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Abstract: In this paper we present several different characterizations of invariant
subspaces of periodic eigenvalue problems. We analyze their equivalence and discuss

their use in control theory.
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1. MAIN RESULTS

Consider the (homogeneous) linear time varying
system :

Ek:I,‘k+1 = Az + Byjuyg, ke N (1)
where N is the set of natural numbers, x;, is an
n-dimensional vector of descriptor variables, uy is
an m-dimensional vector of input variables, the
matrices Ey and Ay are n X n, and By is n X m.
This system is said to be periodic with period K
if Ek = Ek—i—K, Ak = Ak-l—K and Bk = Bk+K7 for
all k € N, and K is the smallest positive integer
for which this holds. If we allow both the Ej
and Ay matrices to be singular, then z; may still
uniquely be defined in the context of a two point
boundary value problem, as e.g. in optimal control
of periodic systems. It is shown in (Sreedhar and
Van Dooren, 1999) that a necessary and sufficient
condition for this is that the pencil

AE, — Ay
_A2 AEQ
AE — A= o 2)

—Ag AEk

is regular (i.e. det(A — A) = 0). We call such
periodic systems regular.

We can always define a periodic similarity trans-
formation of a regular periodic system (1.1) by
multiplying it from the left by the invertible trans-
formation Sy, and substituting xy, by zy = Tj_1Zy,
where Sy and T} are again K-periodic. Let us
denote diagonal block transformations S and T
as follows :

Sl Tl
Sa T,
S= . , T =

Defining the periodic similarity transformation



AE; —A
_A2 AEQ
S . . T
—AK )\EK
A, —A
—Ay \E,
= | (3)
—Ag MEg
one then obtains a new system
Epiyg1 = Apiy, + Byuy, keN, (4

where Bk = SkBk.

One important case of such a periodic similarity
transformation is the so-called “Floquet trans-
form” of a periodic system :

—/11 A
—M N
= L 5)

By
_A2 )\EQ

-M

—Ax \Eg —M M
This reduces the homogeneous problem to a time-
invariant one, but the transformation may not
always exist (Van Dooren and Sreedhar, 1994;
Sreedhar and Van Dooren, 1997). Another impor-
tant case is the Periodic Schur Form (Bojanczyk
et al., 1992), where the transformation matrices
S and T}, are constrained to be unitary, and the
resulting matrices Ek and flk can all be chosen up-
per triangular. This second form always exists and
can be computed in a numerically stable manner
(Bojanczyk et al., 1992).

Both forms are closely linked to the concept of
periodic invariant subspaces, which play a funda-
mental role in the solution of important control
problem of periodic systems (Sreedhar and Van
Dooren, 1994), (Sreedhar and Van Dooren, 1997),
(Ferng et al., 1998) :

e solution of periodic Riccati equations and
their use in optimal and robust control,

e solution of periodic Lyapunov equations and
their use in stability analysis,

e solution of periodic Sylvester equations and
their use in decoupling,

e inverse eigenvalue problems and their use in
pole placement.

We now describe several characterizations of in-
variant subspaces of a regular periodic system. A
first characterization uses the classical concept of
deflating subspace, directly applied to the pencil
(2) (we assume K = 3 for the sake of simplicity) :

)\El —A1 Xl Yl
— Ay \E» X, |= | Y2 | (M = M)(6)
—As AE3 X3 Y3

where X = [X7 XX xZ 1" v = [v vf va]"
are assumed to have full rank d. With

X1 Yl

X = Xo V= Y,
X3 Y3

we can also rewrite this as follows :
AE,

—As AE,
—A3 )\E3

—A A -M
X=Y|-M A (7)
—M M

so that every d-dimensional eigenspace of the type
(6) induces a d- K-dimensional eigenspace of the
type (7), provided all individual matrices X}, and
Y} have full column rank. The following example
shows that one must impose certain conditions on
M, since this does not hold in general.

Example 1 Consider K = 3 and Ay = Ej, = .
Andlet 1= (1,1)T, M = (1)2} with w # 1 and
w3 = 1. Then we have )

Mo, 0 -—I 1 0?1
—ILb My, 0 1 w'l
0 —I, Al | |1 1]
1 w1
=[1w'1 (AIQ—[(I)BD.
1 %1

So (6) and (7) hold with

X1 = Y1 = [1,w21]
X2 = Y2 = [l,wll]
X3 = Y3 = [l,wol].

Although both the matrices

X Yy
X2 and }/2
X3 Y3

are of full column rank 2, all X; and Y} matrices
are only of rank 1. O

This example illustrates well that M cannot be
arbitrary. The following theorem characterizes
which matrix M will yield full column rank ma-
trices X and Y.

Theorem 1 Let Ay and Ej be nonsingular n X n
matrices, for £ = 1,2,---, K. Assume that X =
[XlT, xr-.-, X};]T is a full column rank matrix
that generates a d-dimensional deflating subspace

of A6 — A:



Xy Y,
X5 Y-

A = (A= M).  (8)
Xk Yx

If M has the property that A% # X whenever \
and p are two distinct eigenvalues of M, i.e.,
Ker(M — XI) = Ker (M¥ = X¥1),  (9)

VA € o(M) (the spectrum of M), then the X}
and Y}, matrices also have full column rank d, for
k=1,2,--- K.

Proof. Expanding (8), yields

Eka = Yk and Aka_l = YkM, (10)

for k=1,2,---, K. Thus we have

ApXj_1 = E Xy M, Vk. (11)

Since the Ej matrices are nonsingular, we can
define Sy = E; ' Ay. Then (11) is equivalent to

0 -0 X, X,
Sy . 0 ‘Xj? _ ‘XjQ M
0o soof ] L
or also
0 0 S 0O .--- 0 M
SR E S R Pt
0 s o 0 Moo

Note that M is nonsingular, since the Ay matrices
are also nonsingular.

We now show by contradiction that the matrices
X, are full rank if (9) holds. Assume e.g. that
X does not have full column rank and that the
columns of the matrix V span V := KerX;. Then
it follows from (12) that XoMV = S X3V =
0 and hence MV C KerXs. By similar argu-
ments one shows that M*V C KerXj,, for k =
2,---,K — 1 and finally, MKV C KerX; = V.
So V is an invariant subspace of M* and it must
contain an eigenvector v corresponding to some
eigenvalue ¢ of M¥ . Since the eigenvalues of M*
are the K-th powers of those of M, there exists a
value A € o(M) such that £ = AX. The assump-
tion (9) then implies that (M — Al)v = 0 and
hence v is also an eigenvector of M. Since A # 0
we found a vector v which is in the kernel of all
matrices X and hence also of X. So we proved
that rank(X) = d implies rank(X,) = d. The
same proof also holds for all other matrices Xy

since a circulant permutation of column and row
blocks in (12) can bring any block X}, to the first
position.

Observing (10) and using that Ej is nonsingular,
it is obvious that Y} is also of full column rank d.
This completes the proof. O

Next, we want to link the system of equations (7)
with one which only involves X rather than X},
and Y},. For this, we first rewrite (7) in a slight
more general form, which we will retrieve also
later on:

Ei X = Yllzjl A X5 = Yl%l
E2X2 = Yglgg N A2X1 = Y242 5 (13)
E3X3 =Y3FE;3 A3X2 = Y3A3
or
AE] —A1 A_E} B —Al
— A4y \E, X=Y| -4 \E,  [(14)
—A3 )\E3 _AS A-ES

where the regularity of A — A implies the regu-
larity of
B, A
_A2 A-E_Q _ 3
—A3 AE3

N —-A=

provided the Xj; and Yj; matrices are of full
column rank d. Therefore, we have for all k:
rank [Ek Ak] =d.

——
2d

And hence there exists a full column rank right
null space, which we partition as follows:

[Ex Ay | =0 (15)
By
Notice that for invertible matrices Ej, Ej, this is
like “ swapping ” factors since (15) implies

E;'A, = ALEC
Multiplying the left equations of (13) by Ay, and

the right ones by Ej, and equating corresponding
terms yields finally:

Ei1X1A; = A1 X3 B,
EyXoAs = A X1 B> (16)
E3X1As = A3 Xo B3

which does not involve Y}, anymore. To go from
(16) to (13) again, we rewrite (16) as

A
ApXg1] =0,

—E},

[Er Xy



which indicates that~ [ExXr ArXpk_1] is in the
left null space of [ Al% } But a basis for that is
— Loy,

given by [Ek
such that

Ak]. So there exists a matrix Y,

which yields again (13). From (14) it follows then
that the Y; must be full rank or otherwise we
would have

dim (EV + AV) < dim V,
for

X1
V=Im X2 5
X3
which would mean A — A is singular. Finally we
point out that (17) can be expressed geometrically
as the condition
dim (Ex Vi + ApVi—1) = d = dim Vg,

for Vi, = I'm (X}), because rank [Ek Ak] =d.

To go from (13) to (7), we replace Xj with X
and Yy with Yy in (13):

Ele - 171E1 Ang = YiAl
E2X2 = EE‘Z y A2X1 = EA.2 . (18)
E3X3 =Y3F; A3X> = Y343

Notice that the Ej and {Lc matriges are nonsin-
gular, since the Ej, Ay, X, and Yj, matrices are
all full rank. Define

My = E; " Ay, for k=1,2,3.

And let M be a K-th root (K=3) of nonsingular
matrix M3MsM;. Then (18) induces (7) with

X, = X, (Mk...MlM—k)
Yy = Vi By (Mk...Mlek) Cfork—1,2.3,
since then
EvXy = B Xy, (Mk . ..Mlek)
= Vi By (Mk : ..Mlek)
=Y
and
ApXi-1=AXia (]\Zf,hl . Mle(kfl))
= Vi Ay, (Mk . Mleu«—l))
=Y (EkMk) (Mk . MIM—(k—l))
=Y, Ej (Mk My M~ ) M
=Y} M,

which yield (7). Moreover, in the extraction of

M such that M? = MgMng, we can take any

complex number )\ that satisfies A3 = ¢ (here ¢
is an eigenvalue of M3 Mng) as an eigenvalue of
M (see (Gantmacher, 1959)). Thus, in particular,
M can be chosen to satisfy the assumption of
Theorem 1. That is, for each eigenvalue ¢ of
M3M2M1, we extract a fixed number )\ from the
set of cubic roots of ¢ as the only candidate for
entering into the set of eigenvalues of M, even if
there are multiple Jordan blocks corresponding to

&
With M satisfying the assumption of Theorem 1,
all X and Y}, matrices in (7) are of full column

rank d. Now we construct unitary matrices 5 and

Z}, such that
A d
Zi Xy =Xy = [}8’“] }

and )
* {7 S d
QkYszkz[O’“] :
where the R, and S; matrices are square invert-
ible. Putting these transformations in block form :

Q1 VA
) Q2 . Zy
Q= . , 2= . )
QK ZK
we apply the block transformation to the cyclic
pencil
Q* AN —A)Z=X— A,

and we find in the new coordinate system that

AE; —4 . A -M
—Ay ME, X=Y|-M A ,
—A; \F; —M A
with
Xl 1/}'1
X = XQ 3 y = l/}2
X Vs

This indicates that in this coordinate system the
Ej, and Aj, matrices are upper block triangular:

A SpR! . Si MR | x
Ek:[ kOk : :|,Ak:|: k O k—1 I "

So (6) induces a block triangular periodic Schur
decomposition, provided M satisfies the assump-
tion of Theorem 1.

We thus closed the following set of equivalence re-
lations for pencils with invertible matrices Ey, Ay.

i {ii; e ] = B - an

= 2
a8 || ] )
with M satisfying the assumption of Theo-
rem 1, X and Y}, matrices having full column
rank d.



AEl —Al AEl —/_11
R2 —AQ )\EQ
—A3 AE3
where M3 = Ey ' A3 E; P Ay B Ay,
Im ()”(k)zlm(xk), and Tm(Yy)=Im (¥},
for k ="1,2,3.
Ei XA = A1 X3E,
E3X3A; = A3 X By
where Ek;lk = /_lkEk, for k = 1,2,3.
R4 dim (Ex Vi + AxVi—1) = d = dim Vy,,
where Vi, = Im (X;) = Im (X'k),
for k=1,2,3.
R5 There exist a block triangular periodic Schur
decomposition with leading d x d blocks.

We can also show that relations (R3), (R4), and
(R5) are still valid for Ej, Ay arbitrary for as long
as A — A is regular. In this case (R1) and (R2)
only apply to the invariant subspaces with finite
nonzero reduced spectrum.

Example 2 The pencil (n =1,K = 3)

100 000
Al010(—-1]100
001 010

is clearly regular with triple eigenvalue 0. It is
already in triangular periodic Schur form, but
(R1) with M =0 (d =1) has

X1:X2:O and )/1:)/2:0

So (R1) is not equivalent to (R5) in the case,
neither is (R2). m|

Finally, this also allows to give a new definition of
eigenvalue/eigenvector pairs for periodic pencils.
Proofs of the validity of these definition are given
in the full paper.

Definition 1 Let ((Ak,Ek))kK:1 be regular pe-
riodic n X n matrix pairs. If there exist com-
plex numbers ay, -+ -, ax and 31, - - -, Bk such that

(T @i T 85) # (0,0) and

a1 By —B1 A
—f2As vy

(19)

—BrkAk axEx

is singular, then we say < Hle aj, Hle B > is
an eigenvalue of (A, Ek)szl. The set of eigenval-
ues of (Ak,Ek)f:1 is denoted as o (Ak,Ek)szl. O

Definition 2 Let (A, Ek)szl be regular periodic
n X n matrix pairs. If there exist complex num-
bers ay,--,ak, b1, , Bk, and nonzero vectors
Z1,---,ZK such that

BrArzr_1 = apEyxy, fork=1,2,---, K (20)

with (TT5; e, T15, ;) # (0,0), we say that
(zx) K, is an eigenvector sequence of ((Ax, Ex))K_,
with eigenvalue < Hfil aj, Hfil Bj >. O
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