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Abstract The computation of the eigenvalue decomposition of symmetric matrices
is one of the most investigated problems in numerical linear algebra. For a matrix of
moderate size, the customary procedure is to reduce it to a symmetric tridiagonal
one by means of an orthogonal similarity transformation and then compute the
eigendecomposition of the tridiagonal matrix.

Recently, Malyshev and Dhillon have proposed an algorithm for deflating the
tridiagonal matrix, once an eigenvalue has been computed. Starting from the
aforementioned algorithm, in this manuscript we develop a procedure for computing
an eigenvector of a symmetric tridiagonal matrix, once its associate eigenvalue is
known.

We illustrate the behavior of the proposed method with a number of numerical
examples.

Keywords Tridiagonal matrices · Eigenvalue computation · QR method

The author “Nicola Mastronardi” is a member of the INdAM Research group GNCS.

The scientific responsibility rests with its authors.

N. Mastronardi (�)
Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, sede di
Bari, Italy
e-mail: n.mastronardi@ba.iac.cnr.it

H. Taeter
Dipartimento di matematica, Università degli Studi di Bari, Bari, Italy
e-mail: harold.taeter@uniba.it

P. Van Dooren
Department of Mathematical Engineering, Catholic University of Louvain, Louvain-la-Neuve,
Belgium
e-mail: paul.vandooren@uclouvain.be

© Springer Nature Switzerland AG 2019
D. A. Bini et al. (eds.), Structured Matrices in Numerical Linear Algebra,
Springer INdAM Series 30, https://doi.org/10.1007/978-3-030-04088-8_9

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04088-8_9&domain=pdf
mailto:n.mastronardi@ba.iac.cnr.it
mailto:harold.taeter@uniba.it
mailto:paul.vandooren@uclouvain.be
https://doi.org/10.1007/978-3-030-04088-8_9


182 N. Mastronardi et al.

1 Introduction

Computing the eigenvalue decomposition of symmetric matrices is one of the
most investigated problems in numerical linear algebra [6, 11]. For a matrix of
moderate size, having reduced the symmetric matrix into a symmetric tridiagonal
one by means of a similarity orthogonal transformation, the problem reduces to the
computation of the eigendecomposition of a tridiagonal matrix.

There are different methods to compute the eigenvalues of symmetric tridiagonal
matrices, such as the bisection method [14], the QR method [14] and divide &
conquer methods [2, 7]. For computing the eigenvectors one can use inverse
iteration [14], the QR method [14] and the multiple relatively robust representations
algorithm [5, 13, 15]. The latter algorithm is based on the twisted factorization of the
involved tridiagonal matrix to determine the position where the sought eigenvector
has a large entry [5, 15, 16].

Once an eigenvalue is computed, a deflation algorithm was proposed in [4] in
order to remove it from the tridiagonal matrix and reduce the dimension of the
problem by one. Such an algorithm can also be used to compute the eigenvector
associated to the computed eigenvalue and it is based on the twisted factorization
used in [5, 15].

In this manuscript we consider a modified version of the aforementioned
algorithm to compute an eigenvector of a symmetric tridiagonal matrix, supposing
the corresponding eigenvalue is known.

Without loss of generality, we consider only the real case. The complex
Hermitian one can be handled in the same way.

We illustrate the behavior of the proposed method with some numerical exam-
ples. The manuscript is organized as follows. In Sect. 2 the notation used in the
manuscript is given. In Sect. 3 the main features of the QR method are described.
The proposed algorithm is described in Sect. 4, followed by the section of numerical
examples and by the conclusions.

2 Notations and Definitions

Matrices are denoted with upper case letters and their entries with lower case letters,
i.e., the element (i, j) of the matrix T is denoted by ti,j .

The submatrix of the matrix B made by the rows i, i + 1, i + 2, . . . , i + k, with
1 ≤ i ≤ n − k, 0 ≤ k ≤ n − i, and columns j, j + 1, j + 2, . . . , j + l, with
1 ≤ j ≤ n − l, 0 ≤ l ≤ n − j, is denoted by Bi:i+k,j :j+l . If the matrix T is
symmetric, the submatrix made by the rows and columns i, i + 1, i + 2, . . . , i + k,

with 1 ≤ i ≤ n− k, 0 ≤ k ≤ n− i, is simply denoted by Ti:i+k.

The identity matrix of order n is denoted by In or by I if there is no ambiguity.
The matrix T − κI, with κ ∈ R, is denoted by T (κ).

The principal diagonal of a matrix B ∈ Rm×n is denoted by diag(B).
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The machine precision is denoted by ε.

The ith vector of the canonical basis of Rn is denoted by e(n)i , or simply by ei , if
there is no ambiguity.

Definition 1 Given B ∈ Rm×n,m ≥ n, let B = UΣV T be its singular value
decomposition, with U ∈ Rm×m, V ∈ Rn×n orthogonal and Σ ∈ Rm×n diagonal,

with diag(Σ) = [σ1, σ2, · · · σn
]T

, and σi ≥ σi+1, i = 1, . . . , n− 1.
The columns of B are said ε-linear dependent if σn ≤ ε‖B‖2.

The columns of B are said strongly linear independent if σn / ε‖B‖2 > 0.

3 Implicit QR Method

Let T ∈ Rn×n be the symmetric tridiagonal matrix

T =

⎡

⎢⎢⎢⎢⎣

t1,1 t1,2

t2,1 t2,2
. . .

. . .
. . . tn−1,n

tn,n−1 tn,n

⎤

⎥⎥⎥⎥⎦
,

with ti,i+1 = ti+1,i , i = 1, . . . , n− 1.
Let us suppose that T is irreducible, i.e., ti,i+1 �= 0, i = 1, . . . , n − 1 and let

T = XΛXT be its eigenvalue decomposition, with X ∈ Rn×n orthogonal, and
Λ ∈ Rn×n diagonal, with diag(Λ) = [λ1, . . . , λn]T . Since T is irreducible, then
λi �= λj , with i �= j, i, j = 1, . . . , n.

The Implicit QR (IQR) method is the standard method for computing the
eigenvalue decomposition of matrices of moderate size [6]. In particular, MATLAB
uses the LAPACK routine DSYEV, based on the QR method, to compute eigenvalues
and eigenvectors of a real symmetric matrix [1].

Given a symmetric irreducible tridiagonal matrix T ∈ Rn×n, and κ ∈ R, one
sweep of IQR with shift κ consists of computing the similarity transformation

T̂ (n) = Ĝn−1Ĝn−2 · · · Ĝ1T̂
(1)ĜT

1 · · · ĜT
n−2Ĝ

T
n−1,

where T̂ (1) = T and Ĝi, i = 1, . . . , n− 1, are Givens rotations

Ĝi =

⎡
⎢⎢⎣

Ii−1

ĉi ŝi

−ŝi ĉi

In−i−1

⎤
⎥⎥⎦ , i = 1, . . . , n− 1.

with ĉ2
i + ŝ2

i = 1. Without loss of generality, we assume that ĉi ≥ 0. Hence the

matrix Q̂ in (1) is uniquely defined.
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In particular, Ĝ1 is the Givens rotation acting on the first two rows of T̂ (1), whose
coefficients ĉ1 and ŝ1 are such that

[
ĉ1 ŝ1

−ŝ1 ĉ1

][
t̂
(1)
1,1 − κ

t̂
(1)
2,1

]
=
[
α̂1

0

]
,

with α̂1 = ‖
[
t̂
(1)
1,1 − κ, t̂

(1)
2,1

]
‖2. The structure of the matrix T̂ (2) = Ĝ1T̂

(1)ĜT
1

differs from the one of a tridiagonal matrix for an entry different from 0 in position
(3, 1) (and, symmetrically, in position (1, 3)), called “bulge”.

Each of the other Givens rotations Ĝi are applied to move the bulge one position
downward along the second subdiagonal/superdiagonal and eventually remove it
[11], i.e, the matrix

T̂ (i) = Ĝi−1Ĝi−2 · · · Ĝ1T̂
(1)ĜT

1 · · · ĜT
i−2Ĝ

T
i−1,

has the bulge in position (i−1, i+1) (and, symmetrically, in position (i+1, i−1)),
T̂ (i+1) = Ĝi T̂

(i)ĜT
i has the bulge in position (i, i + 2) (and, symmetrically, in

position (i + 2, i)), and so on. The matrix

Q̂ = Ĝn−1Ĝn−2 · · · Ĝ1 (1)

is orthogonal Hessenberg.
In the sequel, we call the sweep of the IQR method described above a “forward”

IQR (FIQR) sweep because it starts from the top-left corner of T̂1 and ends in the
bottom-right one.

The IQR method can also be implemented in a “backward” fashion, i.e., starting
from the bottom-right corner of T and ending in the top-left corner [9]. We will refer
to one sweep of this procedure as a backward IQR (BIQR) sweep.

Let T̃ (1) = T . In a BIQR sweep with shift κ , a sequence of Givens rotations

G̃i =

⎡

⎢⎢⎣

In−i−1

c̃i s̃i

−s̃i c̃i

Ii−1

⎤

⎥⎥⎦ , i = 1, . . . , n− 1,

with c̃2
i + s̃2

i = 1, is determined in the following way.
The coefficients c̃1 and s̃1 of G̃1 are computed such that

[
t̃
(1)
n,n−1, t̃

(1)
n,n − κ

] [
c̃1 s̃1

−s̃1 c̃1

]
= [0, α̃n

]
,

with α̃n = ‖
[
t̃
(1)
n,n−1, t̃

(1)
n,n − κ

]
‖2. The matrix T̃ (2) = G̃T

1 T̃
(1)G̃1 has a bulge in

position (n, n− 2) (and, symmetrically, in position (n− 2, n)).
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The Givens rotations G̃i, i = 2, . . . , n − 1, are sequentially applied to T̃ (2) to
move the bulge upward along the second subdiagonal and eventually remove it in
the matrix T̃ (n) = G̃T

n−1G̃
T
n−2 · · · G̃T

1 T̃
(1)G̃1 · · · G̃n−2G̃n−1.

Let Q̃ = G̃1 · · · G̃n−2G̃n−1. Without loss of generality, we assume c̃i ≥ 0, which
makes the matrix Q̃ uniquely defined.

Let λ be an eigenvalue of T with corresponding eigenvector x. In infinite
precision arithmetic, if λ is chosen as shift κ in the FIQR sweep, λ shows up in
position (n, n) of T̂ (n). Moreover, t̂ (n)n−1,n = t̂

(n)
n,n−1 = 0, and x = Q̂(:, n). In

particular, since

Q̂ =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĉ1 −ŝ1ĉ2 ŝ1ŝ2ĉ3
. . . −1nĉn−1

∏n−2
i=1 ŝi −1n+1∏n−1

i=1 ŝi

ŝ1 ĉ1ĉ2 −ĉ1ŝ2ĉ3
. . . −1n−1ĉ1ĉn−1

∏n−2
i=2 ŝi −1nĉ1

∏n−1
i=2 ŝi

ŝ1 ĉ1ĉ2
. . .

...
...

. . .
. . . −ĉn−3ŝn−2ĉn−1 ĉn−3ŝn−2ŝn−1

ŝn−2 ĉn−2ĉn−1 −ĉn−2ŝn−1

ŝn−1 ĉn−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

then

x = Q̂(:, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1n+1∏n−1
i=1 ŝi

−1nĉ1
∏n−1

i=2 ŝi

−1n−1ĉ2
∏n−1

i=3 ŝi
...

ĉn−3ŝn−2 ŝn−1

−ĉn−2ŝn−1

ĉn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Analogously, in infinite precision arithmetic, if λ is chosen as shift κ in the BIQR
sweep, λ shows up in position (1, 1) of T̃ (n). Moreover, t̃ (n)1,2 = t̃

(n)
2,1 = 0, and x =

Q̃(1, :)T ,

x =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̃n−1

−c̃n−2s̃n−1

c̃n−3s̃n−2 s̃n−1
...

−1n−1c̃2
∏n−1

i=3 s̃i

−1nc̃1
∏n−1

i=2 s̃i

−1n+1∏n−1
i=1 s̃i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)
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Therefore, for a given eigenvalue λ, it is suggested in [11] to apply one sweep
of either forward or backward IQR with shift λ to compute the corresponding
eigenvector with O(n) floating point operations [11].

Unfortunately, forward instability can occur in floating point arithmetic in one
forward/backward IQR sweep with shift λ and the last column of Q̂ (the first row of
Q̃) may be far from the sought eigenvector [12].

In particular, forward instability occurs at step j of one sweep of FIQR if and
only if the shift κ is very close to one of the eigenvalues of T̂

(j)
1:j,1:j and the last

entry of the corresponding eigenvector is tiny [12]. As a consequence, the entries
t
(j)
j,j−1 and t

(j)
j,j+1 are “sufficiently” small1 [12]. By (2), the last component of the

eigenvector is given by ĉj . Hence, forward instability happens if κ is very close to
one of the eigenvalues of T̂1:j,1:j and ĉj ∼ O(ε). This means that the first j columns
of T̂1:j,1:j are ε-linear dependent.

The same phenomenon can occur in a BIQR sweep.
To examine in which step of a IQR sweep forward instability can occur, let us

consider the following Corollary [8, p.149].

Corollary 1 Let A ∈ Rn×n be a symmetric matrix and let B be a submatrix
obtained by deleting r rows from A. Then

σk(A) ≥ σk(B) ≥ σk+r (A), k = 1, . . . , n,

where σ�(A) ≡ 0, if � > n.

Let us suppose that σn−1(T (λ)) / ε > σn(T (λ)) = 0 and σj−1(T1:j,:(λ)) /
σj (T1:j,:(λ)) ∼ O(ε), for a j ∈ {2, . . . , n}. By Corollary 1, all the submatrices
T1:j+�,:(λ) are ε-singular, � = 1, . . . , n− j, and

σj+�(T1:j+�,:(λ)) ≥ σj+�(T1:j+�,1:j+�(λ)), � = 1, . . . , n− j,

i.e., the submatrices T1:j+�,1:j+�(λ) are ε-singular as well.
On the other hand,

σj−1(Tn−j+1:n,:(λ)) ≥ σn−1(T (λ))/ ε,

σj−1(Tn−j+1:n,:(λ)) ≥ σj (Tn−j+1:n,n−j+1:n(λ)) ≥ σj (Tn−j+1:n,:(λ)).

This means that forward instability is not encountered in the first n− j − 1 steps of
FIQR and in the first j steps of BIQR.

In the following example it is shown how the sequences {ĉj }n−1
j=1 and {c̃j }n−1

j=1,

computed in floating point arithmetic, differ from those computed in infinite
precision arithmetic.

1If one of the indices i, j in ti,j is either 0 or n, we set ti,j ≡ 0.
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Example 1 Let T ∈ Rn×n, n = 100, be a symmetric irreducible tridiagonal matrix
with its entries generated by the MATLAB function randn.2

Let T = X(M)Λ(M)X(M)T be the eigenvalue decomposition of T computed by
using the MATLAB function eig, with Λ(M) = diag(λ(M)

1 λ
(M)
2 , . . . , λ

(M)
n ), with

λ
(M)
i ≥ λ

(M)
i+1 i = 1, . . . , n− 1.

We report the behaviour of one sweep of F/B IQR with shift λ(M)
19 , although a

similar behavior can be observed if we choose almost any λ
(M)
i , i = 1, . . . , n, as a

shift.
Let (λ̄, x̄) be the eigenpair computed by a few steps of inverse iteration with

initial guess (λ
(M)
19 ,X(M)(:, 19)). In this way, x̄ is computed with higher accuracy

with respect to X(M)(:, 19)).
Let {či}n−1

i=1 and {c̄i}n−1
i=1 be the sequence of the cosines of the Givens matrices

{Ǧi}n−1
i=1 and {Ḡi}n−1

i=1 , determined in order to transform x̄ to en and e1, respectively,
i.e.,

Ǧi =

⎡
⎢⎢⎣

In−i−1

či ši

−ši či

Ii−1

⎤
⎥⎥⎦ , such that Ǧn−1Ǧn−2 · · · Ǧ1x̄ = en,

Ḡi =

⎡
⎢⎢⎣

Ii−1

c̄i s̄i

−s̄i c̄i

In−i−1

⎤
⎥⎥⎦ , such that Ḡ1 · · · Ḡn−2Ḡn−1x̄ = e1.

Without loss of generality, we assume či ≥ 0 and c̄i ≥ 0, i = 1, . . . , n− 1.
Since x̄ is computed with high accuracy, the sequences {či}n−1

i=1 and {c̄i}n−1
i=1 , are

computed with high accuracy, too [10].
In infinite precision arithmetic, the sequences {či}n−1

i=1 and {ĉi}n−1
i=1 should be

the same, while in floating point arithmetic the sequence {ĉi}n−1
i=1 can depart from

the sequence {či}n−1
i=1 due to the forward instability [10]. The same holds for the

sequences {c̄i}n−1
i=1 and {c̃i}n−1

i=1 .

The sequences {ĉi}n−1
i=1 , {či}n−1

i=1 , {|t̂ (i)i−1,i | + |t̂ (i)i,i+1|}n−1
i=1 , {σ̌i}n−1

i=1 , and {σ̂i}n−1
i=1 ,

with σ̌i = min(svd(T:,i:n(λ(M)
19 ))) and σ̂i = min(svd(Ti:n,i:n(λ(M)

19 ))), denoted
respectively by “∗”, “+”, “◦”, “1” and “∇”, are displayed in Fig. 1 on a logarithmic
scale.

We can observe that the first and the third sequence have a similar behaviour. The
same can be said for the second and the fifth sequence. Moreover, the two sequences
of cosines {ĉi}n−1

i=1 and {či}n−1
i=1 are similar until forward instability occurs, i.e., until

ĉi and |t̂ (i)i−1,i | + |t̂ (i)i,i+1| are both greater than O(
√
ε).

2The matrix T can be downloaded at users.ba.cnr.it/iac/irmanm21/TRID_SYM.

users.ba.cnr.it/iac/irmanm21/TRID_SYM
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Fig. 1 Sequences {ĉi }n−1
i=1 , {či }n−1

i=1 , {|t̂ (i)i−1,i | + |t̂ (i)i,i+1|}n−1
i=1 , {σ̌i}n−1

i=1 , and {σ̂i}n−1
i=1 , denoted respec-

tively by “asterisk”, “plus”, “circle”, “diamond” and “triangledown”, related to T (λ
(M)
19 ), with T

the matrix of Example 1 and λ
(M)
19 the 19th ordered eigenvalue computed by eig of MATLAB

The sequences {c̃i}n−1
i=1 , {c̄i}n−1

i=1 , {|t̃ (i)n−i−1,n−i−2|+|t̃ (i)n−i,n−i−1|}n−1
i=1 , {σ̌i}n−1

i=1 , and

{σ̂i}n−1
i=1 , with σ̌i = min(svd(T:,1:i (λ(M)

19 ))), σ̂i = min(svd(T1:i,1:i (λ(M)
19 ))), denoted

respectively by “∗”, “+”, “◦”, “1” and “∇”, are displayed in Fig. 2 in logarithmic
scale.

Also in this case, the first and the third sequence have a similar behaviour and the
same can be said for the second and the fifth sequence. Moreover, the two sequences
of cosines {c̃i}n−1

i=1 and {c̄i}n−1
i=1 are similar until forward instability occurs, i.e., until

c̃i and |t̃ (i)n−i−1,n−i−2| + |t̃ (i)n−i,n−i−1| are both greater than O(
√
ε).

Summarizing, forward instability occurs if the smallest singular value σ
(j)

j of
T1:j,1:j (λ) is close to the machine precision ε, for a certain j ∈ {1, . . . , n}. As a
consequence, the elements of the last column of Q̂ of index greater than j begin to
depart from the elements of the eigenvector x̄. Moreover, t̂ (j)j,j−1 ≈ t̂

(j)

j+1,j ≈ O(
√
ε),

where t̂
(j)
i,k is the (i, k) entry of the matrix obtained after having applied j Givens

rotations in the forward IQR sweep with shift λ̄ to T1:n(λ̄) [12]. The same holds to
one sweep of BIQR, i.e., the first row of the upper Hessenberg matrix Q̃ is accurately
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Fig. 2 Sequences {c̃i}n−1
i=1 , {c̄i }n−1

i=1 , {|t̃ (i)n−i−1,n−i−2| + |t̃ (i)n−i,n−i−1|}n−1
i=1 , {σ̄i}n−1

i=1 , and {σ̃i}n−1
i=1 ,

denoted respectively by “asterisk”, “plus”, “circle”, “diamond” and “triangledown”, related to
T (λ

(M)
19 ), with T the matrix of Example 1 and λ

(M)
19 the 19th ordered eigenvalue computed by eig

of MATLAB

computed as far as the smallest singular value of Tj :n(λ) is large enough, for a
certain j ∈ {1, . . . , n}.

Hence, the main issue is to determine the index j.

In the next section we consider the problem of determining the index j such that
the computed eigenvector will be obtained by Q̂(1 : j, n) and Q̃(1, j + 1 : n)T ,
i.e., gluing together the first j entries of Q̂ and the last n− j entries of the first row
of Q̃.

4 Computation of the Eigenvector

In this section we describe a technique to determine the index j used for construct-
ing the sought eigenvector by fetching the first j entries of the last column of Q̂ and
the last n− j entries of the first row of Q̃.

If σn−1(T (λ))/ σn(T (λ)) and forward instability occurs at step j of one sweep
of FIQR with shift λ, the sequence {ĉi}ni=1 begins to depart from the sequence
{či}ni=1 around the index j . Analogously, the sequence {c̃i}ni=1 begins to depart from
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the sequence {c̄i}ni=1 around the index n − j . Therefore, the sought index j can be
computed in the following way.

The sequence {ĉi}n−1
i=1 generated by one FIQR sweep, is computed until ĉĵ < tol1

and |t̂ (ĵ )
ĵ−1,ĵ |+|t̂ (ĵ )ĵ ,ĵ+1| < tol2, with tol1 and tol2 fixed tolerances and 1 ≤ ĵ ≤ n−1.

The sequence {c̃i}n−1
i=1 , generated by one BIQR sweep, is thus computed until

c̃j̃ < tol1 and |t̃ (j̃ )
j̃−1,j̃ | + |t̃ (j̃ )j̃ ,j̃+1| < tol2.

Hence, the sought index j is computed as the index j̄ such that

ĉj̄ + c̃j̄ ≥ ĉi + c̃i , i, j̄ ∈ [j̃ , ĵ ], i �= j̄ ,

i.e., the index j̄ is chosen so that the columns of T:,1:j̄ and T:,j̄ :n are strongly linear
independent.

The last column of Q̂ in (2) depends on all the Givens coefficients ĉi and ŝi , i =
1, . . . , n − 1, while the first row of Q̃ in (3) depends on all the Givens coefficients
c̃i and s̃i , i = 1, . . . , n− 1.

Therefore, at the first sight one can say that both the last column of Q̂ and the
first row of Q̃ must be computed in order to construct the sought eigenvector even
though the “splitting” index j is already determined.

In the sequel we show that the sought approximation of the eigenvector can be
computed relying only on the knowledge of ĉi and ŝi , i = 1, . . . , j − 1, and c̃i and
s̃i , i = 1, . . . , n − j + 1. In fact, once the index j is determined, we observe that
the “good” part of the vector (2) can be written as

x̂1:j =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1n+1∏n−1
i=1 ŝi

−1nĉ1
∏n−1

i=2 ŝi

−1n−1ĉ2
∏n−1

i=3 ŝi
...

−1j+1ĉj−2
∏n−1

i=j−1 ŝi

−1j ĉj−1
∏n−1

i=j ŝi

−1j−1ĉj
∏n−1

i=j+1 ŝi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= γ (u)x̂(u),

while the “good” part of the vector (2) can be written as

x̃n−j :n =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1n−j−1c̃n−j

∏n−1
i=n−j+1 s̃i

−1n−j c̃n−j−1
∏n−1

i=n−j s̃i

−1n−j+1c̃n−j−2
∏n−1

i=n−j−1 s̃i
...

−1n−1c̃2
∏n−1

i=3 s̃i

−1nc̃1
∏n−1

i=2 s̃i

−1n+1∏n−1
i=1 s̃i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= γ (b)x̃(b),
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where γ (u) =∏n−1
i=j+1 ŝi , γ (b) =∏n−1

i=n−j+1 s̃i ,

x̂(u) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1n+1∏j

i=1 ŝi

−1nĉ1
∏j

i=2 ŝi

−1n−1ĉ2
∏j

i=3 ŝi
...

−1j+1ĉj−2
∏j

i=j−1 ŝi

−1j ĉj−1ŝj

−1j−1ĉj

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x̃(b) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1n−j−1c̃n−j

−1n−j c̃n−j−1s̃n−j

−1n−j+1c̃n−j−2
∏n−j

i=n−j−1 s̃i
...

−1n−1c̃2
∏n−j

i=3 s̃i

−1nc̃1
∏n−j

i=2 s̃i

−1n+1∏n−j

i=1 s̃i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, we first normalize both vectors in this way,

x̌1:j =
x̂(u)1:j
x̂(u)j

, x̌j+1:n =
x̃(b)2:n−j+1

x̃(b)1

,

i.e., we divide the first vector by its last component and the second one by its first
one in order to have 1 as the j -th entry of the first vector and as the first entry of the
second one, and finally we normalize x̌ such that ‖x̌‖2 = 1.

The corresponding MATLAB code to compute the eigenvector associated to a
given eigenvalue of a symmetric tridiagonal matrix is freely available and can be
downloaded at users.ba.cnr.it/iac/irmanm21/TRID_SYM.

5 Deflation

Once the eigenvector x̌ has been computed, we can apply to it a sequence of n −
1 Givens rotations Gi in order to transform it either to ±e(n)1 or to ±e(n)n , where

±e(n)i , i = 1, . . . , n, is the ith vector of the canonical basis of Rn.

The same Givens rotations Gi are applied to the matrix T obtaining

Ť = Gn−1Gn−2 · · ·G1TGT
1 · · ·GT

n−2G
T
n−1. (4)

If the eigenvector x̌ is computed in an accurate way and satisfies particular
properties, it has been shown in [9, 10] that Ť in (4) is still tridiagonal with the entry
(2, 1) equal to zero if the Givens rotations are applied in a backward fashion or the
entry (n, n − 1) is equal to zero if the Givens rotations are applied in a forward
manner. In the first case the last row and column can be dropped and the other
eigenvalues to be computed are the eigenvalues of Ť1:n−1. In the other case, the first
row and column are removed and the other eigenvalues are the eigenvalues of Ť2:n.

users.ba.cnr.it/iac/irmanm21/TRID_SYM
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6 Numerical Examples

All the numerical experiments of this section are performed in MATLAB Ver.
2014b, with machine precision ε ∼ 2.22× 10−16. We have compared the results
obtained computing the eigenvector matrix with the following techniques: eig of
MATLAB, MR3 and the proposed method, denoted by MTV.3 For the second and the
third method, the eigenvalues are computed by the bisection method [14].

For all the experiments, the tolerances tol1 and tol2 were chosen equal to n
√
ε,

with n the order of the matrix.

Example 2 In this example we consider symmetric tridiagonal matrices Tn ∈
Rn×n, n = 128, 256, 512, 1024 whose elements are generated by the MATLAB
function randn.

The latter matrices can be downloaded at users.ba.cnr.it/iac/irmanm21/TRID$_
$SYM.

In Table 1 the orthogonality of the computed eigenvectors with the considered
three methods are displayed. In column 5, the average lengths of the computed
intervals in which to search the index j are reported.

In Table 2 the accuracy of the residuals of the computed eigenvectors with the
considered three methods are displayed.

We can conclude that the eigenvectors obtained with the proposed procedure are
computed in an accurate way.

Example 3 In this example Tn ∈ Rn×n, n = 128, 256, 512, 1024 are the
Jacobi matrices associated to the Chebyshev polynomials of first kind [3], whose
eigenvalues are

cos

(
iπ

n+ 1

)
, i = 1 . . . , n.

In Table 3 the orthogonality of the computed eigenvectors with the considered
three methods are displayed. We do not report the average lengths of the computed
intervals in which to search the index j in this case, since there is no premature
deflation for such matrices.

In Table 4 the accuracy of the residuals of the computed eigenvectors with the
considered three methods are displayed.

We can conclude that the eigenvectors obtained with the proposed procedure are
computed in an accurate way.

3We have used a MATLAB implementation of the MR3 algorithm written by Petschow [13].

users.ba.cnr.it/iac/irmanm21/TRID$_$SYM
users.ba.cnr.it/iac/irmanm21/TRID$_$SYM
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Table 1 Accuracy of the orthogonality of the computed eigenvectors computed by eig of
MATLAB (second column), by MR3 (third column) and by the proposed method (fourth
column)

maxi
‖XT xi−e(n)i

‖2
nε

n eig MR3 MTV
∑n

i=1(j̃−ĵ+1)
n

128 1.14 × 10−1 2.01 × 101 7.05 × 101 26

256 5.72 × 10−2 1.00 × 101 3.52 × 101 24

512 2.86 × 10−2 5.02 × 100 1.97 × 101 24

1024 1.43 × 10−2 3.40 × 100 3.83 × 101 24

Average lengths of the computed intervals in which the index j is sought (fifth column)

Table 2 Accuracy of the residuals of the eigenvectors computed by eig of MATLAB (second
column), by MR3 (third column) and by the proposed method (fourth column)

maxi
‖T x̄i−λi x̄i‖2

nε‖T ‖2

n eig MR3 MTV

128 4.96 × 10−2 5.33× 100 1.87 × 101

256 1.73 × 10−2 1.00× 101 3.52 × 101

512 1.06 × 10−2 5.02× 100 1.76 × 101

1024 6.72 × 10−3 5.94× 10−1 5.96 × 100

Table 3 Accuracy of the orthogonality of the computed eigenvectors computed by eig of
MATLAB (second column), by MR3 (third column) and by the proposed method (fourth
column)

maxi
‖XT xi−e(n)i

‖2
nε

n eig MR3 MTV

128 2.36× 10−1 2.901 × 100 2.16 × 102

256 1.18× 10−1 2.69 × 100 6.35 × 102

512 5.92× 10−2 7.26 × 101 1.03 × 101

1024 1.43× 10−2 2.99 × 100 3.83 × 101

Table 4 Accuracy of the residuals of the eigenvectors computed by eig of MATLAB (second
column), by MR3 (third column) and by the proposed method (fourth column)

maxi
‖T x̄i−λi x̄i‖2

nε‖T ‖2

n eig MR3 MTV

128 1.67 × 10−1 2.05× 100 1.52 × 102

256 8.37 × 10−2 1.45× 101 1.08 × 101

512 4.18 × 10−2 7.26× 100 1.05 × 102

1024 6.72 × 10−3 9.48× 10−1 5.21 × 100
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7 Conclusions

Recently, Malyshev and Dhillon have proposed an algorithm for deflating the
tridiagonal matrix, once an eigenvalue has been computed. Starting from the above
mentioned algorithm, a method for computing the eigenvectors of a symmetric
tridiagonal matrix T has been proposed. It requires the computation of an index
j which determines the premature deflation in the implicit QR method. The index
j is computed considering the two sequences of cosines generated by a sweep of
forward and backward QR method with shift the computed eigenvalue. The sought
eigenvector is obtained form the first j Givens coefficients generated by the forward
implicit QR method and from the last n − j Givens coefficients generated by the
backward implicit QR method.

The overall complexity for computing an eigenvector depends linearly on the
size of the matrix.

The numerical tests show the reliability of the proposed technique.
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