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Abstract

A fast algorithm for the computation of the optimally frequency-dependent scaled H
=

-norm of a "nite-dimensional LTI system is
presented. It is well known that this quantity is an upper bound to the `k-norma; furthermore, it was recently shown to play a special
role in the context of slowly time-varying uncertainty. Numerical experimentation suggests that the algorithm generally converges
quadratically. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the context of robust control analysis and synthesis
a quantity of great interest is the structured singular-value
norm, or k-norm, of the system. Consider a feedback
connection of a continuous-time system with real coe$-
cients as in Fig. 1. Let P(s)"C(sI!A)~1B be an m]m
stable transfer function matrix and let *(s) be a structured
perturbation constrained to lie in the set

R(D)OM*3R
S
: *(s

0
)3D ∀s

0
3C1

`
N

where R
S

is the set of all real-rational, proper, stable,
m]m transfer matrices and the uncertainty set

DOMdiag[*
1
,2, *

F
] : *

j
3CmjCmjN

is de"ned for integers m
1
,2,m

F
. Let p

1
( ) ) denote the

maximum singular value of its matrix argument and
de"ne the complex structured singular value for a con-
stant matrix M3CmCm as (see Zhou, Doyle & Glover,
1995 for a complete discussion of the structured singular
value)

k*(M)O
1

minMp
1
(*) : *3D, det (I!M*)"0N

unless det(I!M*)O0 for all *3D, in which case
k*(M)O0. Finally, de"ne the `k-norma3 as

DDPDD*Osup
u|R

k* (P( ju)).

It has been shown that the computation of k*(M) is
NP-hard (see Toker & OG zbay, 1995), in consequence no
e$cient algorithms are likely to exist for its computation.
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Fig. 1. Standard framework for robustness analysis.

4Again, this is not a norm.

5 In Ferreres and Fromion (1997) the continuous-time case is dealt
with directly, by limiting the frequency range to a compact interval and
using a `repeated real scalara block in the augmentation. This idea is
due to Sideris (1992).

6To make the optimization problem of Fan and Tits (1992) into
a standard GEVP, a symmetric n]n matrix of slack variables must be
introduced; see p. 8}33 in Gahinet et al. (1995).

In practice, a standard upper bound is used in its place.
This upper bound is computed as follows. De"ne

DOMdiag[d
1
I
m1

,2, d
F~1

I
mF~1

, I
mF

]: 0(d
j
3RN.

Then, for a constant complex matrix M, an upper bound
for k* (M) is

k( *(M)O inf
D|D

p
1
(DMD~1).

Substituting this into the expression for DDPDD* , an upper
bound on the k-norm of the system P(s) is obtained as the
optimally frequency-dependent scaled H

=
-norm4

DDPDDk(Osup
u|R

k( *(P( ju)).

It is well-known that if P(s) is stable, then EPE*(1 is
necessary and su$cient (thus EPEk((1 is su$cient) for
uniform robust stability of the P!* loop (Fig. 1) for any
linear time-invariant structured *(s) of ¸

2
-gain no

greater than one (see, e.g., Corollary 3 in Tits & Bala-
krishnan, 1998). Further, it has recently been shown that
EPEk( (1 is necessary and su$cient for uniform robust
stability of the P!* loop for any linear, arbitrarily
slowly time-varying structured * of ¸

2
-gain no greater

than one (Poolla & Tikku, 1995).
Algorithms for the e$cient computation of k( *(P( ju)),

for given u, have long been available. In fact, given u,

k( *(P( ju))2" inf
az0, D|D

Ma :P( ju)DP( ju)H!aD(0N, (1)

which is a linear matrix inequality (LMI) problem. E$-
cient algorithms exist for obtaining global solutions
to such problems, e.g., Boyd, El Ghaoui, Feron and
Balakrishnan (1994). Note that minimizers (or approxim-
ate minimizers) D for p

1
(DMD~1) are related to the

minimizers (or approximate minimizers) DI for (1) by
D"DI 1@2. DDPDDk( is usually computed via a `frequency
sweepa, i.e. choose a set of frequencies Mu

1
,2,u

N
N and

use the approximation

DDPDDk(+maxMk( *(P( ju
1
)),2,k( * (P( ju

N
))N.

The drawbacks of this approach are obvious. First,
a large number of k( *( ) ) computations are required.

Second, an upper bound on DDPDD* is not necessarily
obtained. Finally, the result can be arbitrarily bad, i.e. it
is di$cult to bound the error.

Another approach that has been used to compute an
upper bound to the k-norm is based on the Main Loop
Theorem (see, e.g., Packard & Doyle, 1993) and the
extension to k of the Maximum Modulus Theorem (see,
e.g., top of p. 1201 in Tits & Fan, 1995). In the discrete-
time case, given P(z)"C(zI!A)~1B#D, with A stable,
and a positive scalar c, it can be seen that the k-norm of
P is less than c if and only if k*p

(M(c))(1, where

M(c)OC
A B

1cC 1cDD
and Dp is an `augmenteda uncertainty structure given by

DpOMdiag[dI
n
, *] : d3C, *3DN.

The original idea is due to Doyle and Packard (1987).
The continuous-time case can be reduced to the discrete-
time case by means of a bilinear transformation (see
Section 10.2 in Zhou et al., 1995 for details). Repeated
evaluation of the upper bound k( *p

( ) ) according to a bi-
section search over c yields an upper bound on the
k-norm of P. On the down side, note that this upper
bound is generally less tight than that obtained by
gridding, because the augmented uncertainty structure
involves an additional block which, to make things
worse, is of the `repeateda type. The bisection search can
be done away with, as shown by Ferreres and Fromion
(1997), by invoking the `skewed ka proposed and studied
by Fan and Tits (1992).5 Computation then entails the
solution of a single LMI constrained quasi-convex
generalized eigenvalue minimization problem (GEVP;
see Boyd et al., 1994).6 The approach proposed in this
paper improves on the scheme of Ferreres and Fromion
(1997) in that it computes the same (tighter) upper bound
as the gridding approach. As far as computational cost is
concerned, the tradeo! is that of a sequence of LMIs
(k upper bound computations with respect to the orig-
inal, non-augmented uncertainty structure) versus
a single GEVP with a larger number of variables and
constraints. Due to the `repeateda block, the complexity
of the latter is strongly a!ected by the dimension of the
state space.

Recently, an e$cient algorithm has been proposed
(Boyd & Balakrishnan, 1990; Bruinsma & Steinbuch,
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7Below, )
k

is restricted to be a subset of (0,R) for all k. Thus, in the
case that uH"0, clearly uH will not be in )

k
. It is readily checked that

this will not a!ect any of the results.

Fig. 2. An example of the various de"nitions.

1990) for the computation of the H
=

-norm

DDPDD
=
"sup

u|R
p
1
(P( ju)). (2)

This algorithm makes use of the well-known fact that
a given scalar m'0 is a singular value of C( ju!A)~1B
if and only if ju is an eigenvalue of the related Hamil-
tonian matrix

H(m,A,B,C)OC
A m~1BBH

!m~1CHC !AH D.
Given any m3(0, DDPDD

=
), a set of frequency intervals may

thus be computed where maximizers for (2) are known
to lie. At step k, m is selected as p

1
(P( ju

k~1
)) and u

k
is chosen as the mid-point of the largest among the
intervals thus determined. A quadratic rate of conver-
gence ensues.

In this paper, using the idea just outlined as a stepping
stone, an algorithm is constructed for the fast computa-
tion of DDPDDk( . (A similar algorithm can be used for the
computation of the real stability radius; see Sreedhar,
Van Dooren & Tits, 1996.)

2. Key ideas

Let

k( (u)O inf
D|D

p
1
(DP( ju)D~1).

The goal of the algorithm is to maximize k( (u) over u3R.
De"ne

k( HOsup
u|R

k( (u)

and

uHOargmax
u|R

k( (u)

assuming for now that such a unique maximizer exists.
Finally, for a "xed D3D, de"ne the curve

l
D
(u)Op

1
(DP( ju)D~1).

While reading the following, it may be helpful to refer to
Fig. 2. The main idea of the algorithm is as follows (more
details are given in Section 3). At iteration k, suppose m

k
is

the best-known lower bound to k( H thus far, and let u
k
be

the current trial frequency. Suppose further that uH is
known to lie in a certain open set )

k
.7 Compute

D
k`1

"argmin
D|D

p
1
(DP( ju

k
)D~1)

(assume for simplicity that the minimum is achieved), and
let

m@
k`1
Ok( (u

k
)"l

Dk`1
(u

k
).

If m@
k`1

'm
k
, take m

k`1
"m@

k`1
as the new estimate of

k( H (as is the case in Fig. 2), otherwise keep the old
estimate (i.e. m

k`1
"m

k
). Note that

k( (u)4l
Dk`1

(u) ∀u3R, (3)

with equality at u"u
k
, since by de"nition k( (u) is the

lower envelope of the family of curves Ml
D
(u) : D3DN.

Now note that l
Dk`1

(u) is the maximum singular value
curve for the transfer function D

k`1
P(s)D~1

k`1
at s"ju.

Thus, as suggested in Section 1, the ideas developed for
the computation of the H

=
-norm may be applied to

locate the open set of frequencies, call it )@
k`1

, in which
l
Dk`1

(u)'m
k`1

(in Fig. 2, )@
k`1

+(1, 5.1]104)). In view
of (3) and since m

k`1
is a lower bound to k( H, it is clear that

(i) if )@
k`1

"0, then k( H"m
k`1

and (ii) if )@
k`1

O0, then
uH3)@

k`1
. In the latter case it follows that

uH3)
k`1
O)

k
W)@

k`1
(in Fig. 2, it is assumed that

)
k
M)@

k`1
, thus )

k`1
")@

k`1
). Now, the next frequency

u
k`1

must be selected. Several possibilities come to
mind. For example, u

k`1
could simply be chosen as the

mid-point of the largest interval contained in )
k`1

.
Since, for all k, )

k`1
U/ u

k
, the size of the largest interval

in )
k

would go to zero as kPR and convergence of
m
k

to k( H would ensue (see Section 4 below). This, how-
ever, results in a relatively slow rate of convergence.
More sophisticated alternatives are considered in the
next section.

A rough outline of the algorithm described above is as
follows.

Algorithm
Data: P(s)"C(sI!A)~1B, D, e'0.
Initialization: k"0, pick u

0
50, m

0
"0, )

0
"(0,R).
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Fig. 3. Sample singular-value plot.

8Certainly true if k( (u
0
)'0, which will hold in all but a few patho-

logical cases.
9The algorithm as stated does not handle the case when s

i
"0 or the

eigenvalue curve is non-di!erentiable. This happens when multiple
eigenvalues are found on the imaginary axis. A simple way to get
around the di$culty in such cases is to increase the current level
m
k

slightly.

Step 1: Compute D
k`1

, m
k`1

.
Step 2: Compute )

k`1
.

Step 3: Compute u
k`1

.
Step 4: kQk#1. If an appropriate stopping criterion is

satis"ed, stop. Otherwise, go back to Step 1.

3. Details of the algorithm

The computation of )@
k`1

is now considered in
greater detail. The pure imaginary eigenvalues of the
Hamiltonian matrix

H
k
"H(m

k`1
,A,BD~1

k`1
,D

k`1
C)

tell us the frequencies at which one of the singular values
of D

k`1
P( ju)D~1

k`1
takes the value m

k`1
. That is, if ju8 is

an imaginary eigenvalue of H
k
, then

p
r
(D

k`1
P( ju8 )D~1

k`1
)"m

k`1

for some r3M1,2, mN (see Fig. 3). Of course, the frequen-
cies of interest are those for which r"1. Suppose the
Schur decomposition of the Hamiltonian matrix H

k
has

been performed and the u8 's have been identi"ed. Let
u8

1
,2,u8

q
be the nonnegative u8 's, sorted in increasing

order, and let jl"ju8 l , l"1,2, q. In Boyd and Balak-
rishnan (1990), the authors suggest determining those
frequencies corresponding to the maximum singular
value by eliminating the frequencies for which

m2
k`1

I!D~1
k`1

PH( ju)D2
k`1

P( ju)D~1
k`1

is not positive semi-de"nite. This is a rather costly com-
putation, though. An alternative scheme is as follows.
The pure imaginary simple eigenvalues of the Hamil-
tonian may be di!erentiated with respect to the scalar
parameter m via the expression

Ljl

Lm
(m

k`1
)"

uHl (LH/Lm)(m
k`1

, A,BD~1
k`1

,D
k`1

C)vl
uHl vl

,

l"1,2, q,

(see, e.g., Theorem IV.2.3 in Stewart and Sun (1990))
where vl and uHl are respectively right and left eigenvec-
tors of H

k
corresponding to the imaginary eigenvalue jl ;

these few vectors can be computed from the Schur
decomposition at little extra cost, e.g., using `inverse
iterationa. Since jl"ju8 l ,

Lm
Lu

(u8 l )"A!j
Ljl

Lm
(m

k`1
)B

~1
,

which is the slope of the corresponding singular-value
curve for the matrix D

k`1
P( ju)D~1

k`1
at the frequency

u"u8 l and is a real number for every simple eigenvalue
on the imaginary axis. This is all the information needed
to compute )@

k`1
.

Indeed, de"ne

slO
Lm
Lu

(u8 l ), l"1,2, q.

For the example in Fig. 3, the sign of sl is marked at each
intersection point. As P(s) is strictly proper, l

Dk`1
(u)P0

as uPR. Thus, as long as m
k`1

'0,8 u8
q

must corres-
pond to the largest singular value, i.e. l

Dk`1
(u8

q
)"m

k`1
,

and )
k`1

will be bounded. Let cl , l"1,2, q,
cl3M1,2, mN, denote the number of the singular-value
curve corresponding to u8 l . That is,

p
cl

(D
k`1

P( ju8 l )D~1
k`1

)"m
k`1

.

Thus, c
q
"1. The rest of the cl 's may be assigned by

sweeping to the left from u8
q~1

and using the following
rules:9

f If sl`1
(0 and sl(0 then cl"cl`1

#1.
f If sl`1

(0 and sl'0 then cl"cl`1
.

f If sl`1
'0 and sl(0 then cl"cl`1

.
f If sl`1

'0 and sl'0 then cl"cl`1
!1.

Now de"ne

Mu(
1
,2, u(

r
NOMu8 l : cl"1N,

ordered so that u(
1
(2(u(

r
. Clearly, r4q. In the

obvious manner de"ne s( l , l"1,2, r as the slopes of the
maximum singular value curve computed at u( l . If s( 1(0,
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then

)@
k`1

"(0,u(
1
)X(u(

2
,u(

3
)X2X(u(

r~1
,u(

r
).

If s(
1
'0, then

)@
k`1

"(u(
1
, u(

2
)X2X(u(

r~1
,u(

r
).

To help clarify the ideas, consider the example in Fig. 3
where q"6. Letting c

6
"1, we begin the left sweep. As

s
6
(0 and s

5
(0, c

5
"c

6
#1"2. Then, since

s
5
(0 and s

4
'0, c

4
"c

5
"2. Next, since s

4
'0 and

s
3
'0, c

3
"c

4
!1"1. Proceeding in this manner,

we "nd Mc
1
,2, c

6
N"M1,1,1, 2, 2,1N. Thus, r"4

and Mu(
1
,2,u(

4
N"Mu8

1
, u8

2
, u8

3
,u8

6
N. Finally, since

s(
1
"s

1
'0, )@

k`1
"(u8

1
,u8

2
)X(u8

3
,u8

6
).

As mentioned in Section 2, one way to select the next
trial point u

k`1
is to pick the mid-point of the largest

interval in )
k`1

. A better approach, yielding faster con-
vergence, is to use some form of interpolation scheme in
the "nal iterations. In particular, suppose (u

k1
, m

k1`1
)

and (u
k2

, m
k2`1

) are the two most recent trial points for
which k( (u

ki
)"m

ki`1
, i"1, 2. Then, for k"k

i
, i"1,

2, m
k`1

"m@
k`1

. Thus u
k
is one of the u8 ls for the (k#1)st

iteration, say u
k
"u8 l

k
, and the corresponding cl

k
is 1,

i.e.,

k( (u
k
)"p

1
(D

k`1
P( ju

k
)D~1

k`1
)"m

k`1
.

Since the k( ( ) ) curve lies entirely below the
p
1
(D

k`1
P( j ) )D~1

k`1
) curve, for all such k, whenever both

curves are di!erentiable at u
k
,

Lk(
Lu

(u
k
)"

L
Lu

p
1
(D

k`1
P( ju

k
)D~1

k`1
)"

Lm
Lu

(u8 l
k
)"sl

k
.

Using the available values of k( and of its derivative at
u

k1
and u

k2
, a cubic or rational (speci"cally, quadratic

over linear) function (Barzilai & Ben-Tal, 1982) may be
passed through the two points and u

k`1
may be taken as

the maximum of the interpolating function, subject to the
constraint u

k`1
3)M

k`1
(closure of )

k`1
).

Finally, a stopping criterion which guarantees that the
algorithm terminates with an estimate that is within
prescribed e'0 of EPEk( is as follows. At iteration k,
given m

k
, D

k
, and )

k
, de"ne the set

S
k
OMu: l

Dk
(u)'m

k
#eN.

Like )@
k`1

, S
k

may be computed using an appropriate
Hamiltonian eigen-decomposition. Since uH3)

k
, if

)
k
WS

k
"0, then uHNS

k
, hence

m
k
(DDPDDk( 4m

k
#e.

4. Convergence

Theorems 1 and 2 below are proved for the case when
the mid-point rule is used throughout to select the next
trial point u

k`1
.

Assumption 1. The choice of u
0

is such that

k( (u
0
)'0.

Assumption 1 is necessary in order for the algorithm to
be well-de"ned. Typically, u

0
"0 will satisfy this as-

sumption; if not, a random search will provide a suitable
u

0
as long as P(s) is not identically 0. Under this assump-

tion, )
1

is bounded and, in view of the fact that
u

k
N)

k`1
, a simple induction argument shows that the

length of the largest interval in )
k

tends to zero as
kPR.

Theorem 1. The sequence Mm
k
N
k|N

converges to k( H as
kPR.

Proof. By contradiction. Suppose m
k
;k( H. Since the

sequence Mm
k
N
k|N

is monotone non-decreasing, and since
m
k
4k( H for all k, m

k
PmH for some mH(k( H. Thus,

EOMu : k9 (u)'mHN is not empty and, clearly, EL)
k

for
all k. Since k( ( ) ) is continuous (see Bercovici, Foias
& Tannenbaum, 1990), E contains a non-trivial interval
S. This contradicts the fact that the size of the largest
interval in )

k
goes to 0.

For this preliminary convergence analysis, consider
now instead the problem of maximizing kJ (u), where

kJ (u)OminMp
1
(DP( ju)D~1) : D3D, b

M
I4D24bM IN (4)

with bM 5b
M
'0 arbitrary prescribed numbers. Note that

kJ (u) is an upper bound to k( (u), that it can be e$ciently
computed, and that it can be made arbitrarily close to
k( (u), uniformly over u3R, by selecting b

M
'0 small

enough and bM large enough (Lee & Tits, 1993). Let

kJ HOsup
u|R

kJ (u).

It is not di$cult to show that Theorem 1 still holds when
k( (u) is replaced with kJ (u) and k( H is replaced with kJ H.

Theorem 2. Assume that uH is the unique global maximizer
of kJ (u). Then u

k
PuH as kPR.

Proof. By contradiction. Let K be an in"nite index set
and suppose that u

k
Pu8 on K, with u8 OuH (since )

1
is

bounded, such K exists for some u8 in the closure of )
1
).

By continuity of kJ ( ) ) and uniqueness of the global maxi-
mizer uH, there exists d'0 such that, for k large enough,
k3K,

kJ (u
k
)(kJ H!d.

Let D
k

be the minimizer of (4) at u
k
. Since MD

k
N lies in

a compact set, there exists an in"nite index set K@LK
such that D

k
PDH on K@. By uniform continuity on

compact sets,

l
Dk

(u)(kJ H!d,
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10The implementation is available from the authors.
11MATLAB's function sysrand was used. Fig. 4. k-plot for the closed-loop system.

for all k3K@, in some "xed neighborhood< of u8 . On the
other hand, in view of Theorem 1, m

k
'kJ H!d for k large

enough. Thus, for k3K@ large enough, < is taken out of
)

k
in Step 2 of the algorithm, which contradicts the fact

that u
k
Pu8 on K.

5. Numerical experiments

The algorithm was implemented10 in MATLABTM. In
the implementation, a mid-point rule is used until )

k
is

reduced to just one interval and enough information has
been accumulated to compute an interpolating function.
All numerical experiments were run on a Sun UltraSparc
10, 300 MHz machine with 128 Meg of RAM, running
Solaris 2.5 operating system.

The performance of the new algorithm was "rst com-
pared to that of the `skewed ka approach mentioned in
the introduction. For the former, function mu of the
k-Analysis and Synthesis Toolbox (Balas, Doyle, Glover,
Packard & Smith, 1993) was used for computing
m
k`1

and D
k`1

in Step 1. The GEVP in the latter was
solved using the LMI Control Toolbox Version 1.0.4
(Gahinet, Nemirorski, Laub & Chilali 1995). Tolerance
parameters were set so as to obtain roughly the same
accuracy with both approaches; in particular, option
C was used in mu. On 100 randomly generated11 stable
systems with 10 variables, 5 inputs, 5 outputs and 4 com-
plex uncertainty block problems, there were 5 instances
where the new approach yielded a k-norm upper bound
1% or more lower than the upper bound obtained with
the skewed-k approach; in one of these instances, the
di!erence was about 33%. The computation time was
always less with the new algorithm, often by more than
an order of magnitude.

To illustrate the behavior of the new algorithm, we
then applied it to an example taken from Balas et al.
(1993). The system is a model of an experimental aircraft
(the HIMAT vehicle) with an H

=
sub-optimal pitch axis

controller. Uncertainty and performance weightings are
included in the model, for a total of 16 state variables.
The resultant system is not strictly proper, hence a state
space realization will have a non-zero feed-through
matrix E. Rede"ne the Hamiltonian matrix as

H(m,A,B,C, E)OC
A 0

0 !AHD#C
B 0

0 !CHD
]C

!E mI

mI !EHD
~1

C
C 0

0 BHD, (5)

and make sure that the initial frequency u
0

is such that
k( (u

0
)'p

1
(D). Then the algorithm can handle such

problems with no other changes. The uncertainty struc-
ture D consists of two 2]2 full blocks (robust perfor-
mance problem). Fig. 4 shows a plot of k( * (P( ju)) (in this
case, equal to k* (P( ju))) as a function of frequency.

The algorithm may now be applied to compute EPEk( .
In Table 1 the progress of the algorithm from iteration to
iteration is shown. All quantities are as de"ned earlier.
An asterisk in the column labeled I indicates that rational
interpolation was used to generate u

k
. If )

k
contains

multiple intervals, or if the algorithm has not yet accu-
mulated enough information, the mid-point rule is used
to generate u

k
. It appears from the table that the algo-

rithm exhibits quadratic convergence. Note that, in the
process of computing k( H, k( has been evaluated at only
a few points, which demonstrates great computational
savings in comparison with a grid search. The total
computation time was about 2.5 s. In comparison, on the
same problem, the `skewed ka approach took over 50 s.
Interestingly, it yielded the same value for k( H.

6. Extension to mixed-k

The algorithm is readily extended to compute an upper
bound on the mixed-k norm, that is, the k-norm for
systems with mixed dynamic and real parametric uncer-
tainty. (See Feron (1997) for a sophisticated grid-based
approach to this computation, accounting for possible
discontinuities.) Two expressions for the widely used
`D-Ga upper bound k( * (M) are as follows (see, e.g., Chap-
ter 18 in Zhou & Doyle, 1998)

k( *(M)" inf
D|D,G|G

m;0

Gm: p6 AA
DMD~1

m
!jGB

](I#G2)~1@2B41H, (6)

454 C.T. Lawrence et al. / Automatica 36 (2000) 449}456



Table 1
Results for example system

k u
k~1

m
k

Du
k~1

!uHD Dm
k
!k( HD I

1 0 0.7959766 8.0]10`1 8.9]10~1

2 3790.8315 0.7959766 3.7]10`4 8.9]10~1

3 367.31532 0.7959766 2.9]10`2 8.9]10~1

4 129.91042 1.3439461 5.0]10`1 3.4]10~1

5 64.955208 1.6041191 1.6]10`1 7.9]10~2

6 76.939264 1.6791253 3.5]100 3.7]10~3 *
7 80.240400 1.6827812 2.1]10~1 1.3]10~5 *
8 80.450844 1.6827940 5.6]10~4 9.5]10~11 *

12Once m in Section 5 of Lawrence et al. (1996) is changed to m2 (to
match the notation used in the other sections of Lawrence et al. (1996)),
the G matrix here corresponds to G/m in Section 5 of Lawrence et al.
(1996). The Hamiltonian matrix obtained here is equivalent to that
given in Lawrence et al. (1996); the latter may be obtained from the
former by a similarity transformation S~1HS with S"diag [I,!mI].

k( *(M)" inf
D|D,G|G

az0

Ma: MHDM#j(GM!MHG)

! a2D40N, (7)

where D and G are determined by the structure. Expres-
sion (7) is an e$ciently solvable LMI problem (see
Boyd et al., 1994) and, given a, DI , GI satisfying the con-
straint in (7), the values m"a, D"DI 1@2, and
G"(1/a)DI ~1@2GI DI ~1@2 satisfy the constraint in (6) for the
same M (Zhou & Doyle, 1998). Moreover, given m, D, and
G, it follows from (6), with M"P( ju), that k( * (P(ju))4m
for all u such that

p6 (F( ju))41, (8)

with

F( ju)OA
DP( ju)D~1

m
!jGB(I#G2)~1@2. (9)

Note that, given a realization (A,B,C,E) for P( ju), F( ju)
can be expressed as C

F
( juI!A)~1B

F
#E

F
, where

B
F
"m~1@2BD~1(I#G2)~1@2, C

F
"m~1@2DC, and

E
F
"(m~1DED~1!jG)(I#G2)~1@2 are obtained by in-

spection from (9). Thus, the end-points of intervals where
(8) holds correspond to imaginary eigenvalues of
H"H(1, A,B

F
,C

F
,E

F
), where H is as in (5). When E"0

(no feedthrough term in P), this reduces to12

H"C
A 0

0 !AHD
#

1

mC
jBD~1GDC BD~2BH

!CHD(I#G2)DC jCHDGD~1BHD.
With this in hand, the algorithm discussed in the pre-
vious sections is readily extended to the mixed-k case.

However, the k( ( ) ) curve does not enjoy the same regular-
ity properties as in the purely complex case. As a result,
the interpolation rules for updating u

k`1
may not be

appropriate and quadratic convergence may be lost. In
the extreme case where the supremum of k( (u) is strictly
greater than the supremum of its lower envelope (func-
tion whose epigraph is the closure of that of k( (u)), con-
vergence of m

k
to k( H (Theorem 1) may even be lost unless

frequency points where k( is discontinuous (including
possibly u"R) are checked separately, and the initial
value of m

k
is set accordingly. This can happen even in the

trivial case of `real ka (real uncertainty) of a scalar
transfer function such as p(s)"1/(s3#(3/2)s2#s#1),
since k( (p( j0))"1, k( p ($j))"2, and k( ( p( ju))"0 for
uNM0,$1N. Indeed, the real k of a scalar is equal to its
upper bound k( and is the absolute value of the scalar if
the scalar is real, and zero otherwise.

7. Concluding remarks

The algorithm just outlined in this note can be re"ned
in various ways. For instance, in the process of minimiz-
ing l

D
(u

k
) to evaluate k( (u

k
), if it is found that the min-

imum value is less than m
k
, then it is unnecessary to

compute it (or D
k
) with great accuracy.

The new algorithm can be extended to discrete-
time systems. The Hamiltonian eigenvalue problem
H(m,A,B,C) is replaced by a simplectic eigenvalue prob-
lem S(m,A,B, C) which will have an eigenvalue e+u on the
unit circle if and only if m is a singular value of
C(e+uI!A)~1B. We refer the reader to Hinrichsen
and Son (1989), for the appropriate formulas. Alterna-
tively, a corresponding continuous-time quadruple
(A,B,C,D) can be obtained by means of a bilinear tranfor-
mation.
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