1(x)
...

pn−2(x)

pn−1(x)

⎤
⎥⎥⎥⎥⎥⎦
. (2)

The matrix J is called the Jacobi matrix [7]. The following theorem was shown in
[7, Th. 1.31].

Theorem 1 Let J = Q�QT be the spectral decomposition of J, where � ∈ R
n×n

is a diagonal matrix and

λ := diag(�) = [λ1, . . . , λn]
T , λ1 < λ2 < · · · < λn,

and Q ∈ R
n×n is an orthogonal matrix, i.e., QT Q = In. Then pn(λi) = 0, i =

1, . . . , n, and Q = V D, with

V = [p(λ1), p(λ2), . . . , p(λn)] , D =

⎡
⎢⎢⎢⎣

ω̂1
ω̂2

. . .
ω̂n

⎤
⎥⎥⎥⎦ , (3)

and

ω̂i = 1

‖p(λi)‖2
= 1√∑n−1

�=0 p2
�(λi)

.

The eigenvalues λi are the nodes of the GQR and the corresponding weights ωi

are defined as (see [23])

ωi := ωi(λi) = ω̂2
i = 1∑n−1

�=0 p2
�(λi)

, i = 1, . . . , n. (4)

Hence, the weights ωi of the GQR can be determined by (4), computing p�(λi), � =
0, 1, . . . , n − 1, i = 1, . . . , n, either by means of the three-term recurrence relation
(1), as done in [19], or by computing the whole eigenvector matrix Q of J in (3).

Numerical Algorithms

Both approaches will be described in Section 5, and their stability analysis will be
provided as well.

As shown in [26], the weights can be also obtained by the first row of Q as

ωi = μ0q
2
1,i , i = 1, . . . , n. (5)

The Golub and Welsch algorithm [12], relying on a modification of the QR-method
[4], yields the nodes and the weights of the GQR by computing only the eigenvalues
of the Jacobi matrix and the first row of the associated eigenvector matrix.

3.1 Computing the zeros of orthogonal polynomials for a symmetric weight
function

For a weight function ω(x), symmetric with respect to the origin, the diagonal
elements θ�, � = 1, . . . , n, in (2) become zero since, as shown in [7, Th. 1.17],

p�(−x) = (−1)�p�(x), � = 0, 1, 2, . . . , (6)

and, thus, xp2
�(x) is an odd function in [−τ, τ]. Therefore, the Jacobi matrix in (2)

becomes

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 γ1
γ1 0 γ2

γ2
. . .

. . .
. . . 0 γn−1

γn−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (7)

Furthermore, by (6), if λi, i = 1, . . . , n, is a zero of p�, � ≥ 0, i.e., p�(λi) = 0,
then λn−i+1 = −λi is also a zero of p�, since

p�(λn−i+1) = p�(−λi) = (−1)�p�(λi) = 0.

As a consequence,

ωi = 1∑n−1
�=0 p2

�(λi)
= 1∑n−1

�=0 p2
�(λn−i+1)

= ωn−i+1, i = 1, . . . , n.

Therefore, for weight functions symmetric with respect to the origin, it is sufficient
to compute only the positive nodes and the corresponding weights.

Without loss of generality, in the sequel we will consider the following reordering
of λ, � and V , i.e.,

λ := λ(j), � := �(j , j), V := V (:, j),

where j is the following permutation of the index set i = [1, . . . , n]

j =
⎧⎨
⎩
[
n, n − 1, . . . , n

2 + 1, 1, 2, . . . , n
2

]
, if n even,

[
n, n − 1, . . . , n+3

2 , 1, 2, . . . , n−1
2 , n+1

2

]
, if n odd.

Hence, the first �n
2 � entries of λ are the strictly positive eigenvalues of J in a

decreasing order, the second �n
2 � entries of λ are the negative eigenvalues of J in an

increasing order, and, if n is odd, the last entry of λ is the zero eigenvalue.

Numerical Algorithms

4 Computation of the nodes and the weights of a symmetric
Gaussian quadrature rule

In this section we propose an alternative method to compute the positive nodes and
corresponding weights of a SGQR. We will need the following Lemma [11].

Lemma 1 Let A ∈ R
m×n, m ≤ n, and

S1 = AT A, S2 = AAT .

Let A = U�V T be the singular value decomposition of A, with U ∈ R
m×m, V ∈

R
n×n orthogonal, and

� = [diag(σ1, σ2, . . . , σm) 0m,n−m

] ∈ R
m×n,

where σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0. Then

AT A = V diag(σ 2
1 , σ 2

2 , . . . , σ 2
m, 0, . . . , 0︸ ︷︷ ︸

n−m

)V T ,

AAT = Udiag(σ 2
1 , σ 2

2 , . . . , σ 2
m)UT .

Moreover, if

V = [V1︸︷︷︸
m

V2︸︷︷︸
n−m

],

then

[
A

AT

]
= W�WT ,

with

W = 1√
2

[
U U 0
V1 −V1

√
2V2

]

and

� = diag(σ1, σ2, . . . , σm, −σ1, −σ2, . . . ,−σm, 0, . . . , 0︸ ︷︷ ︸
n−m

).

The following Corollary holds.

Numerical Algorithms

Corollary 1 Let Bn be the bidiagonal matrix

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

γ1 γ2

γ3 γ4

γ5
. . .
. . . γn−2

γn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
n
2× n

2 if n even,

⎡
⎢⎢⎢⎢⎢⎢⎣

γ1 γ2

γ3 γ4

γ5
. . .
. . . γn−3

γn−2 γn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
n−1
2 × n+1

2 if n odd,

with singular value decomposition

B = U�V T ,

where U and V are orthogonal, σ = [σ1, σ2, . . . , σ� n
2 �
]T
, and

{
U ∈ R

n
2× n

2 , � = diag(σ) ∈ R
n
2× n

2 , V ∈ R
n
2× n

2 , if n even,

U ∈ R
n−1
2 × n−1

2 , � = [diag(σ), 0
] ∈ R

n−1
2 × n+1

2 , V ∈ R
n+1
2 × n+1

2 , if n odd,

and, if n is odd, V = [V1 v2
]
, V1 ∈ R

n+1
2 × n−1

2 , v2 ∈ R
n+1
2 . Then

J = Q�QT

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2P

T

[
U U

V −V

]
�̂

[
U U

V −V

]T
P, if n even,

1
2P

T

[
U U

V1 −V1
√
2v2

]
�̂

[
U U 0
V1 −V1

√
2v2

]T
P, if n odd,

(8)

and �̂ is the square diagonal matrix

�̂ =
{
diag ([σ ; −σ]) if n even,
diag ([σ ; −σ ; 0]) , if n odd,

where P := In(j̃ , :) is the even-odd permutation matrix corresponding to the even-
odd permutation of the index set i = [1, . . . , n], i.e.,

j̃ =
{ [

2, 4, . . . , n − 2, n, 1, 3, . . . , n − 3, n − 1
]T

if n even,[
2, 4, . . . , n − 3, n − 1, 1, 3, . . . , n − 2, n

]T
if n odd.

Proof Obviously, we have

and (8) follows then straightforwardly from Lemma 1.

Numerical Algorithms

Taking the even-odd structure of P into account, we have eT
1 P T = eT

� n
2 �+1 and

thus the first row of Q is given by

eT
1 Q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2
eT
1 P T

[
U U

V −V

]
= 1√

2

[
V (1, :) −V (1, :)] , if n even,

1√
2
eT
1 P T

[
U U 0
V1 −V1

√
2v2

]
=
[

V1(1,:)√
2

, −V1(1,:)√
2

, v2(1)
]
, if n odd,

and, hence, by (4) and (5), the weights ωi are given by

{
ωi = μ0

2 [V (1, i)]2, i = 1, . . . , �n
2 �,

ωn−i+1 = ωi,

and, for n odd,

ωn+1
2

= μ0

2

[
V

(
1,

n + 1

2

)]2
.

Remark 1 Transforming the problem of computing the eigenvalues of J into the
problem of computing the singular values of the nonnegative bidiagonal matrix B,

allows us to compute the nodes of a SGQR with high relative accuracy by using the
algorithm described in [5, 6] and implemented in LAPACK (subroutine dlasq1.f)
[1]. Note that dlasq1.f computes the singular values of square bidiagonal matrices
and for the n-point SGQR with odd n, the bidiagonal matrix B is rectangular of
size �n

2 � × �n+1
2 �. But one step of the QR iteration with zero shift, implemented as

described in [5], is sufficient to transform B to
[
B̂ 0

]
, with B̂ square bidiagonal of

order �n
2 � to high relative accuracy.

On the other hand, the componentwise stability of computing ωi, i = 1, . . . , n,

from the first row of either Q or V , is not ensured if these matrices are computed
by the QR algorithm. Indeed, these orthogonal matrices are computed in a normwise
backward stable manner but not necessarily in a componentwise stable manner [27,
p. 236], [16]. In Section 7, we show in the example of Fig. 2 that using the eigenvalue
decomposition of J for computing the sequence (10), the computation of the small
weights is not elementwise stable even though the eigenvectors are computed in a
normwise backward stable manner [16]. For the sake of completeness, it is worth
mentioning that a similar behavior is not observed for other classes of orthogonal
polynomials, such as the Jacobi ones, since the weights do not have such a large
range of values and, thus, the computation of GQR for such weights with the function
gauss is as accurate as the method proposed in this paper.

Numerical Algorithms

5 Computation of the weights of the Gaussian quadrature rules

In this section we consider different techniques for computing the weights ωi, i =
1, . . . , n, of an n-point GQR, relying only on the knowledge of the corresponding
nodes λi for nonsymmetric weight functions. At the end of the section we will shortly
describe how these techniques can be adapted to symmetric weight functions. As
pointed out in Section 3, the nodes and the weights of the n-point Gaussian rule asso-
ciated with a weight function ω(x), are the zeros λi, i = 1, . . . , n, of the orthogonal
polynomial pn(x) of degree n and the corresponding weights are

ωi = 1∑n−1
�=0 p2

�(λi)
, i = 1, . . . , n. (9)

The following methods have been proposed in the literature for computing the
sequence

p�(λi), � = 0, 1, . . . , n − 1, (10)

1. the eigenvalue decomposition [11];
2. the forward three-term recurrence relation (FTTR) [8];
3. the backward three-term recurrence relation (BTTR) [20, 24].

The computation of the weights by means of the FTTR was considered in [19]
without providing any stability analysis.

Given p̃0(λ̄) and a zero λ̄ of pn(λ), we denote by p̃1(λ̄), p̃2(λ̄), . . . , p̃n−1(λ̄),

the sequence computed by means of (1) in a forward manner, i.e., by FTTR. Anal-
ogously, since pn(λ̄) = 0, we can set an arbitrary value for p̂n−1(λ̄), and denote
by p̂n−2(λ̄), p̂n−2(λ̄), . . . , p̂1(λ̄), p̂0(λ̄), the sequence computed using (1) in a back-
ward fashion, i.e., by BTTR. The latter procedure is often referred to as the Miller’s
backward recurrence algorithm [3, 8, 20] in the literature. It was originally proposed
by J.C.P. Miller for the computation of tables of the modified Bessel function [3, page
xvii].

The stability of the generic FTTR and BTTR, i.e., sequences generated by three-
term recurrence relations not linked to orthogonal polynomials, was analyzed in [8,
20, 24], and in these papers the preference went to the BTTR for stability purposes.

For the weight functions depending on the parameters α and β listed in Table 1, we
carried out extensive tests, choosing many different values of α and β, for computing
the sequences pj (λi), j = 0, 1, . . . , n − 1, by means of FTTR and BTTR. FTTR
works in an accurate way for some classes of weights and BTTRworks in an accurate
way for other classes of weights.

The results of these experiments are displayed in Table 1 in which we mention
“Ok” if the method computes the sequence in an accurate way for all the considered
values of α and β, and “ ” if the method fails to compute the sequence in an accu-
rate way for some values of α and β. In Fig. 1 (left) we show on a logarithmic scale,
the results obtained for the Hermite polynomials of degree j , j = 0, 1, . . . , 127, in
the largest zero of the Hermite polynomial of degree 128, with FTTR in extended
precision (128 digits), with FTTR in double precision and with BTTR in double preci-
sion. While the Hermite polynomials are accurately computed with FTTR, the results
obtained by BTTR after some steps diverge from the actual values. In this case we

Numerical Algorithms

Table 1 Success (“Ok”) and failure (“No”) results obtained by FTTR and BTTR when computing the
sequence of orthogonal polynomials associated to the weight ω, considering many different values of α

and β

report an “Ok” in column FTTR and a “ ” in column BTTR in Table 1. In Fig. 1
(right) we show the results for the Hahn polynomials of degree j = 0, 1, 2, ..., 127,
evaluated in the fourth smallest zero of the Hahn polynomial of degree 128, com-
puted in double precision with FTTR and BTTR, for α = β = −.5. In this case,
FTTR does not compute the sequence of Hahn polynomials in an accurate way, while
BTTR does. We thus report a “ ” in column FTTR and an “Ok” in column BTTR in
Table 1.

The Hahn polynomials in Table 1 are discrete orthogonal polynomials on
the discrete set of n points {0, 1, 2, ..., n − 1} with respect to the weight(
α+k

k

)(
β+n−1−k

n−1−k

)
, α, β > −1, k = 0, 1, 2, ..., n − 1.

Hence, since experimentally it is not clear which of FTTR and BTTR can be cho-
sen, we describe an algorithm, called LMV, that combines the FTTR and the BTTR
methods in order to compute the sequence (10) with high relative accuracy.

Fig. 1 Left: plot of the absolute values of the Hermite polynomials of degree j , j = 0, 1, . . . , 127,
evaluated in the largest zero of the Hermite polynomial of degree 128, and computed by FTTR in double
precision (denoted by “ ”), by BTTR in double precision (denoted by “ ”) and by gauss with extended
precision (128 digits) (denoted by “◦”). Right: plot of the absolute values of the Hahn polynomials of
degree j , j = 0, 1, . . . , 127, evaluated in the fourth smallest zero of the Hahn polynomial of degree 128,
and computed by FTTR in double precision (denoted by “ ”), by BTTR in double precision (denoted by
“ ”) and by gauss with extended precision (128 digits) (denoted by “◦”)

Numerical Algorithms

Let λ̄ be a zero of pn(x) and let us denote by p̃ and by p̂ the following vectors,
computed by FTTR and BTTR, respectively:

p̃ = 1√
μ0

1

p̃0(λ̄)

⎡
⎢⎢⎢⎢⎢⎣

p̃0(λ̄)

p̃1(λ̄)
...

p̃n−2(λ̄)

p̃n−1(λ̄)

⎤
⎥⎥⎥⎥⎥⎦

, p̂ = 1√
μ0

1

p̂0(λ̄)

⎡
⎢⎢⎢⎢⎢⎣

p̂0(λ̄)

p̂1(λ̄)
...

p̂n−2(λ̄)

p̂n−1(λ̄)

⎤
⎥⎥⎥⎥⎥⎦
.

The following theorem emphasizes the relationship between the sequence p̃j (λ̄),

j = 1, . . . , n − 1, computed by (1) and the columns of the Q̃ factor of the QR

factorization of J − λ̄In.

Theorem 2 Let λ̄ be a zero of pn(x), and let G̃1, G̃2, . . . , G̃n−1 be the sequence of
Givens rotations

G̃i =

⎡
⎢⎢⎣

Ii−1
c̃i s̃i

−s̃i c̃i

In−i−1

⎤
⎥⎥⎦ , i = 1, . . . , n − 1, (11)

such that
G̃n−1G̃n−2 · · · G̃2G̃1(J − λ̄In) = R,

with R ∈ R
n×n upper triangular. Let p̃0(λ̄), p̃1(λ̄), . . . , p̃n−2(λ̄), p̃n−1(λ̄) be the

sequence of orthogonal polynomials evaluated in λ̄ by means of the three-term
recurrence relation (1). Then

G̃T
1 G̃T

2 · · · G̃T
i ei+1 = ν̃i

⎡
⎢⎢⎢⎢⎢⎣

p̃0(λ̄)

p̃1(λ̄)
...

p̃i(λ̄)

on−i−1

⎤
⎥⎥⎥⎥⎥⎦

, i = 1, . . . , n − 1, (12)

with ν̃i ∈ R, ν̃i �= 0.

Proof We prove (12) by induction. Let p̃0(λ̄) = 1/
√

μ0. Then, by (1),

p̃1(λ̄) = λ̄p̃0(λ̄)

γ1
= 1√

μ0

λ̄

γ1
.

On the other hand,

c̃1 = −λ̄√
λ̄2 + γ 2

1

, s̃1 = γ1√
λ̄2 + γ 2

1

.

Therefore,

G̃T
1 e2 =

⎡
⎣ −s̃1

c̃1
on−2

⎤
⎦ = 1√

λ̄2 + γ 2
1

⎡
⎣ −γ1

−λ̄

on−2

⎤
⎦ = ν̃1

⎡
⎣ p̃0(λ̄)

p̃1(λ̄)

on−2

⎤
⎦ ,

Numerical Algorithms

with

ν̃1 = − γ1
√

μ0√
λ̄2 + γ 2

1

.

Let us suppose that (12) holds for i, 1 ≤ i < n and let us prove (12) for i + 1.
Observe that

G̃i · · · G̃2G̃1(J − λ̄In) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
. . .

. . .
. . .

× × ×
υi c̃iγi+1

γi+1 θi+2 − λ̄
. . .

. . .
. . . γn−1

γn−1 θn − λ̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

with υi = −s̃i c̃i−1γi + c̃i (θi+1λ̄). Moreover, by the induction hypothesis (12),

G̃T
1 · · · G̃T

i−1G̃
T
i ei+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)i
∏i

j=1 s̃j

(−1)i−1c̃1
∏i

j=2 s̃j

(−1)i−2c̃2
∏i

j=3 s̃j
...

c̃i−2s̃i−1s̃i
−c̃i−1s̃i

c̃i

on−i−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ν̃i

⎡
⎢⎢⎢⎢⎢⎣

p̃0(λ̄)

p̃1(λ̄)
...

p̃i(λ̄)

on−i−1

⎤
⎥⎥⎥⎥⎥⎦

, i = 1, . . . , n−1.

By (1) and the induction hypothesis (12),

p̃i+1(λ̄) = λ̄p̃i (λ̄) − γip̃i−1(λ̄)

γi+1
= λ̄c̃i + γi c̃i−1s̃i

ν̃iγi+1
.

On the other hand, from (13),

c̃i+1 = υi

ξi+1
= −s̃i c̃i−1γi − c̃i λ̄

ξi+1
and s̃i+1 = γi+1

ξi+1
,

with ξi+1 =
√

(−s̃i c̃i−1γi − c̃i λ̄)2 + γ 2
i+1. Hence,

p̃i+1(λ̄) = − 1

ν̃i

c̃i+1

s̃i+1
.

Numerical Algorithms

Therefore,

G̃T
1 · · · G̃T

i G̃T
i+1ei+2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)i+1
i+1∏
j=1

s̃j

(−1)i c̃1

i+1∏
j=2

s̃j

(−1)i−1c̃2

i+1∏
j=3

s̃j

...
c̃i−1s̃i s̃i+1
−c̃i s̃i+1

c̃i+1
on−i−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −s̃i+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)i
i∏

j=1

s̃j

(−1)i−1c̃1

i∏
j=2

s̃j

(−1)i−2c̃2

i−1∏
j=3

s̃j

...
−c̃i−1 s̃i

c̃i

− c̃i+1
s̃i+1

on−i−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ν̃i+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p̃0(λ̄)

p̃1(λ̄)

...
p̃i (λ̄)

p̃i+1(λ̄)

on−i−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

with ν̃i+1 = −s̃i+1ν̃i .

Remark 2 The matrix Q̃ = G̃T
1 · · · G̃T

n−2G̃
T
n−1 is the orthogonal upper Hessenberg

matrix

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̃1−s̃1c̃2 s̃1s̃2c̃3
. . . (−1)n−2c̃n−1

n−2∏
i=1

s̃i (−1)n−1
n−1∏
i=1

s̃i

s̃1 c̃1c̃2 −c̃1 s̃2c̃3
. . . (−1)n−3c̃1c̃n−1

n−2∏
i=2

s̃i (−1)n−2c̃1

n−1∏
i=2

s̃i

s̃2 c̃2c̃3
. . .

. . .
...

. . .
. . . −c̃n−3 s̃n−2c̃n−1 c̃n−3 s̃n−2s̃n−1

s̃n−2 c̃n−2c̃n−1 −c̃n−2 s̃n−1
s̃n−1 c̃n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

since J − λ̄In is a tridiagonal matrix. Therefore, by Theorem 2, the subvector made
by the first i entries of p(λ̄) is parallel to the vectors made by the first i entries of the
columns j of Q̃, with j ≥ i.

Theorem 3 shows the relationship between the sequence {p̂j (λ̄)}n−1
j=0 and the

columns of the factor Q̂ of the QL factorization of J − λ̄In. For the sake of brevity,
we omit the proof since it is very similar to the one of Theorem 2.

Numerical Algorithms

Theorem 3 Let λ̄ be a zero of pn(x), and let Ĝ1, Ĝ2, . . . , Ĝn−1 be the sequence of
Givens rotations

Ĝi =

⎡
⎢⎢⎣

In−i−1
ĉi ŝi

−ŝi ĉi

Ii−1

⎤
⎥⎥⎦ , i = 1, . . . , n − 1, (14)

such that

ĜT
n−1Ĝ

T
n−2 · · · ĜT

2 ĜT
1 (J − λ̄In) = L,

with L ∈ R
n×n lower triangular. Let p̂n−1(λ̄), p̂n−2(λ̄), . . . , p̂1(λ̄), p̂0(λ̄), be the

sequence evaluated in λ̄ by the three-term recurrence relation (1) in a backward
fashion, with p̂n−1(λ̄) fixed. Then

Ĝ1Ĝ2 · · · Ĝien−i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

on−i−1
ĉi

−ĉi−1ŝi
ĉi−2ŝi−1ŝi

...
(−1)i−2ĉ2

∏i
j=3 ŝj

(−1)i−1ĉ1
∏i

j=2 ŝj

(−1)i
∏i

j=1 ŝj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ν̂i

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

on−i−1

p̂n−i−1(λ̄)

p̂n−i−2(λ̄)
...

p̂n−2(λ̄)

p̂n−1(λ̄)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, . . . , n−1,

(15)
with ν̂i ∈ R, ν̂i �= 0.

Theorem 2 shows that the vector p̃, computed using FTTR, can also be obtained
by applying either one step of the implicit QR algorithm with shift λ̄ to J or comput-
ing the QR factorization of J − λ̄In, since the orthogonal matrices generated by both
methods are the same. The last column of the orthogonal matrices generated by both
methods will be parallel to p̃. Therefore, forward instability can occur in the compu-
tation of p̃ if premature convergence occurs in one step of the forward implicit QR

(FIQR) method with shift λ̄ to J [17, 21].
On the other hand, Theorem 3 shows that the vector p̂, computed applying BTTR,

can also be obtained applying either one step of the backward implicit QR algorithm
with shift λ̄ to J or computing the QL factorization of J − λ̄In. The first column
of the orthogonal matrices generated by both methods will be parallel to p̂. There-
fore, forward instability can occur in the computation of p̂ if premature convergence
occurs in one step of the backward implicit QL (BIQL) method with shift λ̄ to J [17,
21].

The premature convergence of the implicit QR method with shift λ̄ depends
on the distance between the eigenvalues of the consecutive matrices J1:i,1:i and
J1:i+1,1:i+1, i = 1, 2, . . . , n − 1. Hence, if λ

(i)
j , j = 1, . . . , i, and λ

(i+1)
j , j =

1, . . . , i + 1, are the eigenvalues of J1:i,1:i and J1:i+1,1:i+1, respectively, then, by the
Cauchy interlacing Theorem [22],

λ
(i+1)
1 < λ

(i)
1 < λ

(i+1)
2 < λ

(i)
2 < · · · < λ

(i+1)
i < λ

(i)
i < λ

(i+1)
i+1 .

Numerical Algorithms

If | λ
(i+1)
j − λ

(i)
j | and | λ

(i)
j − λ

(i+1)
j+1 |, j = 1, . . . , i, i = 1, . . . , n − 1, are suffi-

ciently large, then premature convergence does not occur in one step of the implicit
forward QR algorithm with shift λ̄ and, hence, FTTR computes the sequence (10)
accurately. This is the reason why FTTR computes the sequence (10) accurately for
the Chebyshev polynomials Tj (x) of the first kind, i.e., Jacobi polynomials associ-
ated with the weight 1√

1−x2
in the interval [−1, 1], since the distance of the zeros

of two consecutive polynomials Tj (x) an Tj+1(x) is of order O
(

1
j2

)
at least.

In [17, 18], an algorithm combining one step of FIQR and one step of BIQL with
shift λ̄ is described in order to compute the corresponding eigenvector. Therefore, the
eigenvector associated with λ̄ is computed combining the first j̄ − 1 Givens rotations
of FIQR with shift λ̄ and the first n − j̄ rotations of BIQL with shift λ̄. It is proven
that each eigenvector is computed accurately with O(n) floating point operations.
Once the eigenvector is computed, the weights are obtained by applying (9).

Following [17, 18], we now describe a recursive procedure to determine an interval
in which the index j̄ lies. Let us consider the sequence of Givens rotations G̃i ∈
R

n×n, i = 1, . . . , n − 1, defined in (11). It turns out that

G̃1G̃2 · · · G̃i p̃ = 1√
μ0

1

p̃0(λ̄)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0√∑i

�=1 p̃2
i (λ̄)

p̃i+1(λ̄)
...

p̃n−1(λ̄)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we compute the sequence of normalized vectors ṽi ∈ R
i , i = 1, . . . , n, in

the following way,
⎧⎨
⎩
ṽi = 1, i = 1,

wi = G̃T
1 G̃T

2 · · · G̃T
i−1ei , ṽi = wi (1 : i) =

[
s̃i−1ṽi−1

c̃i−1

]
, i = 2, . . . , n,

and the Rayleigh quotients λ̃(i) = ṽT
i J1:i,1:i ṽi , for i = 2, . . . , n, as follows,

with c̃0 = 1, λ̃(1) = θ1.

Numerical Algorithms

If premature convergence occurs at step j̃ of FIQR with shift λ̄, then ṽj̃ is the
eigenvector of J1:j̃ associated with the eigenvalue λ̄ ≈ λ̃(j̃) = ṽT

j̃ J1:j̃ ,1:j̃ ṽj̃ . It then
follows that j̄ ≤ j̃ (see [17, 18]).

Similarly, let Ĝi ∈ R
n×n, i = 1, . . . , n be the sequence of Givens rotations

defined in (11). Then

ĜT
1 ĜT

2 · · · ĜT
i = 1√

μ0

1

p̂0(λ̄)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̂0(λ̄)
...

p̂n−i−2(λ̄)√∑i+1
�=1 p̂2

n−i (λ̄)

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, . . . , n − 1.

We construct the sequence of vectors v̂i ∈ R
i , i = 1, . . . , n, as follows,

v̂i = ŵi (n − i + 1 : n) =
[

ĉi−1
ŝi−1v̂i−1

]
, i = 2, . . . , n,

where ŵi = Ĝ1Ĝ2 · · · Ĝi−1en−i+1, and v̂1 ≡ 1, and the Rayleigh quotients λ̂(i) =
v̂T
i Jn−i+1:n,n−i+1:nv̂i , as,

with λ̂(1) = θn and ĉ0 = 1.
It turns out that if premature convergence occurs at step ĵ , 1 ≤ ĵ ≤ n − 1, in

IBIQL with shift λ̄, then v̂j̃ is the eigenvector of Jn−j̃ :n,n−j̃ :n associated with the
eigenvalue λ̄ ≈ λ̃(j̃) = ṽT

j̃ J1:j̃ ṽj̃ .
Since J is an irreducible tridiagonal matrix, it was shown in [17, 18, 21] that if

premature converge occurs at step j̃ of FIQR with shift λ̄, with 1 ≤ ĵ ≤ n − 1,
then premature convergence can only occur at the step ĵ of BIQL with shift λ̄, with
1 ≤ ĵ ≤ j̃ .

This suggests the Algorithm 1, written in a Matlab-style, to compute the interval
[ĵ , j̃] in which j̄ lies.

Numerical Algorithms

Once the interval [ĵ , j̃] is determined, the index j̄ is chosen as the index with the
maximum element in absolute value in the subvector p̃ĵ :j̃ [17, 18].

Remark 3 Given λ̄, a similar recursion holds for estimating if premature convergence
occurs in a singular value of the bidiagonal matrix B.

Remark 4 We have described in Section 4 that the sequence p�(λi), � =
0, 1, . . . , n − 1, can be retrieved from the eigenvector of J associated with λi . Since

Numerical Algorithms

the eigenvalue decomposition of J can be obtained from the singular value decom-
position of B, then, the eigenvector sequences can be retrieved in a similar way
from the left and right singular vectors associated with the singular value λi of the
corresponding bidiagonal matrix. For the sake of brevity, we omit the details.

6 Stability of the eigenvectors and weights

In this section we analyze the sensitivity of the calculation of the eigenvector of the
tridiagonal matrix J and the sensitivity of the corresponding weight of the GQR,
for a particular eigenvalue λj . Let us define the shifted matrix as T := J − λj In,
where T is tridiagonal and unreduced, let p be the corresponding vector of orthogonal
polynomials evaluated at λj , i.e., T p = 0, and let ω be the corresponding weight,
i.e., ω := 1/(pT p). Let us now consider any nonzero element pi �= 0 of p. We then
partition the rows of the matrix T as follows:

T =
⎡
⎣ T1:i−1,:

ti
Ti+1:n,:

⎤
⎦ ,

implying that T1:0 and Tn+1:n,: are void matrices. Then the equation pT T = 0 and the
fact that pi �= 0, implies that the row vector ti is in the row space of the remaining
rows of T . If we then construct the matrix

T(i) :=
⎡
⎣ T1:i−1,:

0
Ti+1:n,:

⎤
⎦ = (In − eieT

i)T .

then the two systems of equations T p = 0 and T(i)p = 0 have the same one
dimensional set of solutions, i.e., their kernels are the same:

ker T = ker T(i) = Im p.

We now compare their sensitivities with respect to perturbations of the data. Let us
denote the normalized vector p/‖p‖2 by q, which is thus the normalized eigenvector
of J . It follows that qi �= 0 and

M

⎡
⎣ T1:i−1,:

ti
Ti+1:n,:

⎤
⎦ =

⎡
⎣ T1:i−1,:

0
Ti+1:n,:

⎤
⎦ , with

⎡
⎣ q1:i−1

qi

qi+1:n

⎤
⎦ := q, M :=

⎡
⎣ Ii−1 0 0
qT
1:i−1 qi qT

i+1:n
0 0 In−1

⎤
⎦ .

This then yields the following theorem.

Theorem 4 Let

T(i) := (In − eieT
i)T , and q̂ := (In − eieT

i)q =
⎡
⎣ q1;i−1

0
qi+1:n

⎤
⎦ ,

then for any qi �= 0, we have

σn−1(T) | qi | /
√
2 < σn−1(T(i)) ≤ σn−1(T) (16)

Numerical Algorithms

and for any | qi |= ‖q‖∞, or, equivalently, | pi |= ‖p‖∞, we have

σn−1(T)/
√
2n < σn−1(T(i)) ≤ σn−1(T). (17)

Proof The Cauchy inequalities for singular values yields σn−1(T(i)) ≤ σn−1(T)

since we deleted one row of the matrix T to obtain T(i). Let Q ∈ R
n×(n−1) be the

orthogonal complement of q, i.e., QT Q = In−1 and QT q = 0. Then

MT Q = T(i)Q, σn−1(T) = σmin(T Q), σn−1(T(i)) = σmin(T(i)Q).

Let v ∈ R
n−1 be such that ‖v‖2 = 1, and ‖MT Qv‖2 = σmin(MT Q) = σmin(T(i)Q).

We then have ‖MT Qv‖2 ≥ σmin(M)‖T Qv‖2 ≥ σmin(M)σmin(T Q), which implies

σmin(M).σmin(T Q) ≤ σmin(T(i)Q).

Moreover,

MMT = I + ei q̂
T + q̂eT

i ,

and it has been shown in [2, Thm 3.6] that

σmin(M) =
√
1 − ‖q̂‖2 =| qi | /

√
1 + ‖q̂‖2 >| qi | /

√
2.

Putting this together yields (16). The inequalities (17) for | qi |= ‖q‖∞ then follow
from | qi |≥ 1/

√
n.

Let us denote by pf l the approximation of the vector p computed by LMV, and
let us look at how pf l is constructed from the matrix equation T(i)p = 0 and show
that it is backward stable in the sense that there exists a perturbation � such that the
computed vector pf l satisfies exactly the equation

(T(i) + �)pf l = 0, ‖�‖2 ≤ O(εM)‖T(i)‖2, (18)

where εM is the machine precision of the computer used. Once the index i has been
chosen, the LMV method computes the vector shared by the kernels of T1:i−1,: and
Ti+1:n. Basis vectors for these kernels are respectively given by

α

⎡
⎣ p̃1:i−1

p̃i

x̃

⎤
⎦ and β

⎡
⎣ x̂

p̂i

p̂i+1:n

⎤
⎦ ,

where x̃ and x̂ are arbitrary. In order to construct a common vector in the two kernels,
we impose β = αp̃i/p̂i , and then choose α such that the common vector corresponds
to the initialization p̃0(λj) = 1/

√
μ0. The subvectors

α

[
p̃1:i−1

p̃i

]
and β

[
p̂i

p̂i+1:n

]
,

are computed by a forward and backward recurrence using the three-term recurrence
of the tridiagonal matrix T . After fixing the starting values in these recurrences, they
each can be interpreted as a back substitution of a triangular system of equations.
This was analyzed in depth in [16, Ch. 8], from which it follows that the computed

Numerical Algorithms

vectors satisfy exactly

(T̃1:i−1,: + �̃)

⎡
⎣ αp̃1:i−1

αp̃i

0

⎤
⎦ = 0, and (T̂i+1:n,: + �̂)

⎡
⎣ 0

βp̂i

βp̂i+1:n

⎤
⎦ = 0,

where ζn := nu/(1 − nu)1 and �̃ and �̂ satisfy the elementwise bounds

| �̃ |≤ ζ2 | T̃1:i−1,: | and | �̂ |≤ ζ2 | T̂i+1:n,: | .
Moreover, the above bounds are independent of the scaling factors α and β. Putting
this together shows that the proposed method constructs the computed vector pf l that
satisfies exactly the perturbed system of equations

(
T(i) + �

)
pf l = 0, where pf l :=

⎡
⎣ p̃1:i−1

p̃i

p̂i+1:n

⎤
⎦ , � :=

⎡
⎣ �̃

0
�̂

⎤
⎦ , |� |≤ ζ2 |T(i) | .

(19)
This finally leads to the following theorem.

Theorem 5 The computed quantities pf l and ωf l := f l(1/pT
f lpf l), obtained by the

LMV algorithm with | pi |= ‖p‖∞, satisfy the bounds

‖pf l − p‖2/‖pf l‖2 ≤ O(εM)
maxi | λi |

mini,i �=j (| λi − λj |) ,
and

| ωf l − ω | / | ω |≤ O(εM)
maxi | λi |

mini,i �=j (| λi − λj |) ,
which implies normwise forward stability for p and forward stability for the corre-
sponding weight ω.

Proof It follows from the compatible equations T(i)p = 0 and (T(i) +�)pf l = 0 that

‖pf l − p‖2 ≤ ‖�‖2‖pf l‖2/σn−1(T(i)).

Since � is tridiagonal and elementwise bounded by ζ2‖T ‖2 it follows that ‖�‖2 ≤
3ζ2‖T ‖2. Using this and the bound (17) then implies that

‖p − pf l‖2/‖pf l‖2 ≤ 3ζ2
√
2n‖T ‖2/σn−1(T) = O(εM)

maxi | λi |
mini,i �=j (| λi − λj |) .

(20)
For bounding the relative error in ω, we make use of the relative perturbation theory
of norms and inverses, as developed in [16, Chap 3]:

| f l(pT p) − pT p |< ζn | pT p |, | f l(1/a) − 1/a |< ζ1 | 1/a |,
which shows that both functions are forward stable in a relative sense. Combining
this with the bound (20) yields a similar bound for ω.

1The quantity ζn is of the order of the unit round-off u := 1
2 εM and corresponds to n rounding errors of a

single scalar operation, and follows from the fact that the triangular systems are banded.

Numerical Algorithms

We point out that the stability result for the eigenvector is similar to what one has
for the eigendecomposition of the matrix J , since it is inversely proportional to the
smallest nonzero singular value of T , i.e., to the smallest gap between λj and the
remaining eigenvalues. The sensitivity of each weight has this same inverse factor,
but it has, except for this factor, a forward error that is stable in a relative sense. This
is a strong property that is not shared by the eigenvalue method.

7 Numerical examples

In this section we compare the computation of the nodes and weights of n-point
GQRs obtained by the proposed method, called LMV, to gauss, the Matlab func-
tion available in [9] and to the methods proposed in [19]. All the experiments were
performed in Matlab ver. R2020b. In [19], the authors show that the positive
nodes and the corresponding weights of a GQR associated with a symmetric weight
function can be retrieved from the eigendecomposition of a tridiagonal matrix J� n

2 �
of order �n

2 �, providing the Matlab functions displayed in Table 2.
In the first and second example these methods are used to compute n-point GQRs

corresponding to the Chebyshev weights of first and second kind, respectively, since
their nodes and weights are known. In the third example the proposed method is
compared to the function gauss in computing an integral on the whole real line.

Example 1 The nodes of the n-point GQR associated with the Chebyshev weight of
the first kind,

w(x) = 1√
1 − x2

,

are xj = cos((2j−1)π
2n), j = 1, . . . , n, the zeros of Tn(x), the Chebyshev polynomial

of the first kind of degree n. Moreover, the weights are wj = π/n, j = 1, . . . , n.
The maxima of the relative errors of the nodes computed by the considered numerical
methods

max
j

| λj − xj |
| xj |

Table 2 Numerical methods for computing the nodes and the weights of GQRs associated with symmetric
weight functions proposed in [19]

SymmAG gauss applied to J� n
2 �

SymmAGWo Optimized Golub and Welsch algorithm applied to J� n
2 �

SymmAw Matlab’s eig for the eigenvalues of J� n
2 � and the three-term recurrence of the

polynomials for the weights

SymmMGWo Optimized Golub and Welsch algorithm applied to the reduced matrix J� n
2 �

SymmMw eig for the eigenvalues J� n
2 � and the three-term recurrence of the

polynomials for the weights

Numerical Algorithms

are reported in Table 3, while the maxima of the relative errors of the computed nodes

max
j

| wj − ωj |
| wj |

are reported in Table 4.
In all the cases, the relative errors of the nodes and weights computed by the

proposed method are comparable to those of the results yielded by the algorithms
proposed in [19].

Example 2 The nodes of the n-point GQR associated with the Chebyshev weight of
the second kind,

w(x) =
√
1 − x2,

are xj = cos(π
n+1), j = 1, . . . , n, the zeros of Un(x), the Chebyshev polynomial

of the second kind of degree n. Moreover, the weights are wj = (1 − x2
j) π

n+1 , j =
1, . . . , n. The maxima of the relative errors of the nodes computed by the considered
numerical methods are reported in Table 5 while the maxima of the relative errors of
the computed nodes are reported in Table 6.

In all the cases, the relative errors of the nodes and weights computed by the pro-
posed method are smaller than those of the results yielded by the algorithms proposed
in [19].

Example 3 In this example we consider a GQR for integrals on the whole real line
with the Hermite weight ω(x) = e−x2

∫ ∞

−∞
ω(x)f (x)dx =

n∑
j=1

ωjf (λj) + En(f).

Table 3 Maxima of the relative errors of the computed nodes for n-point GQRs associated with the
Chebyshev weight of the first kind w(x) = (1 − x2)−1/2. For each n, the smallest error is displayed in
boldface

maxj
|λj −xj |

|xj |

n LMV SymmAG SymmAGWo SymmAw SymmMGWo SymmMw gauss

32 1.97e-15 6.64e-15 1.03e-14 1.55e-15 1.03e-14 1.55e-15 8.63e-16

64 8.11e-16 2.58e-14 2.20e-14 6.07e-15 2.20e-14 6.07e-15 7.91e-15

128 4.14e-15 2.04e-14 5.95e-14 1.72e-13 5.95e-14 1.72e-13 1.51e-14

256 6.21e-15 3.59e-13 4.39e-13 1.89e-13 4.39e-13 1.89e-13 2.64e-14

512 5.27e-14 1.97e-12 3.71e-12 1.17e-12 3.71e-12 1.17e-12 1.62e-14

1024 2.26e-14 9.26e-12 1.98e-12 3.67e-11 1.98e-12 3.67e-11 1.40e-13

2048 1.85e-13 3.91e-11 6.33e-11 1.35e-10 6.33e-11 1.35e-10 1.08e-13

Numerical Algorithms

Table 4 Maxima of the relative errors of the computed weights for n-point GQRs associated with the
Chebyshev weight of the first kind w(x) = (1 − x2)−1/2. For each n, the smallest error is displayed in
boldface

maxj
|wj −ωj |

|wj |

n LMV SymmAG SymmAGWo SymmAw SymmMGWo SymmMw gauss

32 4.12e-14 1.73e-14 2.37e-14 4.55e-14 2.40e-14 4.55e-14 1.99e-14

64 5.13e-14 5.20e-14 8.34e-14 1.90e-13 8.35e-14 1.90e-13 4.21e-14

128 1.33e-12 6.26e-14 4.43e-13 2.24e-13 4.43e-13 2.24e-13 9.96e-14

256 3.40e-12 1.33e-13 3.15e-12 4.44e-13 3.15e-12 4.44e-13 6.66e-13

512 5.78e-12 1.45e-12 5.36e-11 4.93e-12 5.36e-11 4.93e-12 5.58e-13

1024 6.28e-12 1.54e-11 6.98e-11 4.94e-11 6.98e-11 4.94e-11 1.15e-11

2048 9.16e-11 4.88e-11 1.48e-09 1.75e-10 1.48e-09 1.75e-10 6.08e-11

We computed the Hermite weights, for different values of n, with the following
three different methods:

• the function gauss [9], computed in double precision.
• the function gauss [9], computed in variable precision with 128 digits; these

values can therefore be considered as exact values for the weights.
• the proposed method, called LMV.

In Fig. 2 (top) we plotted on a logarithmic scale the absolute values of the Her-
mite polynomials of degree j = 0, 1, . . . , 127, evaluated in the largest zeros of
the Hermite polynomial of degree 128, computed by the function gauss in dou-
ble and extended precision (128 digits) and by the proposed method in double
precision. In Fig. 2 (bottom), we show the componentwise relative errors of each

weight erel(ω
g
j) := |ωg

j −ωex
j |

|ωex
j | , computed with gauss (in “ ”), and erel(ω

LMV
j) :=

Table 5 Maxima of the relative errors of the computed nodes for n-point GQRs associated with the
Chebyshev weight of second kind w(x) = (1 − x2)1/2. For each n, the smallest error is displayed in
boldface

maxj
|λj −xj |

|xj |

n LMV SymmAG SymmAGWo SymmAw SymmMGWo SymmMw gauss

32 2.04e-15 6.12e-15 6.27e-15 5.10e-15 6.27e-15 5.10e-15 1.60e-15

64 5.64e-14 1.78e-14 8.62e-14 3.55e-14 8.62e-14 3.55e-14 2.88e-13

128 9.83e-15 1.45e-13 6.52e-14 7.18e-14 6.52e-14 7.18e-14 2.05e-14

256 1.70e-14 6.20e-13 9.67e-13 1.69e-12 9.67e-13 1.69e-12 4.11e-14

512 2.01e-14 2.55e-12 1.18e-12 1.16e-12 1.18e-12 1.16e-12 7.25e-14

1024 9.40e-14 1.02e-11 1.83e-12 1.75e-11 1.83e-12 1.75e-11 1.86e-13

2048 3.43e-14 4.15e-11 5.27e-11 4.35e-11 5.27e-11 4.35e-11 1.94e-13

Numerical Algorithms

Table 6 Maxima of the relative errors of the computed weights for n-point GQRs associated with the
Chebyshev weight of second kind w(x) = (1 − x2)1/2. For each n, the smallest error is displayed in
boldface

maxj
|wj −ωj |

|wj |

n LMV SymmAG SymmAGWo SymmAw SymmMGWo SymmMw gauss

32 9.41e-15 1.53e-14 2.06e-14 7.11e-15 2.03e-14 7.11e-15 2.38e-14

64 1.80e-13 4.13e-14 1.31e-13 5.04e-14 1.31e-13 5.04e-14 2.43e-13

128 5.60e-13 8.57e-14 3.02e-13 4.91e-13 3.02e-13 4.91e-13 4.68e-13

256 2.52e-12 2.41e-13 3.81e-12 1.41e-12 3.81e-12 1.41e-12 6.59e-13

512 2.00e-12 2.44e-12 5.02e-12 7.16e-12 5.02e-12 7.16e-12 6.35e-12

1024 9.68e-12 3.48e-12 6.28e-11 2.01e-11 6.28e-11 2.01e-11 1.09e-11

2048 5.59e-11 1.78e-11 1.45e-10 6.59e-11 1.45e-10 6.59e-11 2.21e-11

0 20 40 60 80 100 120 140
10-120

10-100

10-80

10-60

10-40

10-20

100 Hermite weights

vpa(LMV),128)
LMV
gauss

041021001080604020
10-20

10-10

100

1010

1020

1030

1040

1050

M

rel_err(LMV)
rel_err(gauss)

Fig. 2 Top: Plot of the Hermite weights for n = 128, computed with the function gauss in double
precision (denoted by “ ”) and in extended precision with 128 digits (denoted by “◦”), and computed
by the function LMV (denoted by “ ”). Bottom: Plot of the componentwise relative errors of each weight
erel (ω

g
j), computed with gauss (in “ ”), and erel (ω

LMV
j), computed with the new method LMV (in “ ”).

The corresponding relative error estimate eest (ω
LMV
j) for each weight computed with the method LMV is

also given in “◦”

Numerical Algorithms

Table 7 Approximation of the integral (21) obtained by an n-point GQR computed with the proposed
method (second column) and with the function gauss (third column), for different values of n

I(−0.8, 20) =7.259087158081444e-02

n LMV gauss

16 7.086371480543081e-02 7.086371480542994e-02

32 7.258786172774918e-02 7.258786171871633e-02

64 7.259087115270522e-02 7.259907682924828e-02

128 7.259087158153937e-02 5.138844904420384e+22

256 7.259087158081003e-02 3.951943223796702e+75

|ωLMV
j −ωex

j |
|ωex

j | , computed with the new method LMV (in “ ”). We also show the cor-

responding relative error estimate of each weight eest (ω
LMV
j) := εM maxi |λi |

mini,i �=j |λi−λj | (in
“◦”). We observe that the Hermite weights corresponding to large nodes are very tiny
and gauss, which is based on the QR method, computes them with only normwise
backward accuracy, but their elementwise relative forward error can be quite bad. On
the other hand, LMV computes them with a relative forward error that is component-
wise of the order of the machine precision, as predicted by our analysis in Section 6,
and the estimated bounds of Theorem 5 are quite accurate.

Hence, integrals can not be approximated accurately with the nodes and weights
provided by gauss if f (x) ∼ ecx2 , 1 − ε ≤ c < 1, with ε > 0, small enough.

Let us now consider the integral [13]

I(a, b) =
∫ ∞

−∞
e
−(1+a)x2− b

x2 dx =
√

π

1 + a
e−2

√
(1+a)b, a > −1, b > 0, (21)

that can be rewritten as

I(a, b) =
∫ ∞

−∞
e−x2e

−ax2− b

x2 dx =
∫ ∞

−∞
ω(x)e

−ax2− b

x2 dx.

If a is close to −1, then the n-point GQR computed with gauss blows up as n

increases. In Table 7 the approximation of the integral with GQR computed with
the proposed method and with the function gauss are reported, for a = −0.8 and
b = 20. The correct digits are highlighted in boldface.

8 Conclusions

The nodes and the weights of n-point Gaussian quadrature rules are computed from
the eigenvalue decomposition of a tridiagonal matrix of order n by the Golub and
Welsch algorithm. In case the weight function is symmetric, Meurant and Sommariva
showed that the same information can be fetched from a tridiagonal matrix of order
�n
2 �, proposing different algorithms.

Numerical Algorithms

In this paper it is shown that, for symmetric weight functions, the positive nodes
and the corresponding weights can be computed from a bidiagonal matrix with pos-
itive entries of size �n

2 � × �n+1
2 �. Therefore the nodes can be computed with high

relative accuracy by an algorithm proposed by Demmel and Kahan. Moreover, the
stability of different methods for computing the weights is analyzed, proposing an
algorithm for computing them with relative accuracy of the order of the machine
precision. The numerical experiments confirm the effectiveness of the proposed
approach.

Acknowledgements This work was supported partly by the Short Term Mobility program 2021 of Con-
siglio Nazionale delle Ricerche and partly by Gruppo Nazionale Calcolo Scientifico (GNCS) of Istituto
Nazionale di Alta Matematica (INdDAM).

The authors thank Gerard Meurant for the helpful suggestions and the anonymous referees for their
constructive remarks.

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed
during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D.u., Green-
baum, A., Hammarling, S., McKenney, A., Sorensen, D. LAPACK Users’ Guide, 3rd edn. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

2. Bart, H., Gohberg, I., Kaashoek, M., Van Dooren, P.: Factorization of transfer functions. SIAM J.
Contr. 18(6), 675–696 (1980)

3. Bickley, W.G., Comrie, L.J., Sadler, D.H., Miller, J.C.P., Thompson, A.J.: British Association for the
Advancement of Science Mathematical Tables: Volume 10, Bessel Functions, Part 2. Functions of
Positive Integer Order. Cambridge University Press (1952)

4. Bowdler, H., Martin, R.S., Reinsch, C., Wilkinson, J.H.: The QR and QL algorithms for symmetric
matrices. Numer. Math. 11, 293–306 (1968)

5. Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Stat. Comput.
11(5), 873–912 (1990)

6. Fernando, K.V., Parlett, B.N.: Accurate singular values and differential qd algorithms. Numer. Math.
67(2), 191–230 (1994)

7. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press,
Oxford (2004)

8. Gautschi, W.: Computational aspects of three–term recurrence relations. SIAM Rev. 9, 24–82 (1967)
9. Gautschi, W.: Orthogonal polynomials (in Matlab). J. Comput. Appl. Math. 178, 215–234 (2005)

http://creativecommons.org/licenses/by/4.0/

Numerical Algorithms

10. Glaser, A., Liu, X., Rokhlin, V.: A fast algorithm for the calculation of the roots of special functions.
SIAM J. Sci. Comput. 29, 1420–1438 (2007)

11. Golub, G.H., Van Loan, C.F. Matrix Computations, 4th edn. Johns Hopkins University Press,
Baltimore (2013)

12. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23(106), 221–230
(1969)

13. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press,
Boston (2007)

14. Hale, N., Townsend, A.: Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi nodes
and weights. SIAM J. Sci. Comput. 35, A652–A674 (2013)

15. Hale, N., Trefethen, L.N.: Chebfun and numerical quadrature. Sci. China Math. 55(9), 1749–1760
(2012)

16. Higham, N.J. Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and
Applied Mathematics, Philadelphia (2002)

17. Laudadio, T., Mastronardi, N., Van Dooren, P.: Computing the eigenvectors of nonsymmetric
tridiagonal matrices. Comput. Math. Math. Phys. 61, 733–749 (2021)

18. Mastronardi, N., Taeter, H., Van Dooren, P.: On Computing Eigenvectors of Symmetric Tridiagonal
Matrices. In: Bini, D., Di Benedetto, F., Tyrtyshnikov, E., Van Barel, M. (eds.), vol. 30, pp. 181–195.
Springer INdAM Series, Cham (2019)

19. Meurant, G., Sommariva, A.: Fast variants of the Golub and Welsch algorithm for symmetric weight
functions in Matlab. Numer. Algor. 67(3), 491–506 (2014)

20. Olver, F.W.J.: Error analysis of Miller’s recurrence equations. Math. Comput. 18, 65–74 (1964)
21. Parlett, B.N., Le, J.: Forward instability of tridiagonal QR. SIAM J. Matrix Anal. Appl. 14, 279–316

(1993)
22. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs (1980)
23. Szegö, G. Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)
24. Tait, R.: Error analysis of recurrence equations. Math. Comput. 21, 629–638 (1967)
25. Townsend, A., Trogdon, T., Olver, S.: Fast computation of Gauss quadrature nodes and weights on

the whole real line. IMA J. Numer. Anal. 36, 337–358 (2016)
26. Wilf, H.S.: Mathematics for the Physical Sciences. Wiley, New York (1962)
27. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. England, Oxford (1965)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Computing Gaussian quadrature rules with high relative accuracy
	Abstract
	Introduction
	Notation and definitions
	Computing the zeros of orthogonal polynomials
	Computing the zeros of orthogonal polynomials for a symmetric weight function

	Computation of the nodes and the weights of a symmetric Gaussian quadrature rule
	Computation of the weights of the Gaussian quadrature rules
	Stability of the eigenvectors and weights
	Numerical examples
	Conclusions
	References

