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Abstract. In this paper we present a new diagonal balancing technique for regular matrix pencils
λB − A, which aims at reducing the sensitivity of the corresponding generalized eigenvalues. It is
inspired from the balancing technique of a square matrix A and has a comparable complexity. Upon
convergence, the diagonally scaled pencil has row and column norms that are balanced in a precise
sense. We also show that balancing a pencil boils down to making it closer to some standardized
normal pencil. We give numerical examples illustrating that the sensitivity of generalized eigenvalues
of a pencil may significantly improve after balancing.
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1. Introduction. A matrix A with a norm that is several orders of magnitude
larger than the modulus of its eigenvalues typically has eigenvalues that are sensitive
to perturbations in the entries of A. It is shown in [4] that the Frobenius norm of a
matrix can then often be reduced via a diagonal scaling of the type D−1AD. Such a
scaling can be performed in exact arithmetic if the diagonal elements are constrained
to be integer powers of the base of the finite precision arithmetic (typically 2 or 10).
As a consequence the eigenvalues do not change, but their sensitivity can significantly
be reduced. Such a diagonal scaling is therefore typically used before running any
eigenvalue algorithm.

In this paper we introduce a similar scaling method for square pencils λB − A
with a determinant det(λB − A) that is not identically zero for all values of λ. For
such pencils – which are called regular – one can define generalized eigenvalues via
the zeros of the polynomial det(λB − A). Our scaling method can be viewed as a
natural extension of the balancing algorithm of [4] to regular matrix pencils and is
aimed at reducing the sensitivity of the generalized eigenvalues of the pencil. This
new method differs from that of Ward [7] whose aim it is to make the pencil entries
have magnitudes as close to unity as possible, whereas our aim is to make the pencil
as close as possible to some standardized normal pencil.

We first recall the classical balancing method for matrices and some of its proper-
ties. We then introduce the new balancing method for pencils and derive its analogous
properties. We briefly discuss the complexity of the algorithm and finally give some
numerical results illustrating the performance of the new scaling method.

2. Normal matrices and balancing. Normal matrices are known to have or-
thogonal eigenvectors and hence well conditioned eigenvalues [4]. Therefore if one
has to compute eigenvalues of an arbitrary n × n matrix A, it is recommended to
make it closer to a normal matrix by an error free transformation. Diagonal scaling
transformations with positive diagonal elements that are integer powers of the base
can be performed exactly since they only amount to integer changes in the exponents
of the matrix entries. And in order to preserve the eigenvalues one performs diagonal
similarities D−1AD.

∗This paper presents research results of the Belgian Programme on Interuniversity Attraction
Poles, initiated by the Belgian Federal Science Policy Office. The scientific responsibility rests with
its authors.

†Univ. Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (lemonnier@csam.ucl.ac.be).
‡Univ. Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (vdooren@csam.ucl.ac.be)

1



2 D. LEMONNIER AND P. VAN DOOREN

The basic question is thus how to characterize a diagonal scaling D−1AD that
makes a matrix closer to a normal matrix. For this we consider two equivalent char-
acterizations of normal matrices. A matrix A is normal iff
(1) A has orthogonal eigenvectors or, equivalently, its Schur form AS :

AS := U∗AU, U∗U = In (2.1)

is a diagonal matrix ΛA

(2) the so-called defect from normality

γ(A) :=
n∑

i=1

σ2
i −

n∑

i=1

|λi|2 (2.2)

is zero, where σi and λi are the singular values and the eigenvalues of A, respectively.
The defect from normality γ(A) is always non-negative [2], which easily follows

from (2.1) and the fact γ(A) = γ(AS), since unitary similarities do not change the
eigenvalues nor the singular values of a matrix. Let Orb(A) denote the orbit of A, i.e.
the set of matrices similar to A. Then γ(A) is the minimum squared distance between
A and any normal matrix similar to A.

Theorem 2.1. The optimization problem

inf
T
‖T−1AT‖F (2.3)

has a normal matrix Na in the closure of the orbit of A as solution. If A is di-
agonalizable then there exists a bounded T such that Na = T−1AT , otherwise T is
unbounded.

Proof. Use the (complex) Schur decomposition AS = U∗AU and choose a unitary
matrix Q such that the matrix R := U∗TQ is triangular. Since unitary transforma-
tions do not change the Frobenius norm, the above minimization is then equivalent
to

inf
R
‖R−1ASR‖F ,

which has the diagonal part ΛA of AS as solution. The transformation matrix R will
be bounded for a diagonalizable matrix A, and it will be unbounded otherwise (see
also [5] for more details).

It then follows that
∑n

i=1 σ2
i is the Frobenius norm squared of AS and therefore

also the sum of the entries squared of AS , while
∑n

i=1 |λi|2 is just the sum of the
diagonal entries squared of AS . A diagonal scaling D−1AD, on the other hand, does
not change the λi’s but does modify the σi’s. So one can reduce the gap γ by scaling A
in order to diminish its Frobenius norm. This is exactly what the balancing algorithm
[4] does : it solves

inf
D

‖D−1AD‖F . (2.4)

Let ei denote the i-th unit vector, then it is shown in [4] that the optimal scaling is
achieved when D−1AD satisfies

‖(D−1AD)ei‖22 = ‖eT
i (D−1AD)‖22 ∀ i = 1 . . . n (2.5)
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and an algorithm is provided for computing an approximate solution D with elements
that are powers of the base of the finite precision arithmetic. Each step of that algo-
rithm decreases the Frobenius norm of the scaled matrix and hence also the distance
to the normal matrices with the same spectrum as A.

The aim of this paper is to generalize these balancing ideas to regular matrix
pencils (λB − A). In other words we will try to answer the following questions : (1)
what is the property of regular pencils that is equivalent to normality in the standard
eigenvalue problem, and (2) how to scale an arbitrary pencil so that it gets as close
as possible to achieving this property?

3. Normal pencils. We first recall a definition of normal pencils, given in [1].
Definition 3.1. An n×n complex regular pencil λB−A is said to be normal if

it has orthogonal right and left eigenvectors, i.e. if it has a decomposition of the form

U∗
l (λB −A)Ur = λΛB − ΛA,

where Ul, Ur are unitary, and ΛA, ΛB are diagonal.
In order to relate this to a defect we recall the definition of generalized singular

values of two square matrices A and B.
Definition 3.2. The right (resp. left) singular values σri (resp. σli) of λB −A

are defined to be the generalized eigenvalues of λBT B−AT A (resp. λBBT −AAT ).
Since the invertibility of B is not essential in these definitions, we first make the

simplifying assumption that B is invertible. It then follows easily that

σri = σi(AB−1), σli = σi(B−1A).

When B is invertible, it is shown in [1] that the pencil λB − A is normal iff both
AB−1 and B−1A are normal. A good candidate for the defect from normality of a
regular pencil λB −A appears then to be

Γ(A, B) :=
n∑

i=1

σ2
ri +

n∑

i=1

σ2
li − 2

n∑

i=1

|λi|2

where λi are the generalized eigenvalues of the pencil. Clearly Γ(A,B) = γ(AB−1) +
γ(B−1A), which is always positive and is zero iff both AB−1 and B−1A are normal,
and hence iff the pencil λB −A is normal.

If B is not invertible, we need another “defect from normality” function since
Γ(A,B) is then the difference between two infinite quantities. We can then consider
a transformed pencil

λB̂ − Â := λ(cB − sA)− (sB + cA), c2 + s2 = 1. (3.1)

It is well-known (see e.g. [1]) that for a regular pencil λB − A there always exists a
choice (c, s) for which B̂ is invertible. Since the above transformation does not affect
the left and right eigenvectors of a pencil, it follows that

λB̂ − Â is normal ⇐⇒ λB −A is normal.

Rather than minimizing Γ(A,B) one can thus minimize Γ(Â, B̂) which will reach a
minimum when both λB̂ − Â and λB − A are normal pencils. Notice however that
the value of this defect then changes even though normality is preserved. Without
loss of generality, we assume from now on that B is invertible.
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But orthogonality of the left and right eigenvectors is not sufficient to guarantee
a low sensitivity of the generalized eigenvalues of a regular pencil because eigenvalues
can now be arbitrarily large or small, irrespective of the norm of A and B. Let xi

and yi be respectively the right and left eigenvectors of a given eigenvalue λi :

Axi = λiBxi, y∗i A = λiy
∗
i B,

and define the corresponding “Rayleigh” components :

αi := y∗i Axi/(‖yi‖2‖xi‖2), βi := y∗i Bxi/(‖yi‖2‖xi‖2), λi = αi/βi.

In [6] it is shown that a perturbation in A and B of relative size ε :

‖δA‖2 ≤ ε‖A‖2, ‖δB‖2 ≤ ε‖B‖2, (3.2)

may yield a perturbed eigenvalue λ̃i, but that the chordal distance :

χ(λi, λ̃i) :=
|αiβ̃i − α̃iβi|

√
|αi|2 + |βi|2

√
|α̃i|2 + |β̃i|2

(3.3)

between the original and the perturbed eigenvalue is bounded by :

χ(λi, λ̃i) ≤ ε
(‖A‖22 + ‖B‖22)1/2

(|αi|2 + |βi|2)1/2
+ O(ε2),

and that there exist perturbations δA and δB, for which this bound is met. The
quantity

κ(λi) :=
(‖A‖22 + ‖B‖22)1/2

(|αi|2 + |βi|2)1/2
, (3.4)

is thus a valid relative condition number for λi in the sense that it measures how
a perturbation of relative size ε in A and B affects λi in the (intrinsically relative)
chordal metric. The reason why such a “relative” metric is to be preferred for pencils
is linked to the fact that eigenvalues are now given by ratios of computed quantities
(see [6] for more details).

When using the QZ-algorithm to compute the generalized eigenvalues of the
pencil λB −A one obtains the so-called Schur form of this pencil :

AS := Q∗AZ, BS := Q∗BZ, Q∗Q = In, Z∗Z = In, (3.5)

where AS and BS are both upper triangular. This algorithm typically induces errors
δA and δB in A and B that are of the order of (3.2), where ε is the machine accuracy
of the computer. Since the orthogonal transformations Q and Z do not affect the
quantities used in the definition (3.4) of κ(λi), we can as well analyze the effect
of perturbations in the coordinate system of the Schur form. The right and left
eigenvectors xi, yi can then be normalized as follows :

xi :=




ξ1

...
ξi−1

1
0
...
0




, yi :=




0
...
0
1

ηi+1

...
ηn




.
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If we denote the diagonal entries of the triangular matrices AS , BS by aii, bii, respec-
tively, we then obtain the equalities :

αi = aii/ni, βi = bii/ni, ni := (‖yi‖2‖xi‖2) ≥ 1.

Since

‖A‖2 = ‖AS‖2 ≥ max
i
|aii|, ‖B‖2 = ‖BS‖2 ≥ max

i
|bii|

we finally obtain the inequality

κ(λi) ≥ (maxi |aii|2 + maxi |bii|2)1/2

(|aii|2 + |bii|2)1/2
(3.6)

with equality holding only for a normal pencil since then xi and yi have norm 1 and
AS and BS are diagonal. But normal pencils can still have a quantity κ(λi) that can
be very large if the pairs (aii, bii) vary a lot in norm. This is not the case for the
following subclass of normal pencils.

Definition 3.3. A regular pencil λB−A is standard normal if there exist unitary
transformations Ul, Ur and diagonal matrices ΛA, ΛB, such that for some real γ 6= 0

U∗
l (λB −A)Ur = λΛB − ΛA, |ΛA|2 + |ΛB |2 = γ2I.

For this class of pencils we obviously have

1 ≤ κ(λi) =
(maxi |aii|2 + maxi |bii|2)1/2

(|aii|2 + |bii|2)1/2
≤
√

2, (3.7)

with the lower bound κ(λi) = 1 met for each i in the particular case where ΛA = αI
and ΛB = βI. Obviously the class of standard normal pencils is nearly optimal in
terms of eigenvalue sensitivity since κ(λi) ≤

√
2 for each eigenvalue λi.

The following theorem explains which pencils can be transformed to standard
normal form using left and right transformations.

Theorem 3.4. Every regular pencil with a full set of right and left eigenvectors
can be transformed into a standard normal form

T−1
l (λB −A)Tr = λΛB − ΛA, |ΛA|2 + |ΛB |2 = γ2I with γ ∈ R0.

Proof. If λB − A has a full set of right and left eigenvectors xi, yi, then putting
xi as the columns of Tr and y∗i as the rows of T−1

l will diagonalize T−1
l (λB − A)Tr.

A simple additional diagonal scaling – which can be absorbed in either Tr or Tl – will
ensure that moreover |ΛA|2 + |ΛB |2 = γ2I, for some arbitrary real positive γ.

Remark 3.1. For non diagonalizable (regular) pencils, the theorem remains valid
in the limit, but then Tl, Tr are unbounded. In this case we have that λΛB−ΛA belongs
to the closure of the orbit of λB −A under left and right transformations Tl, Tr [5].

4. Balancing pencils. We now look for scaling transformations that make a
given pencil get closer to a normal one. We could use a scaling of the type

D−1
l (λB −A)Dr (4.1)
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where Dr, Dl are real positive diagonal scaling matrices. This does not modify the
generalized eigenvalues of the pencil, but the defect from normality Γ(A,B) becomes
now

Γ(D−1
l ADr, D

−1
l BDr) =

n∑

i=1

σ2
i (D−1

l AB−1Dl) +
n∑

i=1

σ2
i (D−1

r B−1ADr)− 2
n∑

i=1

|λi|2.

It follows from Section 2 that the optimal Dr, Dl are solutions of

inf
Dr

‖D−1
r B−1ADr‖F , inf

Dl

‖D−1
l AB−1Dl‖F .

But such an approach would require to invert the matrix B (at least implicitly) and
it is unclear how to proceed when B is singular.

We now define a new optimization problem inspired from Theorem 3.4 that avoids
the inversion of B. It uses the so-called Frobenius inner product for regular pencils
defined in a 2n2-dimensional space of two n× n complex matrices :

〈λB1 −A1 , λB2 −A2〉F := tr(A1A
∗
2 + B1B

∗
2) .

It follows then that ‖λB −A‖2F := 〈λB −A, λB −A〉F = ‖A‖2F + ‖B‖2F where ‖.‖F

denotes the usual Frobenius matrix norm.
Theorem 4.1. The optimization problem

inf
det(T−1

l Tr)=1
‖T−1

l (λB −A)Tr‖F (4.2)

has a standard normal pencil as solution. If λB−A is diagonalizable then Tr, Tl have
a bounded solution, otherwise they are unbounded.

Proof. Using the Schur decomposition λBS − AS = Q∗(λB − A)Z we define
triangular matrices Rr := Z∗TrQr and Rl := Q∗TlQl where Qr are Ql are chosen
to be unitary and det Q∗l Qr = 1. Since unitary transformations do not change the
Frobenius norm, the above minimization is then equivalent to

inf
det(R−1

l Rr)=1
‖R−1

l (λBS −AS)Rr‖F

where now all matrices are upper triangular. Moreover, if we factor Rr = DrUr and
Rl = DlUl, where Ur and Ul are unit upper triangular and Dr and Dl are diagonal,
then the problem splits in two subproblems. Clearly Ur and Ul only affect the elements
above the diagonal of ‖R−1

l (λBS −AS)Rr‖F and these can all be put equal to zero if
the pencil is diagonalizable (e.g. when there are no repeated eigenvalues). In such a
case the problem reduces further to

inf
det(D−1

l Dr)=1
‖D−1

l (λΛB − ΛA)Dr‖F

which is easily solved using a Lagrange multiplier approach. The solution

D−2
l D2

r(Λ∗BΛB + Λ∗AΛA) = γ2I, γ2n = det(Λ∗BΛB + Λ∗AΛA)

is equivalent to the condition that D−1
l (λΛB −ΛA)Dr is a standard normal pencil. If

the pencil is not diagonalizable, it is still possible to find unbounded diagonal scalings
Dr, Dl that will make the elements that are above the diagonal in the Schur form
tend to zero.
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The above theorem suggests to use the same minimization problem but now
restricted to real positive diagonal scaling matrices :

inf
det(D−1

l Dr)=1
‖D−1

l (λB −A)Dr‖F (4.3)

as a technique to balance regular pencils. We will show that this has a unique mini-
mum that is attained when

‖(D−1
l ADr)ej‖22 + ‖(D−1

l BDr)ej‖22 = ‖eT
i (D−1

l ADr)‖22 + ‖eT
i (D−1

l BDr)‖22 = γ2

for all i’s and j’s. This leads to the following generalization of (2.5).

Definition 4.2. An n× n regular complex pencil λB −A is said to be balanced
if

‖Aej‖22 + ‖Bej‖22 = ‖eT
i A‖22 + ‖eT

i B‖22 = γ2, ∀ i, j. (4.4)

The following theorem proves that every balanced pencil can be seen as the solu-
tion of an optimization problem very similar to (4.3).

Theorem 4.3. A regular pencil D−1
l (λB − A)Dr with real positive diagonal

scalings Dl, Dr, is balanced if and only if it is a solution of

inf
det(D−1

l Dr)=c
‖D−1

l (λB −A)Dr‖F .

Proof. Denote the i-th diagonal entry of Dr and Dl by dri and dli, respectively,
and let aij , bij be the entries of the matrices A, B. We want to minimize

inf
dli, drj

n∑

i,j=1

(|aij |2 + |bij |2)(drj

dli
)2, where (

∏
dlk∏
drk

)2 = c2.

With the change variables d2
ri = exp(uri) and d2

li = exp(−uli) and when putting
mij := |aij |2 + |bij |2, this becomes

inf
uli, urj

n∑

i,j=1

mij exp(uli + urj), where
∑

k

(ulk + urk) = 2 ln c.

This is a convex minimization problem with a linear constraint. Its solution can be
found via the use of a Lagrange multiplier Γ :

inf
uli, urj

n∑

i,j=1

mij exp(uli + urj) + Γ

(
2 ln c−

∑

k

(ulk + urk)

)
.

This unconstrained minimization has therefore a minimum iff the first order conditions
are satisfied. These are

∑
k(ulk + urk) = 2 ln c and

n∑

i=1

mij exp(uli + urj) =
n∑

j=1

mij exp(uli + urj) = Γ, ∀ i, j.
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Putting Γ = γ2 and rephrasing it in the original variables, this amounts to

‖eT
i (D−1

l ADr)‖22 + ‖eT
i (D−1

l BDr)‖22 = ‖(D−1
l ADr)ej‖22 + ‖(D−1

l BDr)ej‖22 = γ2

for all i, j. The optimal pencil D−1
l (λB − A)Dr is therefore balanced. The converse

statement is easily checked in a similar manner.
Remark 4.1. Notice that if the pencil λB − A can be permuted to a block tri-

angular pencil, then so can the matrix M with elements mij. One then easily checks
that the scalings of the above theorem can be unbounded for this so-called reducible
case. This case is typically excluded in the scaling problem, since then the general-
ized eigenvalue problem can de deflated to smaller dimensional ones [7]. When such
permutations do not exist, the scaling problem has a bounded solution.

Remark 4.2. The above theorem does not prove that the diagonal scaling pro-
cedure will always improve the sensitivity of the eigenvalue problem but the bound
(3.4) for κ(λi) suggests that this will be the case. We will illustrate by numerical
experiments that the scaling typically improves the sensitivity of the eigenvalues.

Remark 4.3. The above theorem also allows to choose the parameter γ in (4.4)
since modifying the constant c in the condition det(D−1

l Dr) = c, automatically scales
all the column and row norms. This is used in the numerical method described below.

5. Numerical method. In order to balance a pencil, we will use a very simple
method rather than using convex optimization techniques. This method consists in

alternatively updating Dr and Dl such that the compound matrices
[

A
B

]
Dr and

D−1
l

[
A B

]
have column norms and row norms equal to 1, respectively. By doing

so we converge linearly to a balanced pencil with γ = 1 in (4.4). The proposed method
is essentially a “coordinate descent” method where one alternates between computing
the optimum in the “coordinates” of Dr and Dl. The convergence is slow but when
we restrict ourselves to powers of the base (2 or 10) for the diagonal elements of Dr

and Dl, stagnation typically occurs after two or three updates of both Dr and Dl.
Each joint update of Dl and Dr in fact requires only 4n2 floating point operations if
one uses the matrix M with elements mij := |aij |2 + |bij |2 : 2n2 to compute the row
and column norms and 2n2 to perform the two scalings. (A MATLAB code is given
in the Appendix for the base 2). The scaling procedure has therefore a marginal cost
in comparison to the eigenvalue computation. As in the standard eigenvalue problem
one has to test also if there exist permutations that reduce the pencil to a block
triangular form so that lower dimensional eigenvalue problems can be isolated. Such
a procedure is needed to guarantee that the diagonal scaling will remain bounded but
the complexity is also quadratic in n (see [7]).

6. Numerical examples. In the tables below we have compared the precision
of the computed eigenvalues without scaling, after applying our proposed scaling
procedure and after applying Ward’s method [7], which is currently implemented
in LAPACK. We considered in Table 6.1 randomly generated diagonalizable pencils
T−1

l (λΛB−ΛA)Tr (where λΛB−ΛA is in standard normal form), in Table 6.2 randomly
generated non diagonalizable pencils T−1

l (λJB − JA)Tr (where J−1
B JA is in Jordan

normal form), and in Table 6.3 pencils with elements of strongly varying order of
magnitude. We used normally distributed random numbers for the free elements
of ΛA, ΛB , JA and JB . We imposed the normalization in λΛB − ΛA by choosing
ΛB to satisfy Λ2

B + Λ2
A = γ2I, and the Jordan structure in λJB − JA by choosing

some repeated consecutive elements on the diagonals of JA and JB and assigning
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corresponding off-diagonal 1’s in JA. The condition number of the random matrices
Tl and Tr was controlled by taking the k-th power of normally distributed random
numbers ri,j as their elements. A larger power k then typically yields a larger condition
number for the transformation. For these experiments we used the QZ-algorithm
[3] applied to different pencils of size n = 10. We computed the chordal distances
ci := χ(λi, λ̃i) for all eigenvalues λi and compared in each table the quantities c :=
‖[c1, . . . , cn]‖2 for the original pencil (corig), for the balanced pencil constructed by
our algorithm (cbal), and for the balanced pencil using Ward’s method (cward). In
Tables 6.1 and 6.2 we also give the condition numbers κ(Tr) and κ(Tl).

In Table 6.1 we focus on diagonalizable pencils. When κ(Tr) = κ(Tl) = 1 we
observe that balancing does not improve the precision of the calculated eigenvalues,
but otherwise it does in general significantly improve the accuracy of the calculated
eigenvalues. Recall also that we restrict the diagonal elements of the balancing trans-
formations Dr, Dl to be powers of two. From the table it appears that the proposed
balancing algorithm has a positive effect on the precision of the computed eigenvalues.
The comparison factor cward/cbal shows that in general the new method outperforms
Ward’s algorithm.

Table 6.1
Comparison for randomly generated diagonalizable pencils

n = 10 corig cbal cward cward/cbal

κ(Tr) = 3.27e + 07, κ(Tl) = 2.58e + 11 3.01e-03 7.00e-13 2.61e-09 3.72+03
κ(Tr) = 8.24e + 12, κ(Tl) = 4.21e + 10 3.69e-01 3.20e-12 1.00e-09 3.12e+02
κ(Tr) = 6.81e + 08, κ(Tl) = 1.75e + 07 7.81e-09 8.84e-14 1.01e-11 1.15e+02
κ(Tr) = 1.06e + 07, κ(Tl) = 7.82e + 08 1.56e-07 4.90e-13 4.16e-13 8.50e-01
κ(Tr) = 1.46e + 05, κ(Tl) = 4.08e + 05 2.67e-10 3.52e-15 3.92e-15 1.12e+00
κ(Tr) = 1.92e + 03, κ(Tl) = 7.72e + 02 6.78e-13 3.04e-15 2.07e-14 6.08e+00
κ(Tr) = 3.95e + 01, κ(Tl) = 1.75e + 01 2.23e-15 2.20e-15 6.52e-15 2.97e+00
κ(Tr) = 1.00e + 00, κ(Tl) = 1.00e + 00 4.79e-16 4.79e-16 4.94e-14 1.03e+02

In Table 6.2 we look at non-diagonalizable pencils. We imposed the first example
to have two Jordan blocks of size 2, and the second example to have one Jordan
block of size 3. The eigenvalue sensitivity is in principle infinite and the calculated
eigenvalues have little in common with the true eigenvalues. The table shows that
both balancing algorithms do not alter the precision of the computed eigenvalues. In

Table 6.2
Randomly generated non-diagonalizable pencils

n = 10 corig cbal cward cward/cbal

κ(Tr) = 1.15e + 09, κ(Tl) = 3.27e + 09 4.88e-01 4.88e-01 4.88e-01 1.00e+00
κ(Tr) = 4.68e + 02, κ(Tl) = 4.79e + 03 1.30e-01 1.30e-01 1.30e-01 1.00e+00

Table 6.3 we look at pencils with entries of strongly varying size : the largest ones
are of the order of 1, the smallest ones are much smaller. Ward’s method tries to
make the size of these elements equal and in doing so, it applies a scaling that often
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deteriorates the sensitivity instead of improving it. The new method, on the other
hand, usually significantly improves the sensitivity.

Table 6.3
Pencils with elements of strongly varying order of magnitude

corig cbal cward cward/cbal

4.38e-10 4.30e-15 1.02e-05 2.37e+09
1.25e-13 1.90e-15 1.92e-03 1.01e+12
9.16e-12 6.13e-16 1.17e-10 1.92e+05

7. Acknowledgment. We would like to acknowledge the help of Yurii Nesterov
in Theorem 4.3 who pointed out that this was a convex optimization problem. We
also thank Daniel Kressner who sent us a 3 by 3 example from his thesis for which
Ward’s scaling significantly deteriorates the sensitivity of the computed eigenvalues.
The examples in Table 6.3 are inspired from this.

8. Conclusion. In this paper we presented a new balancing method for matrix
pencils. From the point of view of the sensitivity of the eigenvalues we showed that
the standard normal pencils are near optimal and that they can be viewed as a natural
extension of normal matrices. A diagonal balancing method was then proposed that
makes a given pencil as close as possible to a standard normal one. Moreover we
showed that the complexity of the new method is comparable to that of the classical
balancing of matrices. We also gave numerical evidence that the accuracy of computed
generalized eigenvalues may significantly improve after balancing a pencil and that
the method often outperforms the method of Ward implemented in LAPACK.
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Appendix.

function [Dl, Dr, iter] = baleig(A,B,max_iter)

% Performs two-sided scaling Dl\A*Dr, Dl\B*Dr in order to improve
% the sensitivity of generalized eigenvalues. The diagonal matrices
% Dl and Dr are constrained to powers of 2 and are computed iteratively
% until the number of iterations max_iter is met or until the norms are
% between 1/2 and 2. Convergence is often reached after 2 or 3 steps.
% The diagonals of the scaling matrices are returned in Dl and Dr
% and so is iter, the number of iterations steps used by the method.

n=size(A,1); Dl=ones(1,n); Dr=ones(1,n); M=abs(A).^2+abs(B).^2;

for iter=1:max_iter,
emax=0;emin=0;
for i=1:n;

% scale the rows of M to have approximate row sum 1
d=sum(M(i,:));e=-round(log2(abs(d))/2);
M(i,:)=pow2(M(i,:),2*e);
% apply the square root scaling also to A, B and Dl
Dl(i)=pow2(Dl(i),-e);
if e > emax, emax=e; end; if e < emin, emin=e; end

end
for i=1:n;

% scale the columns of M to have approximate column sum 1
d=sum(M(:,i));e=-round(log2(abs(d))/2);
M(:,i)=pow2(M(:,i),2*e);
% apply the square root scaling also to A, B and Dr
Dr(i)=pow2(Dr(i),e);
if e > emax, emax=e; end; if e < emin, emin=e; end

end
% Stop if norms are all between 1/2 and 2
if (emax<=emin+2), break; end

end


