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Abstract. In this paper we analyze an indirect approach, called the Neighborhood Pattern Similarity approach,
to solve the so-called role extraction problem of a large-scale graph. The method is based on the
preliminary construction of a node similarity matrix, which allows in a second stage to group together,
with an appropriate clustering technique, the nodes that are assigned to have the same role. The
analysis builds on the notion of ideal graphs where all nodes with the same role are also structurally
equivalent.
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1. Introduction. To analyze large networks and obtain relevant statistical properties,
clustering nodes together into subgroups of densely connected nodes, called communities, is
a popular approach. Various measures and algorithms have been developed to identify these
community structures [37, 30, 18, 14, 40]. However, there are network structures that cannot
be determined using community detection algorithms, such as bipartite and cyclic graph
structures, which appear in human protein--protein interaction networks [36] and food web
networks [20], respectively. General types of network structures are known as role structures,
and the process of finding them is called the role extraction problem or block modeling [23,
32, 39].

The role extraction problem determines a representation of a network by a smaller struc-
tured graph, called the reduced graph, role graph, or image graph, where nodes are grouped
together into roles based upon their interactions with nodes in either the same role or different
roles. This problem is a generalization of the community detection problem where each node
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SIMILARITY MEASURE FOR THE ROLE EXTRACTION PROBLEM 737

in a community mainly interacts with other nodes within the same community, and there are
no, or very few, interactions between communities. There are many real world applications
to which role extraction can be applied and from which characterizations of interactions that
define roles can be taken, such as studying trade networks between countries [39]; evaluating
the resilience of peer-to-peer networks [24]; ranking web pages in search engines [33]; studying
human interaction by email correspondence [1]; modeling protein--protein interactions [25];
and analyzing food webs [20]

Previous research solved the role extraction problem using either direct or indirect ap-
proaches, where direct approaches cluster the network directly into roles [13, 39, 38], while
indirect approaches construct a node similarity matrix of the data set and then cluster highly
similar nodes together [3, 26, 11, 9, 2, 10, 29, 28]. Both approaches have strengths and
weakness for solving the role extraction problem. A strength of direct approaches is that it
explicitly fits the data into a role structure. Some of these methods require a priori knowledge
about the block structure of the network or assume that the block structure is a combination
of a predefined set of structures. If no a priori information is available, one needs to verify
all possible role assignments in order to determine the best role structure for the data, which
leads to a combinatorial complexity [13, 9].

Indirect approaches do not require an explicit assumption on the role assignment and may
reveal complex network structures that are not apparent from the original data. But indirect
approaches do make an implicit assumption when using the similarity matrix to detect the
assignment of the nodes to each group [3, 6, 9, 10, 11, 13, 26]. The main problem with indirect
approaches is that there exist several different types of node similarity measures. In addition,
many of these measure have been deemed unsuitable for the role extraction problem due to
difficulties encountered when extracting role structures from certain types of graphs (e.g.,
regular graphs and normal graphs), loss of information (e.g., the origin, the destination, and
the intermediate nodes involved in the transmission of the flow), or were more suited to detect
community structures than role structures [6]. Fortunately, recent work has shown that the
neighborhood pattern similarity measure can be used to solve the role extraction problem
when using the indirect approach.

Browet and Van Dooren used the neighborhood pattern similarity measure to solve the
role extraction problem and showed empirically that the measure was able to determine the
role structure of complex networks [6, 7]. In addition, they developed an algorithm to compute
a low-rank approximation of the similarity matrix and showed empirically that their indirect
approach can extract role structures within networks. Marchand improved upon their low-rank
algorithm using Riemannian optimization techniques to develop a more efficient algorithm to
compute the low-rank similarity matrix and showed (analytically and empirically) that there
exists a relationship between the rank of the similarity matrix and the number of roles in the
network [28].

In this paper, we analyze the Neighborhood Pattern Similarity measure and show that,
under certain assumptions, we can recover roles from a low-rank factorization of the sim-
ilarity matrix due to the relationship between the rank of the similarity matrix and the
number of roles. Also, we explore how perturbing the adjacency matrix affects the singular
values (and rank) of the similarity matrix. Lastly, we unify special complex structures in
networks (e.g., community, overlapping community, etc.) as role structures and show that theD
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738 M. MARCHAND ET AL.

Neighborhood Pattern Similarity measure can be used as well to find these structures in
network topology.

The paper is organized as follows. In section 2 we recall the basic role extraction problem
and the notion of ideal graphs. Section 3 recalls the neighborhood similarity measure of
Browet and Van Dooren and gives the proof of the main result of this paper, namely, that the
recovery of the block structure of an ideal graph can be recovered exactly from the low-rank
approximation of the similarity matrix. In the next section 4, we look at small perturbations
of the ideal graph case and show that the recovery of the block structure is still quite reliable
because of the gap of the dominant singular values of the similarity matrix. In section 5, we
finally show that this approach applies to several types of block structures.

2. Role extraction problem. Given a (un)weighted and directed network, the role extrac-
tion problem represents the network by its adjacency matrix and determines a representative
role structure for the network. This role is determined by assuming that nodes can be grouped
according to a suitable measure of equivalence. In this section, we state two measures of
equivalence used for the role extraction problem and define the general form and state the
constraints necessary to extract viable role structures. Most of the discussion and results
that follow concern unweighted directed graphs. In section 5, the expression of special graph
structures as role structures includes generalizations to signed weighted directed graphs.

2.1. Measure of equivalence and definition of the role extraction problem. A graph,
denoted G(V,E), is a mathematical structure with two finite sets V and E, where the elements
of the set V = \{ 1, . . . , n\} are called nodes and the elements of the set E = \{ (i, j) | i, j \in V \} are
called edges. If there exists an edge between nodes i and j, i.e., the pair (i, j) \in E, then nodes
i and j are adjacent. The adjacency matrix is an n \times n \{ 0, 1\} -matrix A, where if (i, j) \in E,
then Ai,j = 1; otherwise Ai,j = 0. If the graph is weighted and (i, j) \in E, then the weighted
adjacency matrix is denoted by W and Wi,j is represented by its edge weight.

Given the adjacency matrix A, the role extraction problem finds an n \times n permutation
matrix P such that the edges in the permuted adjacency matrixAp := P TAP , which represents
the relabeled graph, are mainly concentrated into blocks (see Figure 2.1). In order to form the
relabeled graph, one needs to determine if the nodes are structurally or regularly equivalent.

Two nodes are structurally equivalent if they have exactly the same children and the same
parents [27]. In terms of block modeling, this means that all blocks in the permuted adjacency
matrix must then either have only 0's or only 1's : If we denote by I and J two sets of nodes
that each contain structurally equivalent nodes, then (i) the block (I, J) in P TAP is a ``0""
block if none of the nodes in I has any children in group J , or equivalently, if none of the

P?
=⇒ PTAP =A =

Figure 2.1. Block modeling: Find the permutation P such that the relabeled adjacency matrix PTAP has
an approximate block structure.
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SIMILARITY MEASURE FOR THE ROLE EXTRACTION PROBLEM 739

nodes in J has any parents in group I, and (ii) it is a ``1"" block if all the nodes in group I
has all the nodes in group J as children, or equivalently, if all the nodes in group J has all
the nodes in group I as parents [13].

Structural equivalence usually extracts many small roles in networks [42, 16, 17]. Thus,
an alternative equivalence relation, regular equivalence, was proposed to extract larger roles.
Two nodes are regularly equivalent if, while they do not necessarily share the same neighbors,
they have neighbors who are themselves structurally or regularly equivalent. Alternatively,
this means that the blocks in the permuted adjacency matrix must contain at least one
element per row and column (called a regular block). Note that structural equivalence implies
regular equivalence, but regular equivalence does not imply structural equivalence. Another
variant is that of stochastical equivalence, which expresses that all edges corresponding to a
stochastically equivalent block have the same probability pI,J [23, 14]. The expected value of
such a block of the adjacency matrix is thus a rank one matrix with all elements equal to pI,J .

Every group of regularly equivalent nodes of A can be represented by a single role in the
role graph, which is a smaller assignment matrix B with a number of nodes that is the number
of groups of regular equivalent nodes in A. Moreover, BI,J = 1 if the nodes in group I in
the original graph A all point to the nodes in group J in A, and BI,J = 0 if none of the
nodes in group I in A point to any of the nodes in group J in A. Additionally, Reichardt and
White assumed that no two roles in the role graph B may be structurally equivalent because
if they were, then both roles would interact with the same roles, and we would be unable to
distinguish between the two roles [39, 38]. So, these two roles should be merged into one role.
These ideas are used below to define an ideal form of adjacency matrix that facilitates the
extraction of roles by its use to approximate the adjacency matrix of the given graph.

Earlier research in role extraction involved creating a cost function to minimize over both
the role structure and role assignment of nodes in the graph based on a choice of equivalence
relation [23, 41, 13, 39, 38]. That is, if B is the adjacency matrix of the role graph and \sigma is
the assignment of each node to a role, then the problem can be stated as

(B\ast , \sigma \ast ) = argmin
B,\sigma 

QA(B, \sigma ),(2.1)

where QA depends on the graph topology and chosen equivalence criterion. Note that (2.1)
is a combinatorial optimization problem with respect to two groups of variables and is harder
than the community detection problem, which is, in general, NP-hard [5, 4]. The cost function
QA(B, \sigma ) can either be constructed indirectly, based on a (dis)similarity measure between pairs
of nodes, or directly, based on a measuring of the fit of clusters compared to an ideal clustering
with perfect relations within and between clusters. We focus on an indirect approach to the
role extraction problem and show how the similarity metric chosen for our approach can be
used to first extract the optimal assignment function \sigma \ast of the role structures in a network.
Once the groups of the assignment \sigma \ast have been identified, then in a second step, the role
matrix B is easy to construct, provided we use a cost function that is ``decoupled"" in the
elements of B, since each element Bij \in \{ 0, 1\} can then be chosen independently in order to
maximize QA(B, \sigma \ast ).

2.2. Role models and ideal graphs. We are particularly interested in graphs with a per-
muted adjacency matrix AP := P TAP , which has a special block form that can be represented
in the factorized form
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740 M. MARCHAND ET AL.

AP = ZBZT , Z =

\left[     
z1 0 \cdot \cdot \cdot 0
0 z2 \cdot \cdot \cdot 0
...

...
. . .

...
0 0 \cdot \cdot \cdot zq

\right]     = Diag\{ z1, . . . , zq\} \in \BbbR n\times q,(2.2)

where q is the number of roles in the role graph, zi := [1, . . . , 1]T \in \BbbR ni , n = n1 + \cdot \cdot \cdot + nq,
and B is a q \times q adjacency matrix (i.e., the role matrix) describing the roles in the original
matrix AP . We assume that the graph does not have disconnected nodes (a zero row and
corresponding zero column of the adjacency matrix A) because this would imply that Z has a
zero row. We call such graphs ideal graphs because all of the nodes in each role are structurally
equivalent.

Such a decomposition is not unique. If, for instance, the kth row and column of the matrix
B contains only zeros, then clearly the row and column can be removed in the decomposition
ZBZT , which yields a smaller decomposition. For example, suppose the matrix B and the
decomposition matrices are

AP = ZBZT , B :=

\left[  0 1 0
1 1 0
0 0 0

\right]  , Z := Diag\{ z1, z2, z3\} 

and the matrix AP can be represented by the 2 role decomposition AP = \^Z \^B \^ZT , where

AP = \^Z \^B \^ZT , \^B :=

\biggl[ 
0 1
1 1

\biggr] 
, \^Z := Diag\{ z1, z2\} .

This implies that the original adjacency matrix also had a number of corresponding zero rows
and columns. Therefore, we do not need to associate any role to the corresponding nodes.

Nonuniqueness of the factorization also occurs when the matrix B has itself a decom-
position with a smaller matrix \^B with fewer roles. Consider the 3 \times 3 image matrix in the
decomposition

AP = ZBZT , B :=

\left[  1 1 1
1 0 0
1 0 0

\right]  , Z := Diag\{ z1, z2, z3\} .

The roles 2 and 3 of the image matrix B are structurally equivalent and can be combined into
a single role. This implies that B has the factorization as\left[  1 1 1

1 0 0
1 0 0

\right]  =

\left[  1 0
0 1
0 1

\right]  \biggl[ 
1 1
1 0

\biggr] \biggl[ 
1 0 0
0 1 1

\biggr] 
,

which can then be used to obtain the smaller decomposition

AP = \^Z \^B \^ZT , \^B :=

\biggl[ 
1 1
1 0

\biggr] 
, \^Z := Diag\{ z1, \^z2\} ,

where \^z2 has now n2 + n3 elements.
In order to introduce a form of uniqueness, we define the so-called minimal role matrices.D
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SIMILARITY MEASURE FOR THE ROLE EXTRACTION PROBLEM 741

Definition 2.1. If A = ZBZT is an adjacency matrix of a connected unweighted directed
ideal graph, then B is a minimal role matrix if no two rows of the compound matrix [ B BT ],
are linear dependent.

Note that, unlike community detection, a factorization A = ZBZT always exists by simply
taking A = B and Z = I. In practice, this is of little interest since the point of role extraction
is to identify structure in the graph with significantly fewer roles than nodes; i.e., a low-rank
ideal adjacency matrix that approximates A well. As a result, we explore the relationship
between the Neighborhood Pattern Similarity measure, minimal ideal graphs, the rank of
their adjacency matrices, the number of roles, and the rank of A.

2.3. Uniform distributions. Browet et al. showed empirically that the indirect method
using the Neighborhood Pattern Similarity measure worked well extracting the role structure
from randomly generated Erd\"os--R\'enyi block graphs [6]. The method works well on randomly
generated Erd\"os--R\'enyi block graphs because the expected value of each block is a matrix of
rank 1.

In an Erd\"os--R\'enyi graph, each edge has a probability p to be present. Therefore the
expected value of the adjacency matrix of such an n \times n graph equals E(A) = p11T , which
is rank 1 and has Perron root np. Moreover, it has been shown that for large Erd\"os--R\'enyi
graphs (these are undirected graphs with edges of equal probability p) the other eigenvalues
of the adjacency matrix have an expected value that is much smaller than np [15]. Therefore,
if we apply the same reasoning to a matrix A with role matrix B, then the expected value of
the adjacency matrix would be

E(A) = (PZ)[pinB + pout(11
T  - B)](PZ)T = (PZ)E(B)(PZ)T ,

where pin is the probability of an edge existing between corresponding roles and pout is the
probability that an edge does not exist. Therefore, E(A) has rank at most q, and if the
remaining n - q eigenvalues are also small such as in the standard Erd\"os--Renyi case, then E(A)
is a good approximation of A. One can also view this graph as a special case of a stochastic
block model [23] in that it is a linear combination of the two stochastically equivalent models
(PZ)B(PZ)T and (PZ)(11T  - B)(PZ)T with respective weights pin and pout.

3. Analysis of the rank of the Neighborhood Pattern Similarity measure. As shown
in this section, the similarity matrix is an n \times n dense matrix and is therefore expensive to
compute directly, especially for large networks. We also prove in this section that for the ideal
graph case, there exists a rank factorization of the Neighborhood Pattern Similarity matrix,
a relationship between the rank and the number of roles in the network, and a relationship
between the matrix factors and the assignment of nodes to roles. In addition, we prove that the
roles can be extracted correctly, even for a similarity matrix with rank less than the number
of roles. Section 4 then considers extracting the role structure of graphs in the neighborhood
around an ideal graph. The similarity matrices of graphs in this neighborhood have have good
low-rank approximations that are close to the low-rank similarity matrices of the nearby ideal
graph. As a result, the Neighborhood Pattern Similarity measure can be used as the basis for
efficient role extraction algorithms.D
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3.1. Neighborhood Pattern Similarity measure. The Neighborhood Pattern Similarity
measure determines if two nodes are similar if they have similar neighborhood patterns. The
basic idea was introduced in [12, 9] but was fully developed in [6, 7]. Similar ideas have also
been used in semisupervised learning [35]. A neighborhood pattern of length \ell is defined as
the number of incoming (I) and outgoing (O) edges starting from a source node [6]. For
example, neighborhood patterns of length 1 are patterns where two nodes are similar if they
have common parents, i.e., Figure 3.1a, or common children, i.e., Figure 3.1b. The number of
common parents between two nodes (i, j) is the number of nonzero row elements shared by
the ith and jth columns of A, i.e., [ATA]i,j and the number of common children is the number
of nonzero column elements shared by the ith and jth rows of A, i.e., [AAT ]i,j . Therefore, the
number of common reachable nodes, called target nodes, between every pair of source nodes
for neighborhood patterns of length 1 is M1 = AAT +ATA [6].

For neighborhood patterns of length 2, there are four possible neighborhood patterns (see
Figure 3.2), and the number of common target nodes between every pair of source nodes for
neighborhood patterns of length 2 is given by (see [6] for a more detailed proof of this)

M2 = AAATAT +AATAAT +ATAATA+ATATAA = AM1A
T +ATM1A.

1(a) Pattern I: ATA 1(b) Pattern O: AAT

Figure 3.1. All possible neighborhood patterns of length 1 for the similarity measure where the source nodes
i, j are the black circles and the target node is the gray square

1(a) pattern I-I: ATATAA 1(b) pattern O-O: AAATAT

1(c) pattern I-O: ATAATA 1(d) pattern O-I: AATAAT

Figure 3.2. All possible neighborhood patterns of length 2 for the similarity measure where the source nodes
i, j are the black circles and the target node is the gray squareD
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SIMILARITY MEASURE FOR THE ROLE EXTRACTION PROBLEM 743

In general, the number of possible neighborhood patterns of length \ell is 2\ell and the number
of common target nodes is given by

M\ell = AM\ell  - 1A
T +ATM\ell  - 1A.

Therefore, the neighborhood pattern pairwise node similarity measure can be defined as the
weighted sum of the number of common target nodes of the neighborhood patterns of any
length; i.e.,

S =
\infty \sum 
\ell =1

\beta 2(\ell  - 1)M\ell ,(3.1)

where \beta \in \BbbR is a scaling parameter that weights longer neighborhood patterns [6] (implying
that as \beta increases it is expected to be more difficult to have two nodes similar to each other).
Note that the similarity matrix S is a symmetric positive semidefinite matrix.

3.2. The similarity matrix recurrence. In Browet's thesis [6], the following recurrence
relation was proposed for computing a similarity matrix, where \Gamma A[X] := AXAT +ATXA is
a linear mapping from \BbbR n\times n to \BbbR n\times n which moreover preserves symmetry, nonnegativity, and
semidefiniteness of the argument X :

S1 := \Gamma A[In] = AAT +ATA, Sk+1 := \Gamma A[In + \beta 2Sk] \forall k \geq 1,(3.2)

where In is the n \times n identity matrix. This sequence was shown to converge to a bounded
fixed point

S\infty = \Gamma A[In + \beta 2S\infty ](3.3)

if and only if \beta 2 satisfies

\beta 2 <
1

\rho (A\otimes A+AT \otimes AT )
.(3.4)

Since the initial matrix S1 is symmetric, positive semidefinite, and nonnegative and the map-
ping \Gamma A preserves these properties, it follows that all matrices Sk are symmetric, positive
semidefinite, and nonnegative.

Theorem 3.1. Consider the iteration (3.2) where \beta is chosen according to (3.4) to guarantee
convergence to a bounded solution S\infty . Then all matrices Sk, including their limit S\infty , have
the same image as the compound matrix [A AT ] and the same rank r.

Proof. The iteration (3.2) can be rewritten as follows:

S1 :=
\bigl[ 
A AT

\bigr] \biggl[ AT

A

\biggr] 
, Sk+1 =

\bigl[ 
A AT

\bigr] \biggl[ I + \beta 2Sk 0
0 I + \beta 2Sk

\biggr] \biggl[ 
AT

A

\biggr] 
\forall k \geq 1.

The first equation implies ImS1 = Im
\bigl[ 
A AT

\bigr] 
, where ImM denotes the image (or column

space) of a matrix M . In the second equation, the middle matrix is positive definite since Sk

is semidefinite, and this implies that ImSk+1 = Im
\bigl[ 
A AT

\bigr] 
. This also implies that the rank of

all matrices Sk, k \geq 1 is equal to the rank of
\bigl[ 
A AT

\bigr] 
. For the limit S\infty , one has to be more

careful, since the rank could drop. But the second equation also implies that (in the Loewner
ordering) Sk \succeq S1 for all k and hence the rank must remain constant.D
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3.3. The ideal graph case. For the role extraction problem, the idea of using a low-
rank projection of a similarity measure for the construction of the indirect cost function was
proposed by Browet and Van Dooren in [6, 7]. However, they only provided empirical evidence
of the relationship between the rank of the neighborhood pattern similarity measure and the
number of roles in the network. In this section, we prove, for ideal graphs, a relationship
between the rank factorization of the similarity matrix and the number of roles in the network.
In addition, we prove that the rows of the left factor of the rank factorization of the similarity
matrix have exactly q clusters of all parallel vectors.

Recall that adjacency matrix, A, of an ideal graph satisfies the decomposition

A = (PZ)B(PZ)T ,

where B is a minimal role matrix.

Corollary 3.2. When the matrix A is the adjacency matrix of an ideal graph with minimal
role matrix B, then ImSk \subseteq ImPZ, and hence r := rankSk \leq q := rankZ, where q is the
number of roles.

Proof. This is a direct consequence of Theorem 3.1 since both A and AT have an image
included in the image of PZ.

Since Sk is symmetric and ImSk \subseteq ImPZ, we can write it as Sk = (PZ) \^SK(PZ)T ,
where \^Sk := N - 1(PZ)TSk(PZ)N - 1 \succeq 0 (i.e., \^Sk is positive semidefinite) and N := ZTZ =
diag\{ \| z1\| 22, . . . , \| zq\| 22\} is a q\times q diagonal matrix. We can then reformulate the iteration (3.2)
as a recurrence for the \^Sk matrices :

\^S1 :=
\bigl[ 
B BT

\bigr] \biggl[ N 0
0 N

\biggr] \biggl[ 
BT

B

\biggr] 
,

\^Sk :=
\bigl[ 
B BT

\bigr] \biggl[ Nk 0
0 Nk

\biggr] \biggl[ 
BT

B

\biggr] 
\forall k > 1,

where Nk := N + \beta 2N \^Sk - 1N . We then obtain the following result.

Corollary 3.3. When A is an adjacency matrix for an ideal graph with minimal role matrix
B, then for all k, including k = \infty , it follows that Im \^Sk = Im[B BT ], ImSk = ImPZ \^Sk =
ImPZ[B BT ], and hence r := rank \^Sk = rankSk \leq q := rankZ, where q is the number of
roles.

Proof. The proof that Im \^Sk = Im[B BT ] is very similar to the proof of Theorem 3.1. The
fact that ImSk = ImPZ \^Sk follows from the identity Sk = (PZ) \^Sk(PZ)T and the fact that
both Sk and \^Sk are semidefinite. The rest easily follows.

Now, we show that even when we have a factorization (2.2) with the minimal role matrix
B, rankSk can be smaller than q, the number of roles. Let A = (PZ)B(PZ)T with

B :=

\left[  0 0 0
1 0 1
1 0 1

\right]  .

D
ow

nl
oa

de
d 

07
/2

1/
21

 to
 1

93
.1

21
.1

55
.1

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIMILARITY MEASURE FOR THE ROLE EXTRACTION PROBLEM 745

Let us for simplicity choose (PZ) = I3; i.e., A = B, \^Sk = Sk for all k, and q = 3. It is easy
to check then that rankA = rankB = 1, and

rank [A AT ] = rank [B BT ] = rank

\left[  0 0 0 0 1 1
1 0 1 0 0 0
1 0 1 0 1 1

\right]  = 2,

and

rankSk = rankS1 = rank

\left[  2 0 2
0 2 2
2 2 4

\right]  = 2, S1 = 2

\left[  1 0
0 1
1 1

\right]  \biggl[ 
1 0 1
0 1 1

\biggr] 
.

Nevertheless, we prove below that we can recover the different roles via clustering per-
formed on the low-rank factorization of any matrix Sk, even though its rank is smaller than
the number of roles.

Theorem 3.4. Let A = (PZ)B(PZ)T be an ideal graph with B minimal. For any k, let
\^Sk \succeq 0 be defined as above with rank r \leq q and low-rank factorization \^Sk = VkV

T
k where

Vk \in \BbbR q\times r. The matrix Sk has the low-rank factorization Sk = (PZVk)(PZVk)
T and the rows

of the matrix PZVk have exactly q clusters of all parallel vectors.

Proof. Since all matrices \^Sk = [ B BT ] diag(Nk, Nk)[B
T

B
] are symmetric matrices with

the same image, they also have the same kernel, which must be the kernel of [B
T

B
]. Let

vTj,k, j = 1, . . . , q be the rows of the matrix Vk. Then vj,k \not = 0 for any j, since otherwise the

jth row of B and BT would be zero, and this violates the minimality assumption. For the
same reason, no two rows vTi,k and vTj,k of Vk can be parallel, since otherwise the same two rows

of B and BT would be parallel, which means that these roles would be structurally equivalent,
and this also violates the minimality assumption. If we now look at the (unpermuted) matrix
ZVk, then it has the form

ZVk =

\left[   z1v
T
1,k
...

zqv
T
q,k

\right]   ,

and each block zjv
T
j,k corresponds to a cluster of nj row vectors parallel to vTj,k. Since none of

the vectors vj,k is zero or parallel to another row of Vk, we have exactly q different clusters.
This is of course not affected by the permutation P .

By Theorem 3.4, we can extract the role structure of the network from the low-rank factor
of any Sk of an ideal adjacency matrix. While for any k in this ideal case the vectors, vj,k,
j = 1, . . . , q, associated with each role are not parallel, there is value to not simply taking k
some convenient small fixed value. As k increases the angles between the nonparallel vectors,
vj,k, j = 1, . . . , q, increase thereby increasing the discrimination capabilities when a low-rank
approximation of the similarity matrix of a nonideal adjacency matrix is used to select the
nearby ideal adjacency matrix used to extract the role structure. It was shown in [6, 28] that
the computation of a rank-r approximation of Sk has a complexity of the order of kr(m+nr),
where m is the number of edges and n the number of nodes in the graph.D
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Remark 3.5. If for a given adjacency matrix A (not necessarily ideal) and a given assign-
ment function \sigma , we use the cost function

QA(\sigma ,B) := \| A - Aideal\| 2F = \| A - (PZ)B(PZ)T \| 2F = \| P TAP  - ZBZT \| 2F ,

then P and Z are completely defined by the assignment function \sigma . Therefore, once \sigma is fixed,
the above function can be decoupled as the sum

QA(\sigma ,B) =
\sum 
i,j

\| (P TAP )i,j  - Bi,jziz
T
j \| 2F ,

where (P TAP )i,j is the (i, j) block of the permuted matrix A. Clearly this is minimized by
choosing Bi,j = 1 if zTi (P

TAP )i,jzj > ninj/2 and Bi,j = 0 otherwise. For a nonideal adjacency
matrix A this leaves the key question of using an approximate low-rank factorization of its
associated similarity matrix to determine Z that, in part, defines a nearby ideal matrix for
use in determining the role structure. The feasibility of such approximations yielding a useful
Z and therefore B is considered in section 4. \square 

4. Perturbation analysis. In this section, we analyze the singular values of the adjacency
matrix A of a directed unweighted ideal graph and the effect perturbing A has on them and
on the similarity matrix. The perturbed adjacency matrix is denoted as A + \Delta , where \Delta is
the perturbation (i.e., addition or subtraction) of some elements ai,j . The main questions to
be addressed are

1. Can we estimate the number q of ``ideal"" roles from the singular values of the perturbed
graph ?

2. Is the dominant subspace of the perturbed matrices Sk then still close to ImZ of the
ideal adjacency matrix A so that we can find the correct grouping of nodes?

If we can answer these two questions affirmatively, then we can recover the correct grouping
of nodes and their roles.

4.1. The singular values of the ideal graph case. Let A = (PZ)B(PZ)T be the ad-
jacency matrix of an directed unweighted ideal graph where B is a minimal role matrix.
Then, Z can be represented by the factorization Z = UqN

1/2, where UT
q Uq = Iq and

N1/2 := diag\{ \| z1\| 2, . . . , \| zq\| 2\} , and we can write \~Sk := (PUq)
TSk(PUq), where \~Sk is sym-

metric and \~Sk \succeq 0. We can reformulate the iteration on the Sk matrices as a recurrence for
the \~Sk matrices, i.e.,

\~S1 :=
\bigl[ 

\~B \~BT
\bigr] \biggl[ \~BT

\~B

\biggr] 
, \~Sk+1 :=

\bigl[ 
\~B \~BT

\bigr] \biggl[ I + \beta 2 \~Sk 0

0 I + \beta 2 \~Sk

\biggr] \biggl[ 
\~BT

\~B

\biggr] 
,(4.1)

where \~B := N1/2BN1/2. Therefore Im \~Sk = Im[ \~B \~BT ], ImSk = ImPUq
\~Sk = ImPUq[ \~B \~BT ].

Also, the nonzero singular values \Sigma (A) of A and \Sigma (Sk) of Sk are those of \~B and \~Sk

\Sigma (A) = \Sigma ( \~B), since A = (PUq)N
1/2BN1/2(PUq)

T

and \Sigma (Sk) = \Sigma ( \~Sk), since Sk = (PUq) \~Sk(PUq)
T \forall k \geq 1.D
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4.2. The singular values of the perturbed graph case. Due to the analysis above showing
the relevant gap increasing with k, we concentrate on comparing the singular values of A with

those of S1. Furthermore, if we write S1 = XXT , where X := [ A AT ], S
1
2
1 has the same

nonzero singular values as X. Therefore, we analyze here the perturbations of the spectrum
of A and X := [ A AT ] for an arbitrary perturbation \Delta of the ideal adjacency matrix A of
a directed unweighted ideal graph. We analyze the case of an arbitrary perturbation of \{ 0, 1\} 
type and the special case of a Erd\"os--Renyi type perturbation. For simplicity, we assume that
A and X have both the same rank q, which is the number of roles.

Since we can rewrite the ideal decomposition A = ZBZT as the normalized factorization
A = Uq

\~BUT
q , where N = diag(n1, . . . , nq), Z = UqN

1
2 , UT

q Uq = Iq, and \~B = N
1
2BN

1
2 , it

follows that we can construct an orthogonal transformation

U =
\bigl[ 
Uq U\bot 

q

\bigr] 
such that

A = U

\biggl[ 
\~B 0
0 0

\biggr] 
UT , and \Delta = U

\biggl[ 
\~\Delta 11

\~\Delta 12
\~\Delta 21

\~\Delta 22

\biggr] 
UT .

We are interested in the dominant singular values of the perturbed matrices A(\Delta ) := A+\Delta 

and S
1
2
1 (\Delta ) := [A(\Delta )AT (\Delta )+AT (\Delta )A(\Delta )]

1
2 , or equivalently of X(\Delta ) := [A(\Delta ), AT (\Delta )] since

S1(\Delta ) = X(\Delta )XT (\Delta ). Clearly the gap between the qth and (q+1)st singular value will affect
how well the number of roles q is detected when the graph is perturbed. Since we assumed
that \~B has full rank q, the nonzero singular values of A are those of \~B, and the nonzero

singular values of S
1
2
1 are those of \~X := [ \~B \~BT ]. We also assume that the perturbation \Delta 

is sufficiently smaller than the norm of the ideal adjacency matrix A such that one can use
classical perturbation analysis techniques.

It follows then from standard perturbation theory of the matrix

A(\Delta ) := U \~A(\Delta )UT where \~A(\Delta ) :=

\biggl[ 
\~B + \~\Delta 11

\~\Delta 12
\~\Delta 21

\~\Delta 22

\biggr] 
,

that the q dominant singular values of A(\Delta ) are \| \Delta \| 2-close to those of \~B and that the (q+1)st
singular value of A(\Delta ) is strictly bounded by the norm of the submatrix [ \~\Delta 21

\~\Delta 22 ] (see,
e.g., [19]). Similarly, the q dominant singular values of

X(\Delta ) = U
\bigl[ 

\~A(\Delta ) \~AT (\Delta )
\bigr] 
(I2 \otimes UT ),

where \bigl[ 
\~A(\Delta ) \~AT (\Delta )

\bigr] 
:=

\biggl[ 
\~B + \~\Delta 11

\~\Delta 12
\~BT + \~\Delta T

11
\~\Delta T
21

\~\Delta 21
\~\Delta 22

\~\Delta T
12

\~\Delta T
22

\biggr] 
,

are then \| \Delta \| 2-close to those of [ \~B \~BT ] and the (q+1)st singular value is strictly bounded

by the norm of the submatrix [ \~\Delta 21
\~\Delta 22

\~\Delta T
12

\~\Delta T
22 ] [19].D
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Note that the singular values of \~B := N
1
2BN

1
2 can be expected to be large since the diag-

onal scaling N has large entries ni, the matrix B has only 0 and 1 entries, and is nonsingular.
A precise lower bound on the smallest singular value of B is not available but due to the
0, 1 structure it is expected to be O(1) with an acceptable gap to the size of a reasonable
perturbation. In practice, \~B will have dimension small enough so its singular values can be
computed with negligible additional cost to assess its quality in any role extraction algorithm.

Given an ideal adjacency matrix and a minimal B, we also consider an Erd\"os--R\'enyi
perturbation model determined by two probabilities pin and pout [15]. Elements of A that are
1 change to 0 with probability pin and elements of A that are 0 change to 1 with probability
pout. Given this Erd\"os--R\'enyi perturbation model, the expected value of \Delta is known:

E(\Delta ) = UPN
1
2 [B(1 - pin) + pout(11

T  - B)]N
1
2UT

P ,

which implies that (U\bot 
q )TE(\Delta ) = 0 and E(\Delta )U\bot 

q = 0. This then means that the norms of
\~\Delta 12, \~\Delta 21, and \~\Delta 22 can be expected to be much smaller that the norm of \Delta . Moreover, this
suggests that we can estimate the q largest singular values of A+\Delta by those of

E( \~B) = \~B +N
1
2 [pinB + pout(11

T  - B)]N
1
2 ,

which are very close to those of \~B when pin and pout are small.
For example, for the Erd\"os--R\'enyi graph in Figure 4.1, there is a distinct gap between the

4th and 5th singular values for A, S
1/2
\infty and S\infty for the ideal graph case (i.e., rows (a) and

(c)). This indicates that the rank of S\infty is 4, which is the number of roles. For the perturbed
graph case, the gap between the 4th and 5th singular values is smaller; however, the gap is
larger in S\infty than in A. Also, note that for the perturbed case, the difference between the
4th and 5th singular values of S\infty for the large graph is 104, while it is 102 for the smaller
graph. So perturbing small graphs has a larger effect on how well the similarity measure can
detect the number of roles than perturbing large graphs. However, in practice we are more
interested in extracting structure for large graphs so this is not a major concern. For both
cases it is seen that using the similarity measure to detect the roles in the graph is preferable
to using the adjacency matrix because the gap in the singular values is larger for S\infty than it is
for A. Notice that this is intimately related to the fact that we consider unweighted adjacency
matrices since those are the ones where the Erd\"os--R\'enyi property applies.

5. Unification of special complex structures as role structures. In this section, we unify
special complex network structures as role structures and show why the Neighborhood Pattern
Similarity measure will extract these structures. We do this by examining the structure of
the associated ideal adjacency matrix, A. As in the general discussions of earlier sections,
in efficient role extraction algorithms, these ideal forms would be identified by considering
low-rank approximations of the similarity matrices of nonideal adjacency matrices.

5.1. Community structures. A popular type of network structure is a community struc-
ture. Community structures are described as groups of nodes where there exists many con-
nections between nodes in the same group and no (or few) connections between nodes in
different groups [30]. For the role extraction problem, community structures can be viewedD
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\Sigma (A)
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\Sigma (S\infty )

(a) 200, 100, 100, and 200 nodes in each role
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(c
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\Sigma (A)
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\Sigma (S

1/2
\infty )
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(d
)

\Sigma (A)
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\Sigma (S
1/2
\infty )
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102

103

\Sigma (S\infty )

(b) 20, 10, 10, and 20 nodes in each role

Figure 4.1. Block cycle role structure, associated Neighborhood Pattern Similarity, and 10 largest singular
values of A, S

1/2
\infty , and S\infty . Rows (a) and (c) are the singular values for an ideal graph. Rows (b) and (d) are

the singular values for a perturbed graph.
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as role structures, where the role matrix B is an identity matrix of dimension equal to the
number of roles. Therefore, community structures are a special case of role structures. Since
we assume, in the ideal case, that the intrarole adjacency matrices are cliques, the graph with
ideal community structure is unweighted and undirected with a symmetric adjacency matrix
A. For example, a three community network can be represented by A = (PZ)B(PZ)T , where
A is an ideal graph with

B :=

\left[  1 0 0
0 1 0
0 0 1

\right]  .

Note that matrix B is a minimal role matrix of the adjacency matrix A and that rank(B) =
3, which is the number of roles. Therefore, rank(S\infty ) = 3 and we can recover the three
communities.

5.2. Overlapping community structures. Another type of network structure is an over-
lapping community structure. Community structures emphasize the presence of dependencies
inside a group and the absence of dependencies between groups. However, there may exist
nodes that can be placed in multiple communities without significantly altering the value of
the cost function being minimized. That is, given two separate communities A and B, a third
group of nodes C may be included in either A or B if the cost function fails to determine a
significance of one community over the other [34, 38, 31]. Therefore, it can be concluded that
A and B are overlapping communities and C is the overlap (see Figure 5.1a).

Observe for the adjacency matrix (Figure 5.1b) that the overlapping community structure
in Figure 5.1a can be represented by the 3 role structure in Figure 5.1c. That is, the overlap
C can be represented by its own role where its role has connections to other nodes within the
same role and to nodes in roles A and B. Also, the nodes in roles A and B do not interact
with each other and only interact with nodes within the same role or with nodes in role C.
Lastly, the above role structure is a valid role structure since it satisfies the role constraint
that no two roles are structurally equivalent.

For Figure 5.1c, assuming A = (PZ)B(PZ)T is an ideal graph, the minimal role matrix
B is

A BC

1
(a) Overlapping Community
Structure (b) Adjacency Matrix

A B

CC

1
(c) Role Structure

Figure 5.1. Example of two overlapping communities.D
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B :=

\left[  1 0 1
0 1 1
1 1 1

\right]  
and rank(B) = 3. Then, rank(S\infty ) = 3, and we can recover the overlapping community
structure.

In general, a role structure is considered an overlapping community structure when two
(or more) roles interact with another role (the overlap role) and with themselves. In addition,
the overlap role interacts with the other two (or more) roles and with itself. Also, the matrix
B will be a full rank minimal role matrix.

5.3. Bipartite networks and communities. A common network in many applications,
such as biological networks, is a bipartite network. A bipartite network is a set of nodes
decomposed into two disjoint sets (say, of dimensions n1 and n2) such that no two nodes
within the same set are adjacent [30]. For an appropriate ordering of the nodes, the adjacency
matrix A can then be partitioned as

A =

\biggl[ 
0n1 A12

A21 0n2

\biggr] 
.

One easily checks that the similarity matrices Sk are then block diagonal and of the form

Sk =

\biggl[ 
S11 0n1,n2

0n2,n1 S22

\biggr] 
.

We are particularly interested in ideal bipartite networks where the communities are bipartite
cliques (a clique with the edges within each part removed). Figure 5.2 is an example of a
bipartite clique and its corresponding adjacency matrix. Observe that this bipartite clique
has a very simple role structure (see Figure 5.2c). This bipartite clique has an ideal adjacency
matrix, A = (PZ)B(PZ)T , with the minimal role matrix B

B =

\biggl[ 
0 1
1 0

\biggr] 

1

2

3

4

5

1(a) Bipartite clique

A =

\left[      
0 0 1 1 1
0 0 1 1 1

1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

\right]      
(b) Adjacency matrix of the bi-
partite clique

B =

\biggl[ 
0 1

1 0

\biggr] 

(c) Role Structure

Figure 5.2. Example of a bipartite clique.D
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and rank(B) = 2. It follows that the similarity matrices, Sk with k \geq 1, for this bipartite
clique have rank(Sk) = 2, and we recover the two roles from the role matrix.

A set of bipartite communities is a bipartite network that can be reordered as a collection
of bipartite cliques, each considered as one bipartite community. For example, the role matrix

B =

\left[        

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

\right]        
has three bipartite communities. Also, observe that B has 6 roles and is a minimal image
matrix with rank(B) = 6. Therefore, rank(Sk) = 6, and we can recover the 6 role structure,
i.e., 3 bipartite communities.

In general, a network with q bipartite communities has a 2q \times 2q minimal role matrix B
with 0 in the two q \times q diagonal blocks and a q \times q identity matrix in the two off-diagonal
blocks. The q bipartite community network has 2q roles and since B is symmetric, rank(B) =
rank(Sk) = 2q, which is equal to the number of roles. Therefore, the similarity matrix can be
used to determine the role structure of bipartite communities. Since each community is based
on a bipartite clique, as with communities in section 5.1, this implies that the ideal adjacency
matrix is symmetric.

5.4. Signed networks. A signed unweighted directed graph is denoted
G(V,E - , E+), where E - \subseteq V \times V are the negative edges, E+ \subseteq V \times V are the positive edges,
and no edge can be both positive and negative (i.e., E - \cap E+ = \emptyset ) [13]. The associated signed
unweighted adjacency matrix is defined in terms of its elements Ai,j by

Ai,j =

\left\{     
 - 1 if (i, j) \in E - ,

1 if (i, j) \in E+,

0, otherwise.

Networks with positive and negative edge weights include social analysis networks and
recommender networks [41, 13, 30, 40]. In such networks negative edges often denote a dislike
towards a person, place, or thing. Of interest here are the set of signed unweighted graphs
that are ``checkerboard.""

Definition 5.1. A signed unweighted directed graph G with signed adjacency matrix A has
a checkerboard pattern if there exists a diagonal sign matrix Q \in \{ 0,\pm 1\} n\times n satisfying Q2 = I
such that | A| = QAQ.

This is equivalent to there being a permutation matrix P such that PAP T can be parti-
tioned into a 2\times 2 block structure where the two diagonal blocks contain only 0 and 1 elements
and the two off-diagonal blocks contain only 0 and  - 1 elements.D
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A simple (partitioned) example of a checkerboard adjacency matrix, is

A =

\left[        

0 0  - 1 0 0 0

0 0 1 0 0 0
0 0 0  - 1 1 1

1  - 1 0 0 0 0

 - 1 1 0 0 0 0
 - 1 1 0 0 0 0

\right]        , QAQ = | A| =

\left[        

0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0

\right]        ,(5.1)

where Q := diag(1, - I2, 1, - I2) also indicates the checkerboard partitioning.
Checkerboard matrices are related to so-called socially balanced networks, which were

introduced by Heider in [21, 22] and later analyzed by Cartwright and Haray in [8]. Further
discussion of balanced networks and checkerboard graphs can be found in [41, 13, 40, 28].

There is a simple relationship between the sequence of matrices Sk defining the similarity
matrix for a checkerboard signed adjacency matrix A and the sequence of matrices \~Sk defining
the similarity matrix of adjacency matrix \~A = | A| . Specifically, if QAQ = | A| = \~A for a
diagonal sign matrix Q, satisfying Q2 = I, it then follows from (3.2) that \~Sk = QSkQ = | Sk| .
This implies that the ranks and singular values of Sk and | Sk| are the same and that for the
low-rank approximation one can as well consider the iteration matrices | Sk| for the unsigned
adjacency matrix | A| .

For checkerboard signed ideal adjacency matrices with the rank factorization A = ZBZT

where B \in \{ 0, 1\} q\times q is a minimal role matrix and Z \in \{ 0, 1, - 1\} q\times q, i.e., the signs are placed
in elements of Z, the unsigned graph | A| = QAQ also has (unsigned) ideal structure. This
is easily seen by considering the relevant factorizations of A and | A| . Suppose A = ZBZT ,
where B \in \{ 0, 1\} q\times q is a minimal role matrix, and Z \in \{ 0, 1,  - 1\} n\times q where each row has
exactly one nonzero element. A diagonal sign matrix Q satisfying Q2 = I is easily constructed
using the signs of the single nonzero in each row of Z so that | A| = QAQ and \~Z = QZ has
a single nonzero equal to 1 in each row. The unsigned ideal factorization of | A| is therefore
| A| = \~ZB \~ZT .

Assuming A is checkerboard, i.e., aQ is known, the other direction is also easily deduced. If
| A| = QAQ = \~ZB \~ZT is an unsigned ideal factorization with minimal B, then A = Q| A| Q =
Q \~ZB \~ZTQT = ZBZT , where Z has a single nonzero equal to 1 or  - 1 in each row. So a
checkerboard A has signed ideal form if and only if | A| has unsigned ideal form.

For (5.1) we have A = ZBZT , | A| = \~ZB \~ZT , rank(A) = rank(B) = q = 3, and

Z =

\left[        

1 0 0
 - 1 0 0
0  - 1 0
0 0 1
0 0  - 1
0 0  - 1

\right]        , B =

\left[  0 1 0
0 0 1
1 0 0

\right]  \~Z = QZ =

\left[        

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

\right]        .

Since the vectors zi that define Z and the node-to-role mapping may contain both +1
and  - 1, B does not reflect the mixed sign checkerboard of A. If each role for which zi has
both signs is split into two roles, then a mixed sign checkerboard generalized role matrix, \^B,
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is defined with dimension no larger than 2q \times 2q. For this A, \^B = \^ZB \^ZT has 5 signed roles
with

\^Z =

\left[      
1 0 0

 - 1 0 0
0  - 1 0
0 0 1
0 0  - 1

\right]      , B =

\left[  0 1 0
0 0 1
1 0 0

\right]  , \^B =

\left[      
0 0  - 1 0 0
0 0 1 0 0
0 0 0  - 1 1
1  - 1 0 0 0

 - 1 1 0 0 0

\right]      .

5.5. Weighted graphs. In practice, many networks have edge weights in their graphs.
Much of the theory developed above can be applied to a weighted matrix W that is symmetric
and rank one, i.e., W = ddT . This is an example of a weighted adjacency matrix AW =
W \circ A (where \circ denotes the elementwise matrix product) that can be rewritten as AW :=
DAD, where D = diag(d1, . . . , dn) and A is the unweighted adjacency matrix. For such
weighted graphs, the adjacency matrix of the ideal graph case becomes AW = DAD =
(DPZ)B(DPZ)T , with B \in \{ 0, 1\} q\times q. If we use the permuted weight matrix DP = P TDP
and the corresponding scaled matrix ZD := DPZ, we obtain a decomposition of the same
type as for the unweighted case and with the same matrix B:

AW = DAD = (DPZ)B(DPZ)T = (PZD)B(PZD)
T = P (ZDBZT

D)P
T .

This shows that we should also be able to associate similarity matrices SD
k to a weighted

matrix AW . Since the effectiveness of the similarity matrices Sk depends on the connection
between adjacency matrices and Erd\"os--R\'enyi graphs, we want to maintain this connection in
the scaled similarity matrices SD

k , i.e., SD
k = DSkD. One then finds that the corresponding

recurrences for the matrices SD
k are given by

SD
1 :=

\bigl[ 
AW AT

W

\bigr] \biggl[ D - 2 0
0 D - 2

\biggr] \biggl[ 
AT

W

AW

\biggr] 
,

SD
k+1 =

\bigl[ 
AW AT

W

\bigr] \biggl[ D - 2 + \beta 2D - 2SD
k D - 2 0

0 D - 2 + \beta 2D - 2SD
k D - 2

\biggr] \biggl[ 
AT

W

AW

\biggr] 
.

The singular values of the similarity matrices SD
k = DSkD are clearly changing, but the rank

of the similarity matrix is unchanged, and the recovery of the roles is the same as for Sk.

Remark 5.2. Notice that the adjacency matrix, A, of a checkerboard graph can also be
considered as a weighted matrix D| A| D, where | A| is its (unsigned) adjacency matrix, and D
is the diagonal sign matrix making it signed and checkerboard.

6. Conclusion and future work. In recent years, the role extraction problem has become
popular as researchers have determined a general definition of roles and have developed algo-
rithms to find role structures within networks. In this paper, we explored analytically why a
recent indirect approach using the Neighborhood Pattern Similarity measure is able extract
role structures from networks without using any a priori knowledge of the network.

For our analysis, we first focused on an ideal graph case with a minimal role matrix
and showed how the role structure can be extracted from the low-rank factorization of theD
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similarity by clustering the rows of the low-rank factor. We then analyzed the perturbed graph
case and how adding or subtracting elements in the adjacency matrix changes the singular
values of the adjacency matrix and the similarity matrix.

Lastly, we unified some special complex networks structures as role structures by construct-
ing their image matrices and showing how these matrices are minimal. From our analysis of
the similarity matrix, the indirect approach using the Neighborhood Pattern Similarity mea-
sure is able to extract these structures from the network. The unification of these structures
is important because it allows us to use one approach to extract any structure without any a
prior knowledge of the network. For example, community detection algorithms assumed that
the network can be grouped into communities. However, for some networks, there may exist
overlapping community structures, which the algorithms would fail to find.

This paper focused on the theoretical analysis of the Neighborhood Pattern Similarity
measure with respect to the role extraction problem. For the sake of conciseness, we did not
include any real world numerical examples or empirical evidence from algorithms implementing
role extraction in this paper. We refer to [6, 7, 29, 28] for discussions of algorithms imple-
menting the approach described in this paper and empirical results for real world networks
illustrating its successful use. A forthcoming paper will explore the efficiency and effectiveness
of this indirect approach compared to other indirect and direct graph partitioning and role
extraction algorithms.

Acknowledgment. Part of this work was performed while the second author was a visiting
professor at UC Louvain, funded by the Science and Technology Sector, and with additional
support by the Netherlands Organization for Scientific Research.
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