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Abstract. We perform a backward error analysis of polynomial eigenvalue problems solved
via linearization. Through the use of dual minimal bases, we unify the construction of strong lin-
earizations for many different polynomial bases. By inspecting the prototypical linearizations for
polynomials expressed in a number of classical bases, we are able to identify a small number of driv-
ing factors involved in the growth of the backward error. One of the primary factors is found to be
the norm of the block vector of coefficients of the polynomial, which is consistent with the current
literature. We derive upper bounds for the backward errors for specific linearizations, and these are
shown to be reasonable estimates for the computed backward errors.
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1. Introduction. Polynomial matrices are everywhere, and their solution via
linearization has been a central research topic for more than 50 years. Such problems
are stated as solving the equation

(1.1) PNz =0,

where P()\) is a matrix of size s X s with entries that are polynomial in A, and
where z is a nonzero vector of length s. The pair (A, z) is called a right eigenpair
of the polynomial P(\). One is often also interested in left eigenpairs—pairs (A, y*)
satisfying y* P(\) = 0—but here we concentrate mainly on right eigenpairs.

Our analysis considers three different polynomial bases in which we express the
polynomial P(A) in (1.1): the monomial, Chebyshev, and Lagrange bases. For each
of these bases, suppose that we are given a set of elements ¢;(\), 0 < ¢ < N, forming
a basis for Py—the set of polynomials of degree at most N. Any polynomial matrix
P()\) € Py can thus be expressed as

N
(1.2) PO =Y Pidi(N),
i=0

where P; € C*** are the coefficients in the specified basis.
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Of the plethora of methodologies proposed for solving (1.1), one of the most
common solution strategies is linearization. The polynomial problem is transformed
into a linear eigenvalue problem that has both the same eigenvalues as P(\) and
eigenvectors that are easily related. The linearization should be constructed from the
coefficients P; with little or no computation necessary.

2. Linearization and dual minimal bases. In this section, we revisit the no-
tions of minimal polynomial bases and their minimal indices. We also recall the notion
of dual minimal bases, which will play a crucial role in our constructive algorithms.

To begin with, let us review the definitions of row reduced and minimal bases for
polynomial matrices. Kailath [15, Chap. 6] offers the following definitions.

DEFINITION 2.1. An m x n polynomial matriz N (\) with the highest row degrees
{d1,...,dmn} is called row reduced if the highest degree coefficient matrix Ny, (whose
jth row is the coefficient of X% in the jth row of N(\)) has full row rank.

DEFINITION 2.2. The rows of an m x n polynomial matriz N(X\) are a minimal
basis if N(\) has full row rank m for all finite X € C and is row reduced. The
corresponding row degrees are called minimal indices of that basis.

DEFINITION 2.3. Let the rows of two polynomial matrices N1(A) and Na(\) be
minimal bases of dimension my X n and mg X n, respectively. Such matrices are said
to be dual minimal bases if N1(A)NZ (X) =0 and ma :=n —m;.

Given these definitions, we present a lemma that defines the properties of a dual
minimal basis, which we will later use to construct linearizations of polynomials.

LEMMA 2.4. Let the rows of N1(X\) be a given minimal basis of dimension my xn
with minimal indices n;, j = 1,...,mi1. PEvery dual minimal basis N2(X\) thus has
dimension ms X n with mo := n—my. Moreover, its minimal indices €;, 1t = 1,...,mo
add up to the same sum as those of Ny(\):

ma mao
E Ny = E €; .
j=1 =1

Proof. This result can be found in the corollary to Theorem 3 of Forney [9];
see also Kailath [15, sect. 6.5.4] for a more accessible discussion of the same re-
sult. O

In this section, we focus on the construction of strong linearizations—of a par-
ticular order, i.e., the dimension of the matrices—for a given polynomial matrix. We
consider the case where the polynomial matrix is regular, in that it has nonidentically
zero determinant. Further, we consider polynomials of grade (N + 1), that is, of the
form

(2.1) PO\) =Py AT 4 Py AN 4 P+ Py,

where we allow the polynomial to have degree smaller than (N 4 1); in this work we
will explicitly take Pyy1 = 0. The introduction of such a leading coefficient gives
the ability to construct linearizations where the polynomial coefficients are separated
from the relations between the basis elements. According to Gohberg, Kaashoek, and
Lancaster [10], a linearization of order (N + 1)s of such a regular polynomial matrix
is a regular pencil

(2.2) Z(\)=\B-A

of dimension (N + 1)s (that is, its order), for which there exist unimodular transfor-
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mations M (A\) and N(X) such that
(2.3) MO)ZLOINQ) = [ P 128 ]

A strong linearization of order (N + 1)s (defined in [10] and so named in [16]) is one
where a similar relation also holds for the reversed polynomial

revP(\) := PoANT 4o 4 PyA+ Py

and pencil rev.Z()) := B — AA. Note that throughout this manuscript, we take the
reverse polynomial with respect to the grade of the polynomial; this is quite consistent
with the original notion of strong linearization of a particular order [10, 17, 16].

Let us now give a technical lemma that will allow us to construct large families
of strong linearizations of order (N + 1)s.

LEMMA 2.5. Let P(\) be a given s X s regular polynomial matriz. Let £ (\) be
a regular pencil of the form

- [ B0 ][]

where L1(A) and L2(\) have dimensions s x (N +1)s and Ns x (N 4+ 1)s, respec-
tively. Let ®(\) be another polynomial matriz

(2.5) BN) =Py + DA+ -+ DAY,

of dimension (N + 1)s X s and degree N, that satisfies

(2.6) LB = [ PE)A) ] .

ZL(A) is thus a strong linearization of P(\) of order (N+1)s if the following conditions
hold:

1. La(A) has full row rank for all X € C;

2. By has full row rank;

3. ®(N\) has full column rank for all A € C; and

4. ®x has full column rank.

Proof. The conditions on La(A\) and ®(A) mean that the rows of La(\) are a
minimal polynomial basis for the row space of La(\) and that the columns of ®(\)
are a minimal polynomial basis for the column space of ®(\). Since La(A)®(A) =0
and the row degrees of Lo(\) and column degrees of ®(\) both add up to Ns, these
two bases are also dual. De Terén, Dopico, and Van Dooren [6, Thm. 4.1] have shown
that, under these conditions, there exist polynomial matrices X (A) and Y () such
that the matrix [ ®(\) | Y/(A) ] is unimodular, and that

en 50 EE e ved= [ 5]

This implies that Z(\) is a linearization of order (N + 1)s of P(\). However, the
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conditions on Ly(\) and ®(\) are reversible, implying that they also hold for revLy(\)
and rev®(\). The rows of revLy(A) and the columns of rev®(\) are dual, that is,

(2.8) (By — M) (@AY 4+ 4+ dy_ A+ Dy) =0,

and are minimal polynomial bases. Thus, there exist left and right unimodular trans-
formations, such that

oo [ A R [reson [0 | =[50 11 ]

Therefore, £ () is also a strong linearization of order (N + 1)s of P(A). a

Remark 1. One can find some similarities between the approach taken in
Lemma 2.5 and the work of Grammont, Higham, and Tisseur [12] to the extent that
they, too, construct what they call one-sided factorizations of the linearization in the
form (2.6). In that work they use the factorization to relate specific eigenpairs of the
linearization to those of the polynomial. The relationships can be used to obtain local
relationships between the backward errors of specific eigenpairs of the linearization
to the eigenpairs of the polynomial. In the present manuscript, we show in section 5
how we can obtain global backward error bounds for the polynomial coefficients.

The above Lemma does not guarantee that every polynomial matrix P(\) can be
linearized in this way. In order to do that there must be a solution A; to the equation

(2.10) A [ @y - Py =[Py - P

(that is, to the top block of (2.6)) for every P(\) of grade N + 1 with Pyy; = 0. This
will be the case if and only if the (N + 1)s x (N + 1)s matrix

(2.11) o .= [ (I)N (I)O ]

is invertible. This is indeed the case since the left null vectors y(A\)T®()\) = 0 belong
to the row space of ABs — Ay and Bs has full row rank. Otherwise, there would be a
constant vector that is dual to the column space of ®(\), contradicting the properties
of minimal bases and the assumptions of Lemma 2.5 (that is, that B has full row
rank). We thus state the following theorem concerning the construction of such strong
linearizations.

THEOREM 2.6. Let La(A) = ABy — Ay of dimension Ns x (N +1)s and ®(\) of
dimension (N + 1)s X s be dual minimal bases with row degrees n; =1, 1 < j < Ns,
and column degrees €; = N, 1 < i < N, respectively. Thus, there is a solution, Ay, to
the equation

(2.12) [ AB;élAz }cb()\) _ [ PE))\) }

for every polynomial matriz P(\) of grade N + 1 with Pyy1 = 0, and Z(\) =
[AB_ﬁlAz] is a strong linearization of order (N + 1)s of P()).

Proof. The combination of Lemma 2.5 and the condition that the matrix ® defined
in (2.11) is invertible guarantees the existence of such a solution. |

COROLLARY 2.7. The duality equation Lo(N)®(A\) = 0 corresponds to the equation

(2.13) C(Az, Bo)¥ =0,
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where C(Az, Bs) is a matriz of dimension (N +2)Ns x (N + 1)%s that expresses the
coefficients of Lao(A)®(A) in the same basis as ®(N), with the addition of one extra
element of degree (N + 1). For example, in the monomial basis, these are defined as

By
— A,

3

(214) C(AQ,BQ) = 5 and ¥ := :
Bg (I)O
— Ay

Remark 2. The rank conditions defined in Lemma 2.5 on Ly(A) and ®(A) imply
that the matrix C(As, Bz) has full row rank (N + 2)Ns and that ¥ is a full column
rank matrix spanning the s-dimensional null space of C(As, Bs). Since the full rank
properties also hold in an open neighborhood of the given matrices, this guarantees
that we can talk about the Taylor expansion of this matrix equation when considering
small perturbations. A first-order perturbation analysis therefore makes sense, and
it gives a smooth parameterization of the perturbed polynomial matrix derived from
this expansion. It also guarantees that the perturbed pencil corresponds to a strong
linearization of that perturbed polynomial matrix.

3. Classes of linearizations. In this work, we restrict our attention to lin-
earizations of polynomials expressed in three specific bases: the monomial, Cheby-
shev, and Lagrange bases. These three categories are those most commonly encoun-
tered in practice, many different linearizations exist for them, and they represent the
prototypical forms for more general polynomial bases.

Throughout, we will discuss linearizations of order (N 4 1)s, that is, having the
form (2.4), and thus we depart from many other works that only consider linearizations
of order N's. We use this seemingly trivial device of adding an additional s eigenvalues
at infinity in order to unify the analysis of all three polynomial bases that we consider.

By using linearizations of the form (2.4), we are able to construct and analyze
linearizations where the relations between the basis elements are separated from the
polynomial coefficients. Furthermore, for many specific linearizations of interest, we
can often organize the computations in a simple way to decouple the spurious infinite
eigenvalues via constant equivalence transformations applied to the linearization.

For each of the three polynomial bases that we consider in this manuscript, we
specialize the linearization (2.4) to have —A; = [ Py ... P ], where the P,’s are
the polynomial coefficients in that particular basis. For each basis, we also specify
the linearization £ (\) and a matrix ®(\) together satisfying (2.6).

3.1. Monomial basis. One of the most well-known linearizations is the compan-
ion pencil. Of its many incarnations, the one we use in this work is a generalization—
but a straightforward one—defined as

Py Pn_1 ... Py AT
(3.1) om—| M () :
3.1 \) = . e\ =| ,
Vi
—I M I

where the P;’s are the monomial basis coefficients.

3.2. Chebyshev basis. Good [11] developed one of the first linearizations for
scalar polynomials expressed in the Chebyshev basis, naming them colleague matri-
ces. Although Good did not consider matrix polynomials, the generalization of the
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colleague matrix is straightforward and can be given by

Py Py, -+ P P Tn (NI
—3I A -3 Tn-1 (NI
(3.2) 2L\ = . (N = : ;
-3 A i Ty (M)
—1 Al To(M)I

where T;(A) is the ith Chebyshev polynomial of the first kind.

3.3. Lagrange basis. A number of works have considered linearization of poly-
nomials expressed in the Lagrange basis. For the scalar case, Fiedler [8] examined
the construction of symmetric matrices with a given characteristic polynomial and
produced linearizations of arrowhead form. Malek and Vaillancourt [20] developed a
method of Newbery [22] to a method for computing a matrix with a given character-
istic polynomial that results in a construction similar to Fiedler’s linearization.

Following Berrut and Trefethen’s [3] recent rediscovery of the barycentric formula
for the Lagrange interpolating polynomial, there has been a renewed interest in the
use of Lagrange interpolation, spurring on the development of rootfinding methods
specifically designed for the Lagrange basis. The barycentric Lagrange interpolation
formula is given as

N
(3.3) PO =L(N)) ABZ_P
=0

)

i
i
where the o;’s are distinct interpolation nodes, and where the node polynomial,
barycentric weights, and Lagrange polynomials are defined by

N N Bi
34 N =[[-0), B '=][loi—0;), and ()= (N5 _za' ;
i=0 Jj=0 '
J#i

respectively. The barycentric Lagrange formula was developed for the scalar interpo-
lation problem. However, if the P;’s are matrices, then the formula still interpolates
the polynomial matrix with values P; = P(o;); thus, the formula is applicable to
polynomial matrices with no further modification.

For matrix polynomials expressed in barycentric Lagrange form, one of the first
linearizations was proposed by Corless [4]. Amiraslani, Corless, and Lancaster [1] also
later developed linearizations for polynomials in other bases.

A defining property of the Lagrange basis is that all of the basis elements £;(\) are
of degree N, and hence—unlike the monomial and Chebyshev bases—there is much
greater choice for the relations between the basis elements used to construct the
linearization. We examine two linearizations that are modifications of those proposed
by Corless [4] and by Van Beeumen, Michiels, and Meerbergen [27]. The first,

0 Px P (NI
ﬁNI ()\—O'N)I fN()\)I

(35) ZL(\) = : . CIOVES : ,
ﬂ(;I (A —00)] Lo(MT

is just a rearrangement of the linearization proposed by Corless [4]. In our numerical
experience—using the QZ algorithm to compute the eigenvalues—we have found that
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the spurious infinite eigenvalues are better deflated from this arrangement of the
linearization.

The second linearization, proposed by Van Beeumen, Michiels, and Meerber-
gen [27], is given by

(3.6)
Py Py_1 Py Py
(/\—O'N)I —(/\—CTN_l)GN_lf
g(/\): ()\—O'Nfl)l ,
—()\ - 0'1)91.[
()\—0'1).[ —()\—0'0)90.[
NI
éNfl(/\)I

(3.7) B(N) = z ,

(NI

lo(NI

where 6; = 8;11/8;. The linearization (3.5) does not precisely fit into the framework
described in the preceding section, since it is a linearization of order (N+2)s. However,
it is worth stating that the second linearization can be obtained by multiplying .Z(\)
on the left by a sequence of Gauss transformations Gy_1 - - - Gg, where

Iin_i)s

I 0
(3.8) G; = [y ,
Iis

are chosen to annihilate the entries of the first block column from the bottom to
the top of the matrix. Following these transformations, we may deflate s infinite
eigenvalues by permuting the first two block rows to obtain the smaller linearization
(3.6). This procedure to deflate infinite eigenvalues from the pencil (3.5) has been
recently described by Lawrence and Corless [19], where they also describe how to
deflate other infinite eigenvalues from the pencil whenever Py is singular.

4. Backward errors. In this section, we review the concept of backward errors
for the solutions of polynomial eigenvalue problems solved via linearization. Suppose
we have computed an approximate solution of (1.1), that is, we have a computed
value A € C and a vector £ € C* that are approximations to the true solution of
(1.1). A natural question to ask is how close this solution is to the true solution; this
distance is known as the forward error. Another natural question to ask is this: what
problem has actually been solved? By this we mean that given a computed eigenpair
(\, @), for what perturbation matrix AP()) is

(4.1) (P(N) + AP(A\)Z =0

satisfied? If the norm of the coefficients of AP()) are of the same order as the error
in the input data, then one can hardly criticize such a solution (X, Z). Tt is the exact
solution to a nearby problem, where nearby can be viewed as being of the size of the
errors in the input data.
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Tisseur [25] defines the normwise backward error of an approximate eigenpair as
(4.2) W@ﬁy:mnk4H®+AH®ﬁ:0wAﬂmgﬂﬂhﬂgigN}

where AP; and P; are the monomial basis coefficients of AP(A) and P()), respectively.
Furthermore, Tisseur shows that the following simple formula can be used to compute
the backward error of an approximate eigenpair:

-~

(B[P
N N
S I 11312
Another useful expression for the backward errors of computed eigenvalues was also

given by Tisseur [25, Lem. 3]; this expression is independent of the specific computed
eigenvectors given by

(4.3) nP(Xv T) = (

PO
S o 1P| A

5. Perturbation theory. In this section, we examine the backward errors of
solutions to polynomial eigenvalue problems found via linearization. To do so, we ex-
amine how generic perturbations can—to first order—be mapped onto structured per-
turbations of the polynomial coefficients. The techniques described here are inspired
by the works of Van Dooren and Dewilde [28], and also of Edelman and Murakami
[7], where they examine such mappings. In contrast to those works, we are able to de-
rive upper bounds for the perturbations to the polynomial coefficients obtained from
these mappings. Let us comment on some of the other approaches currently taken
in the literature. There have been many articles performing backward error analyses
of scalar polynomial rootfinding via linearization. These can be summarized in the
works [7, 18, 21] and the more recent works [5, 23]. For matrix polynomials, there
have been a number of backward error analyses performed, for example, Higham, Li,
and Tisseur [13] give local bounds for specific eigenpairs of the companion lineariza-
tions, as do Lawrence and Corless [19] for linearizations in the Lagrange basis. Van
Dooren and Dewilde [28] perform a global analysis for the companion linearization
where they obtain larger upper bounds for the backward errors.

Let us consider the following procedure for computing a solution to the polynomial
eigenvalue problem. Suppose we are given the coefficients of a polynomial matrix in
a particular basis. We construct the appropriate linearization and then pass the
matrices off to the QZ algorithm in order to compute the eigenvalues. According to
the LAPACK Users’ Guide [2, sect. 4.11.1], the QZ algorithm is normwise backward
stable. In other words, the algorithm computes the exact eigenvalues, eigenvectors,
and deflating subspaces of a slightly perturbed pencil,

(4.4) np(N) =

(5.1) AB +AB) — (A + AA),

where the perturbations satisfy ||(AA, AB)||r < q(Ns)em||(4, B)||r, the Frobenius
norm of a pencil is defined as ||(4, B)||r = /||A|%2 + || B||3, ¢(Ns) is a polynomial
function of the dimension of the linearization (usually taken to be linear in practice),
and €, is the machine epsilon.

This backward stability, of course, only applies to the solution of the linear gener-
alized eigenvalue problem. What we would really like to know is if we have backward
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stability with respect to the polynomial problem: what polynomial eigenvalue problem
have we really solved, and is the distance to the original polynomial small?

We will perform a first-order backward error analysis by simultaneously consid-
ering the perturbation of the linearization £ () and the one-sided factorization ®(\)
in order to retain the structure (2.12) for the perturbed problem. More concretely,
we ensure—to first order—that the perturbed problem has the following structure:

AAB; — (A + AAY) P(\) + AP(N)
A(Bz + ABz) — (A2 + AAy) 0

In other words, ensuring that A(By + ABs) — (A2 + AAs) and ®(N\) + A®()\) are dual
minimal bases, we are able to map generic perturbations of the linearization onto
structured perturbations of the polynomial coefficients. A good backward error result
is that the norms of the coefficients of AP(A) are relatively small. Once we compute
a first-order solution A®(\) that satisfies (5.2), we recover the polynomial coefficients
as

(5.3) AP(A) = (MAB; — AAD)D(N) — A;AD()) .

(5.2) (B(N) + AD(N)) =

The first term in this expansion is of the same order of the perturbations of the
linearization, that is, O(eps). Thus, in order to have good backward errors, it seems
appropriate to compute a solution A®(\) that minimizes the contribution from the
second term. To compute such a solution for the perturbations to the one-sided
factorization, consider the bottom block of (5.2). To first order, we have

(5.4) (ABy — A2)AB(N) = —(AABy — AA)B()) .

By equating coefficients—in the specific polynomial basis in which ®(\) is expressed—
we obtain a linear system for the coefficients of A®(A). The coefficients of AP(N)
satisfy

(5.5) C(Ag, Bo)AV = —C(AA2, AB3)V |
where
ADy Dy
(5.6) AV = and ¥ := .
Adg 02

are block vectors of the coefficients A®(A) and ®()), respectively, and where C(A, B)
is a matrix constructed from the matrices A and B, and for the specific polynomial
basis at hand (see, for example, the matrix in (2.14)). We compute a minimum norm
solution to (5.5), and this seems to be a reasonable thing to do, since the growth in
(5.3) is associated with A®(A). A minimum norm solution in any unitarily invariant
norm is given by

(5.7) AV = —C(Ay, By) T C(AAs, ABy)U

where C(As, B2)™ is the Moore-Penrose pseudoinverse of C(As, Bz). We inspect
the polynomial coefficients of AP(\) given in (5.3), and together with the matrices
C(Asz, By) for the specific polynomial basis, we obtain

APnq
APy
(5.8) , — AP = C(AA;, AB) U — C(A1,0)C(Ag, By)*C(AAy, AB,) .

AP,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/26/20 to 163.117.64.14. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

132 P. W. LAWRENCE, M. VAN BAREL, AND P. VAN DOOREN

The above equation holds for any strong linearization of the form (2.4) given in Theo-
rem 2.6. In the next section, we will obtain bounds for the norms of these coefficients
for the specific linearizations and bases that we introduced in section 3. To show the
primary factors involved in the growth of the coefficients of the perturbations, we offer
the following lemma.

LEMMA 5.1. The block vector ﬁ of coefficients of the perturbation AP(\) can
be bounded by

(5:9) [AP|, < IC(aar, ABI + [ A12|C(As, Ba)* [ C(A Az, ABy) D2

where W is the block vector of the coefficients of ®(\) defined in (5.6).

Proof. Simply take the norm of the block coefficient vector (5.8). We have By11 =
[ 0 Iny1 ], sothat C(A1,0) is block diagonal, and hence ||C'(A41,0)||2 = ||A1]l2, and
the upper bound follows. O

Remark 3. We see that there is the possibility of perturbing the coeflicient Py 1,
and thus s eigenvalues could in theory be perturbed to become large finite eigenvalues.
When applying the QZ algorithm to the pencils, such perturbations can be avoided;
by a preliminary deflation of these s eigenvalues, we can ensure that they remain at
infinity. One will also note that this condition arises only in the first term of (5.8),
and for the linearizations considered in this manuscript ®n = e; ® I,. We thus see
that the condition APyt = ABj(e1 ® I;) = 0 requires that we do not perturb the
principal s X s submatrix of B.

6. Growth of ||C(Az, B2)™||2. In this section we consider the growth of the
upper bound (5.9) determined by the term ||C(As, B2)T||2. This term and the norm
of the coefficient vector ||A1||2 are the primary driving factors determining the growth
of the upper bound. Based on the explicit matrices C'(Aa, B2) for the specific basis
considered, we determine bounds for the norm ||C(Az, B3)"|l2. We consider each
of the linearizations given in section 3: (3.1) for the monomial basis, (3.2) for the
Chebyshev basis, and (3.6) for the Lagrange basis.

We first make the observation that all of the linearizations have a Kronecker
product construction, by which we mean that we are able to express Ay = Ay ® I
and By = By ® I for each linearization. Furthermore, this means that each matrix
C(Asg, By) can be written in the form

(6.1) C(Ay,By) = (A%, ® By — By, @ Ay) ® I,

where A\N and EN areAdirectly reAlated to the linearization matrices Ay and Bs, re-
spectively, and where An11 and By are closely related matrices derived from the
relations between the elements of the polynomial basis. In all cases, we define the
explicit matrices for each of the polynomial bases involved.

To compute bounds for the backward errors described in (5.9), we should compute
bounds for the norm ||C(Az, B2) V|2 = 1/omin(C (A2, B2)), where omin(C(Az, B2)) is
the smallest singular value of C(As, B2). Thus, with the aid of (6.1) we see that the
computation reduces to

1

O’min(A\%+1 & EN - gjj\—/i+1 & A\N) .

(6.2) C (A2, Bo) |2 =
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6.1. Monomial. The construction of the matrix C(As, By) for the monomial
basis is perhaps the easiest to identify. Consider the expansion of the product

N
(6.3) (ABy — Ag)®(A) = OANTI 43" 0;\

=0

that is, the product expressed in the same monomial basis with the addition of the
extra basis element AV*+1. This equation can be written as the linear system

© Bz (I)N
On —Ay By Oy 1
(6.4) = T :
O1 —Ay By 51
©o —Az ()

Inspecting the linearization given in (3.1), we see that Ay = An®I, and By = By ®Is,
where Ax and By are given by

(6.5) Av=[Iy 0], By=[0 Iv].
Furthermore, the matrix C'(Aa, Bz) in (6.4) can be rewritten in the form (6.1), where

(6.6) Avii=[Iny1 0], Bypi=[0 Inyi].

Now we will give upper and lower bounds for the norm of the pseudoinverse in the
following lemma.

LEMMA 6.1. For the monomial basis linearization (3.1) the norm ||C(Az, B2)™||2
satisfies the following bounds:

1

\/2 (14 cos (3281))

1
e __
\/2 (1 + cos (% Zlel))

Proof. As discussed in the introduction to this section, the matrix C(Asg, Bs) for
the monomial basis (6.4) can be rewritten in the form (6.1), where the matrices Ay
and BN are defined in (6. 5) and where AN+1 and BN+1 are defined in (6.6). It can
be seen that the matrix AN+1 ® By — BN+1 ® Ay may be reduced by permutation
and by sign scaling to a block diagonal matrix, where each block has at most N rows
and takes one of the two following forms:

(6.7) < ||C(As, Bo)*

11 1 1

(6.8)  Jy:= L k, Joi= L k.

—_
—_

1 1 1
The smallest singular value of C(Asz, Bs) is given by the smallest singular value of

the largest block of the permuted matrix, that is, either Jy or J, ~, having dimensions
N x N and N x (N + 1), respectively. The smallest singular value of C(Az, Bz) is
given by the smallest singular value of Jy = Iy +B NA ~», Where A ~ and B N are given
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in (6.5). We bound the smallest singular value via the eigenvalues of JyJ%. It turns
out that this matrix is closely related to the colleague matrix that Good [11] proposed
for Chebyshev polynomials of the second kind, and we may write the characteristic
polynomial y()\) = det (\] + JyJ%) as
A—2 -1
6.9 det| 1" =Un(A\2=1)+Un_1(A/2—1),
oA -2 0 —1
-1 Ax-1

where Uy (M) is the degree N Chebyshev polynomial of the second kind. This re-
lation can be obtained by Laplace expansion along the last column of A\ + J NJ]E,
combined with the recurrence relations for Chebyshev polynomials of the first and
the second kind. Alternatively, with the change of variable 4 = A/2 — 1, the ma-
trix Al + JyJ& becomes a colleague matrix for polynomial expansions in terms of
Chebyshev polynomials of the second kind [11, p. 63].

What remains to be shown is that the smallest root of the characteristic poly-
nomial x(A) = Un(A/2 — 1) + Un—1(A/2 — 1) lies between the two smallest roots
of Tny1(A/2 — 1) and T (A/2 — 1). With the change of variable p = A\/2 — 1 and
combining a number of recurrence relations for Chebyshev polynomials (see, again,
Good [11]), we rewrite x(\) as

(6.10) Us() + Un-1(s) = DA =0

The roots of Ty (u) interlace the roots of Ty 11 (1), and the polynomials have opposite
signs at g = 1. Thus, the smallest root of Uy (1) + Un—1 (1) must lie between the two
smallest roots of Ty 11(p) and T (p). Expressed in terms of A, these are

010 Awer =2 (1o (Z5ED7)) a1 o (BXSD7))

Thus, the smallest singular values are the square roots of these values, and we can
obtain the bounds (6.7) for the norm ||C(Az, B2)" |2 by taking the reciprocal; this
completes the proof. O

COROLLARY 6.2. Asymptotically, the norm |C(As, B2)T||2 grows according to

L 2(N+1) 1

(6.12) 1C(A2, Ba)*|, = =— +O<N).

Proof. Simply take a series expansion of the upper bound in (6.7). O

Remark 4. By applying the result of Jiang [14, Thm. 1], we can obtain upper and
lower bounds for the singular values of Jy, somewhat similar to the bounds presented
here. However, for our specific case, we have found that the bounds (6.7) are much
tighter, with the asymptotic difference between the upper and lower bounds being a
very modest 2/7.

6.2. Chebyshev. The construction of the matrix C(Asz, By) for the Chebyshev
basis is slightly more complicated than for the monomial basis. Consider the following
expansion:

N
(6.13) (ABz — A2)®(\) = OTy1(\) + ) O:T;(N)
=0
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where the T;(A)’s are Chebyshev polynomials of the first kind. We may write this
product in terms of the coefficients of ®(\):

-1 -
0 2 B2 Dy
On —Ay . Oy

(C] . 0]

@1 . A, B, (I)l

0 I lBg —Ag | 0

For the linearization given in (3.2), the matrix C'(Asg, Bs) also has the structure As =
Ax ® 1, and By = By ® I, where Ay and By are N x (N + 1) matrices given by

3 0

N[

(6.15) Ay = o . By=[0 Iv].
1

(SIS
[«INIE

Furthermore, one may write C'(Az, Bz) in the form (6.1) with the above matrices, and
where ENH and §N+1 have exactly the same structure as EN and EN but are of
dimension (N + 1) x (N + 2).

We first symmetrize the linearization to simplify the analysis of the bounds for
the singular values. Consider the following diagonal equivalence applied to the smaller
matrix in (6.1):

(6.16) (Dyho @ DY )AL ® By — BY | © Ay) (D41 ©@ D),

where Dy, = diag {1, V2 2}. This modifies only the last row and column of A ~ and
AN+1, making them both equal to 1/v/2; furthermore, By is unchanged by this
operation. Thus, the symmetrized version of the matrix C’(Az, Bs) is equal to

(6.17) C(Az, Bs) = (A1 ® By — B @ Ay) @ I,
where
2 0 3
(6.18) Ay = N (')' N
2 V2
< 0
NG

Note that we could also arrive at this same formulation simply by choosing a different
normalization for the Chebyshev polynomials. In other words, if we make the nor-
malization To(A) — \%TO(/\) (see, for example, Trefethen [26, Chap. 17]), we obtain
both the symmetrized version of the linearization and the matrix (6.17).

Compared with the monomial basis, the Chebyshev case is not as straightforward,
and we are only able to obtain a lower bound for the norm ||C(Asz, Bz)™||2, as we will
show in the following lemma.

LEMMA 6.3. For the Chebyshev basis linearization (3.2), the norm of the pesu-
doinverse of C(Aa, Ba) satisfies the lower bound

1

(6.19)
2v/2 (cos (m) — COoS (%))

< [[C(A2, B2) |2
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Proof. We use the symmetrized version of the matrix (6.17) to obtain our lower
bound, since we make use of the symmetry of certain square submatrices. We will
show that ouin(C (A2, By)) = onzan (AN ® By — BN+1 ® Ay) < f(N) for some
function f. To do this, we begin by constructing a vector x ® y such that

(6:20) [|(2" @y") (AR 11 @By =By @ An)|l2 = f(N)la" @y |2 = F(N)l|zll2]lylle-

We construct z as 27 = [ 0 27 |, such that Byyiz = 2, |#|2 = ||z]l2 = 1, and

Ani17 = AZ = AT, where X is the smallest (or largest) eigenvalue of the (N + 1) x
(N + 1) matrix

[N

(SIS

(6.21) a

ol -

S

1
2
0
1
V2
It thus follows that

(6.22) (27 @y") (AL, ® By — By, ® Ay)

= T @y"By — 2T @y Ay =37 @ y"(ABy — Ay) .
Let us now choose a vector y such that ||y||2 = 1, and which minimizes
(6.23) ly" (ABy — An)ll2 = owmin(A\By — Ax) = f(N).

We then have that ||z @ yl2 = 1, |C(Az, B2)T((z ® y) @ I)||2 = f(N), and hence
Umln(C(AQv BQ)) f( )

We now use a result by Thompson [24] to bound the singular values by embedding
the matrix of interest inside a larger matrix. That is, we may embed /\BN — AN in
the larger matrix

(6.24) My — A= Aef —ej/2

ABy — Ay

)

where e; and ez are the first and second unit vectors of length N + 1, respectively.
Since A is already an eigenvalue of A the object of interest is the gap between the two
smallest singular values of A. Recall that A is symmetric, and we can thus compute
the singular values via the eigenvalues of A. We can immediately identify that the
characteristic polynomial of A is the Chebyshev polynomial Tx11(\). This can be
derived by applying diagonal similarity transformations to the colleague matrix intro-
duced by Good [11]. The eigenvalues of A are the zeros of the Chebyshev polynomial
Tn+1(A), which are

2k -1

(6.25) Al = cos (2(

i 1<k<N+1.
N+1)7T>’ Sk N+

Therefore, Thompson’s inequality [24] implies that

(626) 0 < omn(ABy — Ax) = f(N) < cos (ﬁ) — cos (%) -
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Finally, we deduce that the norm of the pseudoinverse C(Ay, B2)' is bounded from
below by

1

2v/2 (cos (M) — Cos (%))
Remark 5. For large N, the lower bound (6.27) behaves as

(N +1)2 1

(6.27) <|C(Ag, Bo)t|l2. O

asymptotically.

6.3. Lagrange. Unlike the Monomial and Chebyshev bases, the Lagrange basis
is not degree graded, and thus there is some additional choice in representing polyno-
mials of degree N + 1. We could add an additional node, but this would modify all of
the Lagrange basis elements. Instead, we make use of the node polynomial ¢(\) as our
extra basis element (since it is already linearly independent), and thus we consider
the expansion

N
(6.29) (ABy — A2)®(N) = OL(\) + Y O:4i(N) .
1=0

Evaluating the expansion at each of the nodes in turn, we immediately recover the
coefficients ©; = (0;Bs — A3)®;. The coefficient O is obtained by substituting the
computed O;’s into (6.29) and then using the relation between the barycentric weights,
the Lagrange polynomials, and the node polynomial given in (3.4). The resulting
linear system is given by

€] BnBa e BoB2 On

@N CTNBQ — AQ (bN—l
(6.30) Ml = o

Ao ooB2 — As 0N

which can also be written in the form (6.1), where Ay and By can be identified from
the linearization (3.5) as
(6.31)
oN —0onN-10Nn—1 1 -0y
A\N: ) EN: )
g1 —0'000 1 —00

and where Ay 1 and By, can be identified from (6.30) as

BN oN
(632) AN+]_ = , Bni1= [ 0 Intr ] .

Bo o)
One may further identify that A\N = ENE, where ¥ =diag{ oy ... 00 }; hence,
we may write C(Asz, Ba) as
(6.33) C(Az, By) = g wBy—| .0 |eBy2)el,

b Iny:

where 37 = [ By --- Bo ] is the vector of barycentric weights.
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A lower bound for the norm ||C(As, B2)"|l2 can be obtained by following a
similar strategy as for the Chebyshev case: we construct a vector to show that
omin(C (A2, B2)) < f(N). It turns out that there is a particularly simple choice for the
structured vector, allowing us to obtain an approximate upper bound for the smallest
singular value, and thus we obtain a lower bound for the norm of the pseudoinverse.

LEMMA 6.4. For the Lagrange linearization (3.5), we obtain the following lower
bound:

1
10Nk (ON—kt+1 — ON—F)]

(6.34) < |C(As, Bo)*|l2

for 1<k <N.

Proof. Since C(Az, Bs) given in (6.33) is a Kronecker product, we only need to
compute a bound for the singular values of the smaller matrix in the product. Thus,
we construct a vector z @ y, where 27 = [ 0 e} ] € RVN*2 and yT = ¢l € RY are
unit vectors, such that we have the following string of equalities:

} ® §N2>

= (UN,kﬂe;f ® é\gEN — eg ® é\gBNE) = eg ® é\gEN(O'N,kJrlI — E)

(6.35) (2" @ y") ([ BET ] ® By - { INO+1

=i @ (e} — On—reipr)(On—ki1] = 2)]

= —On_r(oN_r+1 —on—k)(er @ err1)T

We thus deduce that ||((z7 @ y7) ® I5)C(As, Ba)|2 = |ON—k(0N—k+1 — On—k)| and
therefore that omin(C(A2,B2)) < |On_k(oN-k+1 — oOn—k)|, completing the
proof. 0

Let us consider the ramifications of this result for two specific choices for the
interpolation nodes, namely, the roots of unity and Chebyshev nodes of the second
kind.

Remark 6. For the Lagrange basis linearization (3.5), we obtain the following
bounds for specific choices of nodes:

e For the roots of unity o) = exp (iﬂ’i ), 0 < k < N, we have

1

11— exp (577)]

(6.36) < || C(Az, Ba) 2,

and asymptotically this bound grows like O(N).
e For Chebyshev nodes of the second kind oy, = cos (&7), 0 < k < N, we have

2

(6.57) T—cos ()]

<N C(Az, Ba)F |2,

and asymptotically this bound grows like O(N?).

Proof. For the roots of unity, all of the §; = 5,11/8; have unit magnitude, and
thus the lower bound is driven by the distance between the last two nodes; a series
expansion shows that this is of order O(N). For the Chebyshev nodes of the second
kind, the ratios 6; all have unit magnitude except for the first and the last, which have
magnitude 2 and 1/2, respectively. Again, the lower bound is driven by the distance
between the last two nodes, and this behaves like O(N?) asymptotically. o
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TABLE 1 R
Upper bounds for the norm ||Any1||2-

Basis lAN+1ll2
Monomial 1
Chebyshev <473
Unit points <V1+1/(N+1)

Chebyshev points <VN+1

Remark 7. In sections 6.2 and 6.3, we have only been able to obtain lower bounds
for the norm ||C'(Az, B2)™||2. These lower bounds are, however, a good approximation
to the actual values and thus provide useful insight into the growth of this specific
factor. We remark further that the singular values of C(As, By) are independent of
the specific polynomial coefficients.

7. Numerical experiment. One of the primary objectives of this work is to
provide useful and easily computable upper bounds for the backward error of the
solution of the polynomial eigenvalue problem. This enables us to indicate when we
can compute the solution of the polynomial eigenvalue problem in a backward-stable
way. Thus far, we have introduced the upper bound (5.9) that depends on the choice
of basis used to construct the linearization. The upper bound depends primarily on
the norm of the polynomial coefficients [|A1[|2 = [[[ Px - Fp ]||2, the norm of the
pseudoinverse ||C'(Az, B2)T||2, and the backward errors from the QZ algorithm. For
the linearizations that we introduced in section 3, we developed bounds for the growth
of [|C(Az, B2)"||2, and now we turn to the remaining terms in the upper bound (5.9).
The two terms that remain involve the matrices C'(Az, B2) based on the specific choice
of basis. We were able to write C(As, Bs) as the sum of two Kronecker products, and
in a similar way, we can write the two remaining matrices occurring in (5.9) as

(7.1) C(AA;,AB;) = Ay, ® AB; — By, @ AA;, i=1,2.

We can then form the larger upper bound for the block vector of coefficients of AP(A):
(7.2)

|32], < iaa Ay eiwle (1A%l + 188 12) (L4 140010(A2 B2) o)

This larger upper bound has the advantage that we can compute it directly from
the linearization and the bound for the backward error from the QZ algorithm (that
is, using the bound on the perturbations ||[(AA, AB)||r). For all of the linearizations
defined in section 3, inspecting the coefficients of ®(\) reveals that ¥ = vec(Iy11)R 1
and thus | V|| = v/N + 1. Furthermore, we have |[By41|2 = 1, and upper bounds

for the values of ||;1\ N+1]|2 are given in Table 1. For each of the bases considered, the

bounds follow from the inequality ||Ani1llz < \/||EN+1H1||EN+1||00- It suffices to
note that for points on the unit circle we have g, = oy, /(IN + 1), and for Chebyshev
points of the second kind we have 8, = (=1)* for 1 < k < N — 1 and 3y = 1/2,
By = (-1)V/2.

At this point we now have an upper bound for the backward error that depends on
the degree of the polynomial and on the norm of the polynomial coefficients ||Aj||2.
Thus, we wish to investigate polynomials where we will be able see how close our
theoretical bounds are to the computed backward errors. Hence, we investigate very
well-behaved polynomials, which will exemplify the degree-dependent behavior for
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T T T T T T T [ T T T [ T rr T
Upper bound (7.2)
O  Computed: |[[APy,...,AP]>
————— Fitted: H[AR\,APO]HZ
X Tisseur: max; 7p(\;)

10713 ¢ 3
é D
o
T 4n-14 L ) X
5 10 - o O’O"Oooo X ¥
E i o __-0% x X X X x X
& 2 o y xx X X XX
m >-- X X
| X x X X
107°F  x % E
10_16 1 N N N [ SRS R RS SR R
5 10 15 20 25 30 35 40
Degree

Fic. 1. Monomial basis linearization.

each of the linearizations discussed in this manuscript. By “well behaved,” we mean
that all of the polynomial coefficient norms || P;||2 are all equal. According to Tisseur
[25, Thm. 7] (for quadratic eigenvalue problems), and Higham, Li, and Tisseur [13]
(for higher degree polynomials), the condition that all ||P;|]|]2 & 1 implies that the
backward errors of the polynomial eigenvalue problem are approximately equal to the
backward errors of the linearization.

We found that by drawing coefficients from the circular unitary ensemble, and
scaling the coefficients so that ||[ Py Py ]|l2 = 1, the resulting polynomials
are well behaved. The polynomials have eigenvalues that are close to the underlying
measure associated with the polynomial basis used. Thus, for the monomial basis
the eigenvalues cluster near the unit circle, for the Chebyshev basis the eigenvalues
cluster near the unit interval, and for the Lagrange basis, the eigenvalues cluster near
the interpolation nodes.

Our experiment was performed on polynomials having dimension s = 2 and in-
creasing degree up to 40. The backward errors in the polynomial coefficients were
computed using (5.8) where the perturbations AA and AB were reconstructed from
the computed eigenvalues and eigenvectors produced by the function qz in MATLAB.
For all linearizations the coefficient APyy; = 0, and thus we recover the s infinite
eigenvalues exactly. We compared the backward errors with the bound (7.2), and
show this in Figures 1-4. For the monomial basis, we also include a comparison with
the bound given by Higham, Li, and Tisseur [13], that is, the expression given in (4.4),
where we take the maximum over all of the computed eigenvalues. Figure 1 shows
that the global backward error bound that we present here exceeds the local one only
by an order of magnitude. Since our bound is a global bound, rather than just for
specific eigenpairs, we find this overestimation to be quite satisfactory. Table 2 shows
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10-11: " " " T ! i — 1 r r 1 1]
i Upper bound (7.2)

O  Computed: [[[APy,...,AR]|>
————— Fitted: [[APy,.... APy

Backward error

10-15 . . . 1 . . . [ PR R BRI B R
10 15 20 25 30 35 40
Degree
F1G. 2. Chebyshev basis linearization.
10-11: T T T T T T — T T T T T T T T T T

Upper bound (7.2)
O  Computed: |[[APy,..., AR
----- Fitted: [[[APy, ..., AP]|l2

Backward error

S

10.15 L L L 1 L L PR RS TSRS BT R
10 15 20 25 30 35 40

Degree

F1G. 3. Lagrange basis linearization: Unit circle points.
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10'10: T T T T T T LA B R B R T L L
- Upper bound (7.2)

O  Computed: [[[APy,...,AR]|>
————— Fitted: ||[[APy,..., AP

Backward error

10.15 L L L 1 L L PR RS TSRS BT R
10 15 20 25 30 35 40

Degree

F1G. 4. Lagrange basis linearization: Chebyshev nodes.

TABLE 2
Comparison of growth factors.

Basis Fitted growth  Bound growth
Monomial 1.2 1.3
Chebyshev 1.8 2.2
Unit points 0.9 2.2

Chebyshev points 2.1 2.8

the exponents of the growth of the upper bound and backward error with respect to
the degree, that is, we tabulate the exponent « of the model SN fitted in the least
squares sense to the computed backward errors and upper bound.

For the Monomial and Chebyshev linearizations, we see that the upper bound is
exceeding the computed backward errors only by around one order of magnitude. The
growth rate is also captured quite accurately. For the Lagrange basis, we interpolate
at two sets of nodes: the roots of unity and Chebyshev points of the first kind. For
the roots of unity, we see something quite unusual, the upper bound overestimates
the growth in the backward error by more than a factor of N. The overestimation of
the growth is less pronounced for the Chebyshev points.

8. Discussion and conclusion. In this manuscript, we have introduced a pro-
cedure for constructing strong linearizations of order (N +1)s of polynomial matrices.
This construction allows for a uniform backward error analysis over a wide range of
linearizations expressed in different polynomial bases. We have shown that the growth
in the backward errors is dependent on only a small number of factors: the norm of
the pseudoinverse of the matrix C'(Az, Bs), the norm of the block vector of polynomial
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coefficients, the norm of the coefficients of the one-sided factorization, and the norms
of Ayy1 and Byy1 that are related to the polynomial basis. For specific bases and
linearizations we have shown that the upper bound is a reasonable approximation of
the computed backward error for well-behaved problems, and for the classical mono-
mial and Chebyshev linearizations it accurately captures the growth in the backward
error with increasing degree.
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