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Abstract. Computing roots of a polynomial matrix may be done by computing the generalized
eigenvalues of a corresponding block companion pencil using any generalized eigenvalue algorithm. If
the algorithm is backward stable, it computes exact roots of a slightly modified polynomial matrix,
but it may yield very poor backward errors in the coefficients of the polynomial matrix. In this
paper we investigate what can be done to improve these errors using geometric ideas. We show that
preconditioning the block companion pencil using a scaling transformation may achieve this goal.

1. Introduction. The polynomial generalized eigenvalue problem consists of
finding the roots of the polynomial matrix

P (λ) := Pnλ
n + Pn−1λ

n−1 + . . .+ P1λ+ P0, Pi ∈ Cp×p

which are defined as the zeros of the scalar polynomial

p(λ) := detP (λ) = 0 .

These are well-defined provided that P (λ) is square and regular, which means that
detP (λ) is not identically zero. When P (λ) is not regular one can still define zeros
via its Smith form but these zeros are then ill-posed [8] and we will not consider this
more general case here. For the regular case one often recommends to reduce it to
the generalized eigenvalue problem (called a companion pencil )

λB −A = λ








Ip
. . .

Ip
Pn







−








0 −P0
Ip 0 −P1

. . .
...

Ip −Pn−1







. (1.1)

These two problems are equivalent since det(λB−A) = detP (λ). Finding the roots of
det(λB −A) can be solved via the QZ algorithm [5], which is known to be backward
stable. This means that the computed eigenvalues are exactly those of a matrix pencil
λ(B +∆B)− (A+∆A) for some dense backward error pencil ∆(λ) = λ∆B−∆A with

‖∆A‖

‖A‖
= O(ε) ,

‖∆B‖

‖B‖
= O(ε) (1.2)

where ‖ · ‖ is some matrix norm and ε is the machine accuracy of the computer. This
suggests that it is a safe way to solve for the roots of P (λ), but it was pointed out in
[7] that this is not the case. In [7] a polynomial matrix example of order n = 2 is given
where small backward errors in the matrices B, A of (1.1) lead to quite large backward
errors in the coefficients Pi. In [3] it is shown, however, that the backward errors can
significantly be reduced by an appropriate scaling of the coefficient matrices.
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In this paper we analyze the scaling problem of pencils of the type (1.1) called
companion pencils and we show that scaling the pencil λB − A using invertible left
and right diagonal transformations

D−12 (λB −A)D1

can significantly improve the sensitivity of the coefficients. Moreover we describe
the class of optimally scaled companion pencils. Finally we show that the optimal
scalings can be obtained via the solution of a convex optimization problem. This is
an extension of the results previously obtained [4, 2] for the scalar polynomial case.

2. Problem statement. In the scalar case (p = 1), every pencil λ(B +∆B)−
(A+∆A) has a uniquely defined determinant p(λ)+δp(λ), where δp(λ) = δpnλ

n+. . .+
δp1λ+ δp0. The QZ algorithm thus computes generalized eigenvalues of a perturbed
pencil λ(B +∆B) − (A +∆A) which are also the roots of the perturbed polynomial
p(λ) + δp(λ). One would wish that ‖δp(·)‖ = O(ε)‖p(·)‖ for some polynomial norm,
which would mean backward stability. In [2, 4] this problem was analyzed using
geometric methods and in [4] the polynomial sensitivity

κpol := lim
δ→0

sup
‖∆‖ ≤ δ

‖δp(·)‖

‖∆(·)‖

has been studied for this problem.
In the present paper we extend these results to the matrix polynomial case (p > 1).

The bound (1.2) seems to imply that we computed the roots of a perturbed polynomial
matrix P (λ) + δP (λ) where the perturbation δP (λ) = δPnλ

n−1 + . . . + δP1λ + δP0
is hoped to be small. We would like to require that the computed eigenvalues are
precisely the roots of the determinant of a matrix polynomial det(P (λ) + δP (λ))
where ‖δP (·)‖ = O(ε)‖P (·)‖ for some matrix polynomial norm, which would imply
backward stability. For p > 1 every perturbation ∆(λ) = λ∆B−∆A of the pencil does
not correspond anymore to a unique perturbation δP (λ) of the polynomial matrix.
There exist now several choices for δP (·), and we need to consider the most favorable
ones. For this purpose, we define a transformation π(·) that maps λ∆B − ∆A to
δP (λ) via δP (·) = π(∆(·)). With appropriately defined norms, we then define the
polynomial sensitivity under perturbations of the pair (B,A) as

κpol := min
π

lim
δ→0

sup
‖∆(·)‖ ≤ δ

‖π(∆(·))‖

‖∆(·)‖
. (2.1)

In this paper, we concentrate on making κpol as small as possible under a given class
of transformations.

3. The monic matrix case. In this special case, we want to compute the
eigenvalues λi of the p×p polynomial matrix P (λ) := Ipλ

n+Pn−1λ
n−1+. . .+P1λ+P0.

For this special case the pencil λB − A reduces to a standard eigenvalue problem
λIpn − C, where the matrix C is in block companion form

C =








0 −P0
Ip 0 −P1

. . .
...

Ip −Pn−1








(3.1)
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and has as characteristic polynomial det(λI − C) = detP (λ). We then compute the
eigenvalues of P (λ) using any eigenvalue algorithm. If the algorithm is backward
stable (think for example of the standard QR-algorithm), the computed eigenvalues
are exactly those of a matrix C +∆C for some dense backward error matrix ∆C . We
can state that this backward error satisfies

‖∆C‖

‖C‖
= O(ε) (3.2)

where ε denotes the machine precision, and ‖ · ‖ some matrix norm. However we
want to analyze how this perturbation is reflected in a perturbation of P (λ). We
therefore require that the computed eigenvalues are the roots of the determinant of
a matrix polynomial det(P (λ) + δP (λ)). If δP (λ) = δPn−1λ

n−1 + . . . + δP1λ + δP0
satisfies ‖δP (·)‖ = O(ε)‖P (·)‖ for some matrix polynomial norm, this would imply
backward stability in a structured sense. Notice that for a given perturbation ∆C ,
δP (·) is not unique anymore in contrast with the scalar case treated in [4]. Since
there exist several choices for δP (·), we consider all transformations π(·) that reduce
λIpn− (C+∆C) to a polynomial matrix P (λ)+δP (λ) and show that up to first order
the map δP (·) = π(∆C) is a projector. We then define the polynomial sensitivity
under perturbations of C as in (2.1) :

κpol := min
π

lim
δ→0

sup
‖∆C‖ ≤ δ

‖π(∆C)‖

‖∆C‖
. (3.3)

In order to analyze this geometrically we consider the manifold of all matrices
that are similar to C :

Orb := orbit(C) = {T−1CT : det(T ) 6= 0}

imbedded in the euclidian matrix space Cnp×np with the Frobenius inner product
〈A,B〉 := tr(AB∗). The tangent space to Orb at C is given by (see [2, 4])

Tan = {XC − CX : X ∈ Cnp×np},

which generically has dimension n2p2 − np, but it can be smaller. The p × p block
companion matrices (3.1) form an affine space passing through C which we will call

Syl = {X. [ 0 . . . 0 Ip ] , X ∈ Cnp×p}

and it has dimension np2. For p > 1 we thus have that generically dim Syl +
dim Tan > n2p2. Both spaces have thus a nontrivial intersection. When we consider
an arbitrary perturbed block companion matrix C+∆C , it lies on neither of the affine
spaces C + Syl and C + Tan. We thus need to find the closest matrix to C + ∆C

that lies on C + Syl and is similar to C +∆C . The similarity transformation will be
close to the identity and can be approximated by T = I +X with ‖X‖ of the order
of ‖∆C‖

(I +X)(C +∆C)(I +X)−1 ∈ C + Syl

or, after neglecting terms of the order of ‖∆C‖
2

XC − CX +∆C ∈ Syl. (3.4)
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Syl ∩ Tan

Tan

Syl

δP (·)
∆C

C
SubTan

Orb(C)

The matrix XC −CX clearly lies in Tan or in a subspace SubTan of Tan. The
operation (3.4) is thus a projection of ∆C on Syl parallel to any subspace SubTan ⊆
Tan. Let us call this projector π then its norm ‖π‖ := max∆C

‖δP (·)‖/‖∆C‖ is the
maximal growth factor one can expect for the perturbation δP (·) corresponding to
∆C . We therefore need to find the projector π of minimal norm. It is well known
from geometric considerations that for any complementary subspace SubTan (i.e.

such that Syl⊕ SubTan = Cn2p2

) the projector on Syl and parallel to SubTan has
norm equal 1/cos(θmin), where θmin is the smallest canonical angle between these
two subspaces. Moreover for all complimentary subspaces SubTan of Tan this is
also bounded by 1/cos(θmin), where θmin is the smallest nonzero canonical angle
between Syl and Tan. In the future, we will call this optimal subspace SubTanopt.
In order to describe the corresponding projector we need to find bases of the spaces
we consider. For that we represent a matrix X in its vector form vecX (as in the
Matlab notation).

Let X be a basis for Syl and Y be a basis for the orthogonal complement of
SubTan then π is described by the n2p2 × n2p2 matrix

Π := X (Y∗X )−1Y∗.

Since matrices in Syl have their last np2 components nonzero, an (orthogonal) basis
for Syl is given by

X =

[
O
Inp2

]

.



Optimal Scaling of Companion Pencils 5

The tangent space {XC − CX : X ∈ Cnp×np} is clearly the image of the mapping

vecX −→ (I ⊗ C − CT ⊗ I)vecX.

Its orthogonal complement is then the kernel of the adjoint mapping

I ⊗ C∗ − C ⊗ I

which amounts to the set of matrices commuting with C∗. The orthogonal complement
ImY of every complimentary subspace SubTan is thus spanned by np2 matrices N∗k
commuting with C∗ :

C∗N∗k = N∗kC
∗ k = 1, . . . , np2,

Y =
[
vec N∗1 . . . vec N∗np2

]
.

Since X is orthonormal, ‖Π‖2 = ‖(Y
∗X )−1Y∗‖2 and if we normalize the vectors Nk

such that Y∗X = Inp2 then we can then write :

κpol = ‖Π‖2 = ‖
[
vec N∗1 . . . vec N∗np2

]
‖2.

Recall that ‖Π‖2 also equals 1/ cos θmin where θmin is the minimal canonical angle
between SubTan and Syl. If this angle is small, the sensitivity κpol can be very large.

An important question arising here is to find a similarity transformation T−1CT ,
i.e. another point on Orb, for which this sensitivity is improved or even optimal.
Under such a transformation, the spaces X and Y are transformed according to

Y∗T = Y
∗T , XT = T

−1X , T := T−T ⊗ T.

The sensitivity κpol(T ) of the matrix T
−1CT is therefore given by

κpol(T ) = ‖XT (Y
∗
T XT )

−1Y∗T ‖2 = ‖T
−1XY∗T ‖2

which we need to minimize over T to find the matrix T−1CT with minimal sensitivity.
The following theorem is given without proof here.

Theorem 3.1. The matrix T−1CT is normal if and only if T minimizes

min
T

κpol(T ) = min
T, Y∗

T
XT =I

‖XT Y
∗
T ‖2 . (3.5)

Now one can ask which points are best conditioned when restricting ourselves to
diagonal scaling transformations, which boils down to solving

min
D

κpol(D) . (3.6)

In order to get a grip on this we need an explicit expression for the selection of matrices
commuting with C. In [2] a specific subspace of Tan is constructed with an explicit
basis for its orthogonal complement. The subspace SubTansubopt considered there
consists of all matrices of the form CX − XC where X is arbitrary except for its
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bottom p rows, which are equal to zero. This subspace is shown to be complementary
to the subspace Syl. One first defines block matrices Mk, k = 1, . . . , n

Mk =

k
︷ ︸︸ ︷

















Pk

Pk+1 Pk

.

.

. Pk+1

. . .

Pn = Ip

.

.

.
. . . Pk

Pn = Ip

. . . Pk+1

. . .
.
.
.

Ip

n−k
︷ ︸︸ ︷

−P0

−P1

. . .

.

.

.
. . . −P0

−Pk−1

. . . −P1

. . .
.
.
.

−Pk−1


















. (3.7)

While M0 =Mn+1 = 0, one easily checks that these matrices satisfy

Mk = CMk+1 + In ⊗ Pk for k = 0, . . . , n.

Let us define the block trace trp(A) of a np× np matrix A as the p× p matrix

trp(A) :=
n∑

i=1

Aii.

This is used in the proof of the following theorem due to [2].

Theorem 3.2. Given the first n − 1 block columns of a np × np matrix Z, the
condition that

trp(ZMk) = 0 k = 1, . . . , n

is equivalent to the condition that

Z = XC − CX for some X with 0 bottom block row.

Either condition determines the final block column of Z uniquely, and the subspace

SubTansubopt = {XC − CX : X ∈ Cnp×np with 0 bottom block row} ,

is complementary to Syl.

Decomposing ∆C in SubTansubopt ⊕ Syl, and taking the special structure of the
Mk’s into account, it is then shown that the first order perturbation of coefficient Pk
with respect to this decomposition is given by :

δPk = −trp(∆C Mk+1) + O(‖∆C‖
2) . (3.8)

We define Mkij to be the matrix with zero everywhere except in the i-th column of
each block column where one has the j-th column of the corresponding block column
ofMk. Notice that eachM

∗
kij does not belong to the normal space at C anymore since

it does not commute with C∗ due to the non-commutativity of the Pk’s. But these
matrices span a basis for all matrices commuting with C∗ except in the last block row.
The expression (3.8) can be written componentwise as follows

δ(Pk)ij = − 〈∆C , M∗
k+1ij 〉 + O(‖∆C‖

2)



Optimal Scaling of Companion Pencils 7

One shows that SubTansubopt is orthogonal to vecMkij , k = 1, ..., n, i, j = 1, ..., p,
which allows to define the coefficient sensitivity for coefficient (Pk)ij as

κkij = ‖Mkij‖F .

Notice that when p = 1 we retrieve the result of [4]. The scaled sensitivity now
becomes

κkij(D) = ‖D−1MkijD‖F

which leads to the following optimal scaling problem

min
D

max
k,i,j

‖D−1MkijD‖F (3.9)

which can be solved via convex optimization [6].
We finally analyze the choice of theorem 3.2. We have computed the mini-

mal canonical angles between the projecting spaces for the optimal and the sub-
optimal decompositions and called them θopt := θ(SubTanopt,Syl) and θsubopt :=
θ(SubTansubopt,Syl). In Table 3.1 we compare their cosines for different values of
the coefficients Pi in the case where n = p = 3. Let us notice that for Pi = 0, i.e.
in the case where P (λ) = Iλ3, the codimension of Tan is equal to np2 implying that
there is only one choice for SubTan : we need to take the entire tangent space for
the decomposition. Therefore if ‖Pi‖ is small, our suboptimal choice will be close to
the optimal choice. From the table we conclude that the suboptimal choice is usually
close to the optimal choice.

Table 3.1

Comparison between the optimal and the suboptimal decomposition

n = p = 3 max ‖Pi‖ = 1e− 06 max ‖Pi‖ = 1 max ‖Pi‖ = 1e + 06

cos θopt 8.16e-01 9.19e-01 9.01e-12

cos θsubopt 8.16e-01 9.37e-01 9.83e-12

4. The general non-monic matrix case. Now we want to compute the eigen-
values λi of the p× p matrix polynomial P (λ) := Pnλ

n+Pn−1λ
n−1+ . . .+P1λ+P0

where Pn is supposed to be different from Ip. It is important to notice that we do not
impose Pn to be invertible. To achieve this, we can consider the pencil

λB −A = λ








Ip
. . .

Ip
Pn







−








0 −P0
Ip 0 −P1

. . .
...

Ip −Pn−1








(4.1)

whose determinant is det(λB − A) = detP (λ). We then compute the eigenvalues
of P (λ) using any eigenvalue algorithm. If the algorithm is backward stable (think
for example of the QZ-algorithm), the computed eigenvalues are exactly those of a
matrix pencil λ(B +∆B)− (A+∆A) for some dense backward error matrix pencil
∆(λ) := λ∆B −∆A satisfying (1.2). We again require the polynomial sensitivity κpol
(2.1) to be minimal.

We work in the 2n2p2-dimensional space of np× np complex matrix pencils with
Frobenius inner product 〈λB1 − A1, λB2 − A2〉 := tr(A1A

∗
2 + B1B

∗
2). In this pencil

space we consider the manifold

Orb := orbit(λB −A) = {T−12 (λB −A)T1 : det(T2) = det(T1) 6= 0}.
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The tangent space to Orb at λB −A is given by

Tan = {λZB−ZA = λ(XB−BY )− (XA−AY ) : tr(X) = tr(Y )X, Y ∈ Cnp×np} .

The Sylvester space consists of p × p block companion pencils and has dimension
(n+1)p2, while the tangent space Tan generically has dimension 2n2p2−np− 1, but
it can be smaller. For p > 1 the problem is the same as before : we have to choose a
subspace SubTan ⊆ Tan such that

SubTan⊕ Syl = Cnp×np × Cnp×np

and such that κpol = ‖Π‖2 is as small as possible, where Π is the projector onto
Syl along SubTan. To find an explicit expression for the polynomial sensitivity, we
consider the mapping whose image is the tangent space

[
vec X
vec Y

]

−→

[
BT ⊗ I −I ⊗B
AT ⊗ I −I ⊗A

] [
vec X
vec Y

]

, tr(X) = tr(Y ).

Its orthogonal complement is the kernel of the dual mapping. This finally leads to
the following theorem.

Theorem 4.1. Let Syl be spanned by ImX and let ImYopt be the orthogonal

compliment of a complimentary subspace SubTan of Tan with the largest minimal

angle with Syl then

κpol = ‖Πopt‖2 = ‖X (Y
∗
optX )

−1Y∗opt‖2.

The polynomial sensitivity κpol(T1, T2) of the pencil T
−1
2 (λB −A)T1 is then defined

to be

κpol(T1, T2) = ‖T −1X (Y∗optX )
−1Y∗optT ‖2 , T := T−T1 ⊗ T2.

Following the same reasoning as before, one can also prove the following theorem that
shows which pencils of Orb have a good polynomial sensitivity.

Theorem 4.2. The pencil T−12 (λB −A)T1 is normal if T1 and T2 minimize

min
det(T1)=det(T2)

κpol(T1, T2).

Now restricting ourselves to scaling transformations, one would like to solve

min
det(D1)=det(D2)

κpol(D1, D2).

Here we need again a specific choice of complimentary subspace SubTan with an
explicit basis for the orthogonal complement SubTan⊥. We derive such a basis and
show how it relates the perturbation pencil λ∆B −∆A of the block companion pencil
λB−A with first order perturbations δPk in the coefficients Pk of P (λ). The subspace
SubTansubopt of the tangent space consists of all pencils of the form λ(XB −BY )−
(XA − AY ) where Y is arbitrary with last bottom block row equal to zero and X is
arbitrary satisfying trp(X) = trp(Y ). We show that it is complementary to Syl. We
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first introduce the matrices

Mk =

k
︷ ︸︸ ︷

















Pk

Pk+1 Pk

.

.

. Pk+1

. . .

Pn

.

.

.
. . . Pk

Pn

. . . Pk+1

. . .
.
.
.

Ip

n−k
︷ ︸︸ ︷

−P0

−P1

. . .

.

.

.
. . . −P0

−Pk−1

. . . −P1

. . .
.
.
.

−Pk−1


















. (4.2)

With M0 =Mn+1 = 0, one can check that these matrices satisfy

BMk = AMk+1 + In ⊗ Pk for k = 0, . . . , n. (4.3)

If one perturbs the block companion pencil λB −A with a dense perturbation pencil
∆(λ) = λ∆B −∆A, then first order perturbations of the coefficient Pk are given by

δPk = trp(∆B Mk −∆A Mk+1) +O(‖∆(·)‖2) (4.4)

The proof is based on the following theorem.

Theorem 4.3. Given the first n− 1 block columns of a np× np matrix ZA and

given a np× np matrix ZB except for its bottom right p× p block, the condition that

trp(ZBMk − ZAMk+1) = 0 k = 0, . . . , n (4.5)

is equivalent to the condition that

λZB − ZA = λ(XB −BY )− (XA−AY ) (4.6)

for some X, Y such that

{
trp(X) = trp(Y )
Y has zero bottom block row.

Either condition determines the final block column of ZA and the bottom right block

of ZB uniquely.

Proof. Let us first show that (4.5) implies (4.6). For k < n, the relation
trp(ZBMk − ZAMk+1) = 0 determines the (k + 1, n) block of ZA uniquely. For
k = n, this becomes trp(ZBMn) = 0 and it determines the (n, n) block of ZB
uniquely. One verifies that trp(X) = trp(Y ) and [ 0 · · · 0 Ip ] .Y = 0 makes the follow-
ing mapping injective

(X,Y ) −→ ( XB −BY =







?







, XA−AY =







?
?
?
?






)

where the ? blocks are not taken into account. This amounts to saying that
SubTansubopt and Syl do not intersect, and implies that λZB − ZA is uniquely de-
termined by (4.6).
Let us now prove that (4.6) implies (4.5). We have thus to prove that for X, Y such
that trp(X) = trp(Y ) where Y has zero bottom block row it implies that

trp((XB −BY ) Mk − (XA−AY ) Mk+1) = 0 k = 0, . . . , n . (4.7)



10 D. Lemonnier and P. Van Dooren

We will first prove (4.7) when k /∈ {0, n}. We can rewrite (4.7) as follows

trp(X(BMk −AMk+1)−BYMk +AYMk+1) = 0 .

Using (4.3), we can write

trp(X(BMk −AMk+1)) = trp(X(In ⊗ Pk)) = trp(X)Pk

= trp(Y )Pk = trp(Y (In ⊗ Pk)) = trp(Y (BMk −AMk+1)) .

Therefore we need to prove that

trp(Y (BMk −AMk+1)−BYMk +AYMk+1) = 0

or equivalently that

trp((Y B −BY ) Mk) = trp((Y A−AY ) Mk+1) . (4.8)

Because (Y B −BY ) is zero everywhere except in the last column, we have that

trp((Y B −BY ) Mk) = Ykn(Pn − Ip) .

Now using (3.7) and (4.2), one can write Mk+1 as

Mk+1 =Mk+1 +

kp
︷ ︸︸ ︷













0
...

. . .

Pn − Ip
. . . 0

...
Pn − Ip
0

(n−k)p
︷ ︸︸ ︷

0













.

It follows from theorem (3.2) that trp((Y A − AY ) Mk+1) = 0 because Y has zero
bottom block row. After some computation one checks that

trp((Y A−AY ),

kp
︷ ︸︸ ︷













0
...

. . .

Pn − Ip
. . . 0

...
Pn − Ip
0

(n−k)p
︷ ︸︸ ︷

0













) = Ykn(Pn − Ip),

which proves (4.8). If k is 0, then Mk+1 =M1 =M1, and thus (4.7) becomes

trp((XA−AY ) M1) = 0

which is true because of theorem (3.2). If k is n, from (4.7) we have to prove that

trp((XB −BY ) Mn) = 0 .
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The left side of this equation can be rewritten as follows :

trp((XB −BY ) Mn) = trp(XBMn)− trp(BYMn) = trp(X)Pn − trp(Y )Pn = 0

because trp(X) = trp(Y ). This ends the proof.

Remark 4.1. Defining Mkij to be the matrix with zero everywhere except in the

i-th column of each block column where one has the j-th column of the corresponding

block column of Mk, we have that (4.5) is equivalent to

〈λZB − ZA , λM
∗

kij +M
∗

k+1ij〉 k = 0, . . . , n, i, j = 1, . . . , p .

This theorem actually shows that defining SubTansubopt as

{λ(XB −BY )− (XA−AY ) :

{
trp(X) = trp(Y )
Y has zero bottom block row

X,Y ∈ Cnp×np},

implies that SubTan⊥subopt is spanned by the pencils λMkij +M
∗

k+1ij and that Syl⊕

SubTansubopt = Cnp×np × Cnp×np. Notice here again that even though the λM
∗

k +

M
∗

k+1’s are orthogonal to SubTansubopt, they don’t belong to the normal space at A
anymore.

We have now everything we need to prove (4.4). It suffices to decompose λ∆B −
∆A in Syl ⊕ SubTansubopt, and to take the block trace on both sides. Then taking
the special structure of the Mk’s into account, we obtain the desired equation. The
expression (4.4) can be written componentwise like

δ(Pk)ij = 〈λ ∆B −∆A , λM
∗

kij +M
∗

k+1ij〉 + O(‖∆‖2) .

This allows us to define a coefficient sensitivity for coefficient (Pk)ij as

κkij = ‖λMkij +Mk+1ij‖F .

Notice that when p = 1 we retrieve the result of [4]. And it follows that

κkij(D1, D2) = ‖D−12 (λMkij +Mk+1ij)D1‖F

which leads to the following convex optimal scaling problem

min
det(D1)=det(D2)

max
k,i,j

‖D−12 (λMkij +Mk+1ij)D1‖F . (4.9)

Now let us show that the choice of theorem 4.2 is good. For both the optimal
decomposition and the suboptimal one we have computed the minimal canonical angle
between the projecting spaces. We denote θopt := θ(SubTanopt,Sylopt) and θsubopt :=
θ(SubTansubopt,Syl). In the table below we compare their values for different values
of the coefficients Pi in the case where n = p = 3. From the table we conclude that
this suboptimal choice is relatively speaking close to the optimal choice.

Table 4.1

Comparison between the optimal and the suboptimal decomposition

n = p = 3 max ‖Pi‖ = 1e− 06 max ‖Pi‖ = 1 max ‖Pi‖ = 1e + 06

cos θopt 9.22e-01 9.48e-01 9.44e-12

cos θsubopt 9.22e-01 9.80e-01 9.87e-12
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5. Numerical example. We consider the nuclear power plant problem in
[7]. The characteristic frequencies of the system are the eigenvalues of a 8× 8 matrix
polynomial P (λ) = P2λ

2 + P1λ + P0. A good way to measure the efficiency of the
scaling strategy we propose here is to look at the structured backward error (i.e. in
the coefficients Pi) corresponding to the computed eigenvalues. For this quadratic
problem an expression for this error is given in [7]. After applying the QZ algorithm
directly to the pencil

λ

[
I 0
0 P2

]

−

[
0 −P0
I −P1

]

we have for some eigenvalues a backward error in the coefficients that is of the order
of 1e − 06 . After applying our scaling strategy, the QZ algorithm gives for all
eigenvalues a backward error of the order of 1e− 16 !

6. Conclusions. Computing roots of a polynomial may be done by using any
backward stable algorithm on a corresponding companion pencil. But this may yield
very poor backward errors in the coefficients of the polynomial matrix. In this paper
we analyzed what can be done to improve these errors, using a geometric approach.
Starting from the definition of polynomial sensitivity in each point of the orbit of
the companion pencil, we described the optimal points with minimal sensitivity. Re-
stricting ourselves to diagonal scaling transformations, we have then defined a convex
optimal scaling procedure. Finally, we have shown a numerical example to illustrate
our theoretic results.
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