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Optimal Scaling of

Companion Pencils for

the QZ-Algorithm∗†

D. Lemonnier‡, P. Van Dooren‡

1 Introduction

Computing roots of a monic polynomial may be done by computing the eigen-
values of the corresponding companion matrix using for instance the well-known
QR-algorithm. We know this algorithm to be backward stable since it computes
exact eigenvalues of a slightly modified matrix. But it may yield very poor backward
errors in the coefficients of the polynomial. In this paper we investigate what can be
done to improve these errors, using a geometric approach. We will see that precon-
ditioning the companion matrix using some carefully chosen similarity may achieve
this goal. In particular, we will give a geometric interpretation of what balancing
the companion matrix does. We then naturally extend these results for the non-
monic polynomial case where the algorithm we deal with is now the QZ-algorithm
acting on companion pencils instead of companion matrices.

The article is divided into two parts: in the first one we examine the monic
scalar polynomial case and in the second one the general non-monic scalar case. In
each part, we begin by explaining the problem in terms of error analysis, and then
we look at the problem from a geometric point of view.
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and Culture. This work was also supported by the National Science Foundation under Grant
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†We thank W.-W. Lin and H. Fan (Tsing Hua University, Taiwan) for some useful discussions
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2 The monic scalar case

2.1 Problem statement

We consider the nth-order polynomial p : C → C : λ → p(λ)
.
= λn+an−1λ

n−1+
. . .+a1λ+a0 with complex coefficients ak . We can associate with this polynomial
the companion matrix

C =




0 −a0

1 0 −a1

1 −a2

. . .
.
.
.

1 −an−1




(1)

whose characteristic polynomial χC(λ)
.
= det (λI − C) = p(λ). We then compute

the roots of p(λ) using any eigenvalue algorithm. If we use the standard QR-
algorithm, the computed eigenvalues are exactly those of a matrix C + ∆ for some
dense backward error matrix ∆. We can state that this backward error satisfies

‖∆‖ = O(ε)‖C‖ (2)

where ε denotes the machine precision, and ‖ · ‖ the Frobenius norm for example.
However we are interested not by the matrix itself but by p(λ), its characteristic
polynomial. So, we would like to require that the computed eigenvalues are precisely
the roots of a polynomial p(λ) + δ(λ) where δ(λ) = δan−1λ

n−1 + . . . + δa1λ + δa0

satisfies ‖δ(.)‖ = O(ε)‖p(.)‖ for some polynomial norm, which would mean backward
stability for our root-seeking problem. But a more interesting requirement is the
so-called componentwise backward stability :

max
k

|δak|

|ak|
= O(ε) . (3)

If (3) holds, we know that the computed roots are those of a polynomial that is
ε-close to the original polynomial in a relative componentwise sense.

2.2 A geometric approach

Let us consider the euclidian matrix space C
n×n with the usual Frobenius inner

product :

〈A , B〉
.
= tr(AB∗) .

In this space, we consider the manifold

Orb
.
= orbit(C) = {T−1CT : det(T ) 6= 0} .

The dimension of this manifold is n2 − n. A first order calculation shows that the
tangent space to this manifold at C, written Tan, is the set of additive commutators

{XC − CX : X ∈ C
n×n}, and the normal space Nor at the same point C (of
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dimension n) is the centralizer of C∗ : {X ∈ C
n×n : XC∗ = C∗X}, i.e. the set

of matrices that commute with C∗.
It has been already shown in [6] how a dense perturbation ∆ to the matrix C
leads to first order perturbations in the coefficients ak. To do so, one considers the
often called Sylvester space Syl, namely the set of companion matrices. It is a n-
dimensional affine space that goes through C. One easily shows (see for example [1])
that every matrix may then be decomposed as a linear combination of a companion
matrix and a matrix in the tangent space. On the other side, one can prove that
perturbations in the tangent space do not affect the coefficients of χC(λ) to first
order. Indeed, for any small X we may write up to first order

det((λI − (C + (XC − CX))) = det(λI − (I + X)C(I + X)−1)

= det(I + X) det(λI − C) det(I − X)

= (1 + tr(X)) det(λI − C)(1 − tr(X))

= det(λI − C) .

So only the perturbations that lie in Syl play a role here up to first order. Decom-
posing ∆ in Syl

⊕
Tan, expressing that Tan is orthogonal to Nor, and taking the

special structure of the elements of Nor into account, it is then shown in [6] that :

|δak| = | 〈∆ , M∗
k+1 〉 | (4)

where the M∗
k ’s (k = 1 to n) defined as

Mk =

k︷ ︸︸ ︷


ak

ak+1 ak

.

.

. ak+1

. . .

an = 1

.

.

.
. . . ak

an = 1
. . . ak+1

. . .
.
.
.

an = 1

n−k︷ ︸︸ ︷
−a0

−a1

. . .

.

.

.
. . . −a0

−ak−1

. . .
.
.
.

. . .
.
.
.

−ak−1




(5)

span the normal space Nor. Notice that the relation (4) only holds to first order.
The matrices Mk are actually the polynomial coefficients of the adjoint matrix of
C. Defining M0 = Mn+1 = 0, one can show [7] that these matrices satisfy

Mk = CMk+1 + akI for k = 0 . . . , n . (6)

.

How far are we from getting (3) ? To answer this, we use the Cauchy-Schwarz
inequality and the backward stability property of the QR-algorithm (2) which yields

|δak| = O(ε) ‖C‖ ‖Mk+1‖
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where ‖ · ‖ denotes the Frobenius norm. Assuming no ak ’s are zero, we then obtain

max
k

|δak|

|ak|
= O(ε) max

k

‖C‖ ‖Mk+1‖

|ak|
. (7)

One could call this componentwise backward stability because maxk
‖C‖ ‖Mk+1‖

|ak| is

a constant. But this can be quite bad if the |ak| ’s are very different in size ! An

upper bound obtained from (5) for it is given by
√

n ‖C‖2

mink |ak| .

We now show how to modify the problem in order to get improved componen-
twise backward errors. All matrices on the manifold Orb have the same character-
istic polynomial. So we could apply the QR-algorithm to any point of Orb, and
get a new backward error. To obtain the |δak| ’s, we just have to transform this
error back to C and project it on Nor. If the new point has been well chosen, the
new |δak| ’s will be smaller. Suppose the new point is Ĉ = T−1CT . Applying the

QR-algorithm to it gives us a new backward error ‖∆̂‖ = O(ε) ‖Ĉ‖. We transform

it back to C where it becomes T ∆̂T−1. Then using (4), we get

|δ̂ak| = | 〈T ∆̂T−1 , M∗
k+1〉 |

= | 〈∆̂ , T ∗M∗
k+1T

−∗〉 |

= | 〈∆̂ , M̂ ∗
k+1〉 | . (8)

But it is not difficult to see that the M̂ ∗
k ’s span the normal space N̂or at the point

Ĉ. So we keep the same interpretation of what the δak ’s are. Proceeding as before,
we can thus write from (8) that

max
k

|δ̂ak|

|ak|
= O(ε) max

k

‖Ĉ‖ ‖M̂k+1‖

|ak|
.

It looks like (7) but the big difference is that we now can affect the constant

maxk
‖Ĉ‖ ‖M̂k+1‖

|ak| by carefully choosing a good similarity. More precisely, we want

to solve :

min
T

max
k

‖T−1CT‖ ‖T−1Mk+1T‖

|ak|
. (9)

But it is a well-known fact that under similarity transformations the Frobenius
norm of a matrix is minimal for the similarity that makes it diagonal. This can be
seen after putting the matrix in its Schur form. If the matrix is not diagonalizable,
the result is the same except that the minimum cannot be reached : it becomes
an infimum [9]. Moreover, as we have just seen, the similarity Td that makes C

diagonal simultaneously makes the Mk ’s diagonal. So the similarity that solve the
problem (9) is given by T = Td. where the T−1

d Mk+1Td ’s are diagonal. Notice that
if we replace Td by TdU where U is unitary, does not change anything. The optimal
points on Orb are thus of the form (TdU)−1 C (TdU). These points correspond
also to normal matrices for they are solutions of

(T−1CT ) (T−1CT )∗ = (T−1CT )∗ (T−1CT ) . (10)
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And conversely all solutions of (10) are of this form. Hence, denoting N ⊂ C
n×n

the set of normal matrices, we may write :

T−1CT is optimal ⇐⇒ T−1CT ∈ N ∩ Orb. (11)

We will in general not be able to reach these points for several reasons. First of all,
C has possibly multiple roots and consequently Λ does not necessarily belong to
Orb (but it belongs to the closure of Orb [9]). Secondly, even if C is diagonalizable,
the similarity that makes it diagonal is precisely what we want to compute and is
therefore unknown before running the algorithm : it can thus not help to precon-
dition the companion matrix C. Thirdly we want to compute the preconditioning
similarity exactly, without introducing new numerical errors, which is e.g. possible
with real diagonal similarities whose entries are powers of two [8]. For all these
reasons we will limit ourselves to real diagonal similarities. Then one quickly sees
that we can no longer be optimal since for example (10) becomes : find T = D,
where D stands for some diagonal similarity, such that

D−1CDDC∗D−1 = DC∗D−1D−1CD (12)

which has no solution, because the zero entries of CC∗ do not correspond to those
of C∗C. Therefore the optimal scaling D solves

min
D

max
k

‖D−1CD‖ ‖D−1Mk+1D‖

|ak|
. (13)

It can be proven that taking the logarithm and changing the variables leads to
minimizing a convex function1. (The proof being too long, we do not give it in this
paper.) Hence there are good algorithms that solve it efficiently.

Let us now end this section by giving a geometric interpretation of what the
traditionally used scaling transformation does. Knowing that the optimal points on
Orb correspond to normal matrices, we would be tempted by rather defining this
optimal scaling problem :

inf
D,U

‖D−1CD − U∗ΛU‖ (14)

which boils down to minimizing the Frobenius distance between OrbD
.
= {D−1CD :

det(D) 6= 0} and OrbN
.
= N ∩Orb. But as we said before the problem is that we

have no knowledge of Λ before running the algorithm. But if we choose a normal
matrix that is diagonal, Λ will not appear in the minimization problem (14). And
one easily sees that the only diagonal matrix in OrbN (and even in Orb) is Λ.

1Special thanks to Yurii Nesterov (Center for operations research and econometrics (CORE),
Université Catholique de Louvain) for having given a proof in a personal communication.
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Figure 1. The balancing similarity minimizes the Frobenius norm between

OrbD and Λ.

This is exactly what the the diagonal similarity that balances2 Ĉ does : it mini-
mizes the Frobenius norm of Ĉ or equivalently the Frobenius norm of (Ĉ − Λ). It
is thus suboptimal for the problem (14). Figure 1 gives a schematic view of what
the balancing similarity does.

3 The general non-monic scalar case

3.1 Problem statement

Here we deal with the nth-order complex polynomial p(λ)
.
= anλn + an−1λ

n−1 +
. . .+a1λ+a0 . Because we make no assumption on an, we could take the companion
matrix (1) into account where we divide each ak (k ≤ n− 1) by an, which can lead
to a very large backward error (see (2)) if an is very small. So we build the matrix
pencil

λ Ī − C = λ




1
1

. . .

an


 −




0 −a0

1 0 −a1

. . .
...

1 −an−1


 (15)

whose determinant is p(λ). Its eigenvalues satisfy det (λ Ī − C) = 0. Computing
the roots of p(λ) reduces once again to an eigenvalue problem. If we use the stan-
dard QZ-algorithm, the computed eigenvalues are exactly those of a matrix pencil
λ (Ī + ∆B) − (C + ∆A) for some dense backward error matrix pencil λ ∆B − ∆A

with
‖∆A‖ = O(ε)‖C‖ , ‖∆B‖ = O(ε)‖Ī‖ (16)

where ‖.‖ denotes e.g. the Frobenius norm. Recall that we want the componentwise
backward stability (3) to be satisfied (now also for k = n).

2A matrix is balanced if, for every row, the norm of the row is equal to the norm of the
corresponding column.
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3.2 A geometric approach

We work inside the 2n2-dimensional space of n × n complex matrix pencils with
Frobenius inner product

〈λ B1 − A1 , λ B2 − A2〉
.
= tr(A1A

∗
2 + B1B

∗
2) .

In this pencil space we consider the manifold

Orb
.
= orbit(λ Ī − C) = {P−1(λ Ī − C)Q : det(P ) det(Q) 6= 0} .

One can check by performing a first order calculation that the tangent space to this
manifold at the point λ Ī − C consists of matrix pencils of the form

Tan = {λ TB − TA = λ (XĪ − ĪY ) − (XC − CY ) : X, Y ∈ C
n×n} .

Indeed by definition it holds

λ TB − TA = [(I + δP )−1(λ Ī − C)(I + δQ) − (λ Ī − C)]1st order . (17)

Hence denoting −δP by X and −δQ by Y , we get the desired expression for the
tangent space. Furthermore it is shown in [5] that the normal space at the same
point can be seen as

Nor = {λ NB − NA : NAC∗ + NB Ī∗ = 0 and C∗NA + Ī∗NB = 0} . (18)

Remark that letting an = 1 brings us back to the centralizer of C∗ for NA. The
dimension of Nor is called the codimension of the orbit, denoted as cod(λ Ī−C). We
know from [3] that this number is the sum of different contributions depending on
the structure of the Kronecker Canonical Form (KCF) of the pencil (15). Because
this pencil is regular and has no eigenvalues at infinity (an is supposed not to
be zero), the KCF contains only Jordan blocks. If p is the number of distinct
eigenvalues, pi the number of Jordan Blocks for λi and qj(λi) the size of the j-
th block associated with λi, taking into account that the companion matrix C is
non-derogatory, we find

cod(λ Ī − C) =

p∑

i=1

pi∑

j=1

(2j − 1)qj(λi) = n .

The dimension of Orb is thus 2n2 − n.

We will now try to proceed in the same way as [6] to find out how a dense
perturbation λ ∆B −∆A to the matrix pencil (15) leads to first order perturbations
in the coefficients ak.
We first have to find a transversal space through λ Ī − C. The natural space we
think of is the set of ’companion pencils’ of the form (15). Like in section 2, we
will call it Syl. This space has dimension n + 1. So we can no longer decompose
uniquely a perturbation of (15) in one component along Syl and another along Tan
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because the sum of the dimensions of these two subspaces exceeds 2n2. Where does
this come from ? The answer is given by looking carefully at the tangent space.
In the monic case, a perturbation to C that lies in the tangent space does not
modify the Jordan Canonical Form (JCF) to first order, i.e. preserve χC(λ). Since
C is non-derogatory implies there is indeed a one-to-one correspondence between
the JCF and the characteristic polynomial. So the totality of the first order coeffi-
cient perturbation lies in Syl. In the non-monic case, a tangential perturbation to
λ Ī − C does not change the KCF to first order, but does modify the determinant!
Our decomposition can thus not work anymore. The idea is then to consider only
the points of Orb that have the same determinant p(λ), such that any tangential
perturbations in this subspace

Õrb
.
= {P−1(λ Ī − C)Q : det(P ) = det(Q) 6= 0} .

preserve the determinant to first order. The tangent space to Õrb at the point
λ Ī − C consists of matrix pencils of the form

T̃an = {λ T̃B−T̃A = λ (XĪ−ĪY )−(XC−CY ) : tr(X) = tr(Y ) X, Y ∈ C
n×n} .

The trace condition comes up because in (17) we now impose det(I + δP ) to be
to first order equal to det(I + δQ) which yields tr(δP ) = tr(δQ). It has thus

dimension 2n2 − n − 1. It follows that the normal space Ñor will have dimension
n + 1. We can define this normal space in a similar way to (18). Expressing that

each vector of Ñor must be orthogonal to T̃an, and using appropriate choices of
X , Y , we find

Ñor = {λ ÑB − ÑA : ÑAC∗ + ÑB Ī∗ = αI = C∗ÑA + Ī∗ÑB , α ∈ C} . (19)

To make our error decomposition, we need a basis for Ñor. We define first the
Mk ’s to be a slightly modified version of the Mk ’s we had in section 2 :

Mk =

k︷ ︸︸ ︷


ak

ak+1 ak

.

.

. ak+1

. . .

an

.

.

.
. . . ak

an

. . . ak+1

. . .
.
.
.

1

n−k︷ ︸︸ ︷
−a0

−a1

. . .

.

.

.
. . . −a0

−ak−1

. . .
.
.
.

. . .
.
.
.

−ak−1




.

(20)

After some manipulations one obtains the relations
{

Ī Mk = C Mk+1 + akI

Mk Ī = Mk+1 C + akI
(21)

which have to be compared with (6). Hence with the convention M 0 = Mn+1 = 0,

the n + 1 independent vectors λ ÑB − ÑA
.
= λ M

∗
k + M

∗
k+1 for k = 0, . . . , n
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satisfy (19). They thus form a basis for the normal space Ñor.

We now have all we need. Writing ∆ = λ ∆B − ∆A as ∆ = ∆T̃an + ∆Syl,

expressing that ∆T̃an is perpendicular to Ñor, and keeping in mind the form of

∆Syl, we come to the desired equation :

|δak| = | 〈λ ∆B − ∆A , λ M
∗

k + M
∗

k+1〉 |

for all k ’s between 0 and n. In particular, we see that |δa0| only depends on ∆A,
and |δan| only on ∆B , which corresponds to our intuition.

The same question appears. How far are we from getting (3) ?
To answer this, we follow the same procedure as in section 2. Using (16) yields

|δak| ≤ ‖λ ∆B − ∆A‖ ‖λ Mk + Mk+1‖

= O(ε) ‖λ Ī − C‖ ‖λ Mk + Mk+1‖

where ‖.‖ denotes the Frobenius norm, such that if no ak ’s are zero we have

max
k

|δak|

|ak|
= O(ε) max

k

‖λ Ī − C‖ ‖λ Mk + Mk+1‖

|ak|
.

Like before, this maximum is constant but can be very large if the order of mag-
nitude of the |ak| ’s varies a lot. An upper bound for it obtained from (20) is√

2n ‖λ Ī−C‖2

mink |ak| .

Would it be possible to improve this bound using left and right precondition-
ing transformations ? We know we can apply the QZ-algorithm to another point

T−1
2 (λ Ī − C)T1 of the manifold Õrb since all matrix pencils on it have the same

eigenvalues, and the idea is to take the point in such a way that the projection on

Ñor of the new backward error λ ∆̂B − ∆̂A transformed back to λ Ī −C is smaller
than the projection without preconditioning. In view of this, we have

|δ̂ak| = | 〈T2(λ ∆̂B − ∆̂A)T−1
1 , λ M

∗
k + M

∗
k+1〉 |

= | 〈λ ∆̂B − ∆̂A , T ∗
2 (λ M

∗
k + M

∗
k+1)T

−∗
1 〉 |

where the T ∗
2 (λ M

∗
k +M

∗
k+1)T

−∗
1 ’s span the normal space T ∗

2 Ñor T −∗
1 at the

new point. We can thus write

max
k

|δ̂ak|

|ak|
= O(ε) max

k

‖T−1
2 (λ Ī − C)T1‖ ‖T−1

1 (λ Mk + Mk+1)T2‖

|ak|
.

Now the problem we want to solve is the following :

min
det(T1)=det(T2)

max
k

‖T−1
2 (λ Ī − C)T1‖ ‖T−1

1 (λ Mk + Mk+1)T2‖

|ak|
. (22)
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Since the Frobenius norm of a pencil is invariant under unitary transformations,
we can assume both pencil be in generalized Schur form. Indeed one easily sees
from (21) that the transformations Q1, Q2 that make it upper triangular make
the pencil λ Mk + Mk+1 upper triangular too (for every k). We will minimize
this product it in two times. First we take in account only transformations that
preserve the diagonal elements, and additionally we consider a diagonal scaling
transformation. Assuming that the pencil λ Ī − C is diagonalizable, i.e. that the
roots of the polynomial are distinct, the first part of the job is done by unit upper
triangular left and right transformations R1, R2 that kill the elements above the
diagonal without changing the diagonal self [4]. From (21) also, it is clear that
these transformations act simultaneously on both pencils. Clearly this minimizes
the norm of each pencil under this class of transformations, and hence minimizes
the product of the norms. Then it remains to find the diagonal transformation D (

that verifies det D = 1 such that (Q2R2)
−1(λ Ī −C)(Q1R1D) is still on Õrb ) that

scale them in such a way that the product is minimum.
If the pencil is not diagonalizable, the result is the same except that the minimum
cannot be reached : it becomes an infimum [9]. So the optimal transformations
that solve (22) are given by T1 = Q1R1D and T2 = Q2R2. Notice here that
replacing T1 by T1U1 and T2 by T2U2 where U1 and U2 are unitary, does not modify

anything. The optimal points on Õrb are thus of the form (Q2R2U2)
−1 (λ Ī −

C) (Q1R1DU1) = U∗
2 (λ ΛB − ΛA)DU1. These points are normal pencils. Indeed

one defines in [2] a pencil λ B−A to be normal if there exist unitary transformations

U1 and U2 such that U2(λ B−A)U∗
1 is diagonal. Hence denoting Ñ ⊂ C

n×n×C
n×n

as the set of normal pencils ’generated’ by the diagonal pencil (λ ΛA − ΛB)D, we
may write :

T−1
2 (λ Ī − C)T1 is optimal ⇐⇒ T−1

2 (λ Ī − C)T1 ∈ Ñ ∩ Õrb . (23)

Notice that in the monic case, it was necessary and sufficient to be normal for being
optimal (11). Here it is only necessary. This comes from the fact that there are

several diagonal pencils on Õrb contrarily to the monic case where there is only
one diagonal matrix on the manifold.
We will generally not be able to reach these points for the reasons we explained
at the end of section 2. We will limit ourselves to real diagonal transformations
D1, D2. Then one quickly sees that we can no longer be optimal since diagonal
transformations do not change the pencil structure. Therefore the optimal scaling
problem is defined to be

min
det(D1)=det(D2)

max
k

‖D−1
2 (λ Ī − C)D1‖ ‖D−1

1 (λ Mk + Mk+1)D2‖

|ak|
. (24)

Writing a minimum makes sense since taking the logarithm and changing the vari-
ables leads to minimizing a convex function on a convex constraints set. So the
scaling transformations can be computed efficiently.
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