
REVISITING THE STABILITY OF COMPUTING THE ROOTS OF A
QUADRATIC POLYNOMIAL∗

NICOLA MASTRONARDI† AND PAUL VAN DOOREN‡

Abstract. We show in this paper that the roots x1 and x2 of a scalar quadratic polynomial
ax2 + bx + c = 0 with real or complex coefficients a, b c can be computed in a element-wise mixed
stable manner, measured in a relative sense. We also show that this is a stronger property than
norm-wise backward stability, but weaker than element-wise backward stability. We finally show
that there does not exist any method that can compute the roots in an element-wise backward stable
sense, which is also illustrated by some numerical experiments.

Key words. Quadratic polynomial, roots, numerical stability

AMS subject classifications. 65G30, 65G50, 65H04

1. Introduction. In this paper we consider the very simple problem of comput-
ing the two roots of a quadratic polynomial

p(x) := ax2 + bx+ c (1.1)

where the coefficients a, b, c are either in R or in C and where a 6= 0 in order the
equation to have indeed two roots. This is a very classical problem for which the
solution is well known, namely

x1,2 =
−b±

√
b2 − 4ac

2a
.

But the straightforward implementation of the above formula is quite often numer-
ically unstable for special choices of the coefficients a, b, c. One would like, on the
other hand, to have a computational scheme that produces the computed roots x̂1
and x̂2 which correspond to an element-wise backward stable error, i.e. the relative
backward errors are of the order of the unit roundoff u for each individual coefficient
a, b and c. In fact, we can assume that a is not perturbed in this process. We will
call this Element-wise Backward Stability (EBS) :

a(x− x̂1)(x− x̂2) = ax2 + b̂x+ ĉ

|b− b̂| ≤ ∆|b|, |c− ĉ| ≤ ∆|c|, ∆ = O(u).
We will see that this can not be proven in the general case, but instead, we can obtain
the slightly weaker result of Element-wise Mixed Stability (EMS), which implies
that the computed roots x̂1 and x̂2 satisfy

a(x− x̃1)(x− x̃2) = ax2 + b̂x+ ĉ

|x̂1 − x̃1| ≤ ∆|x̃1|, |x̂2 − x̃2| ≤ ∆|x̃2|,

|b− b̂| ≤ ∆|b|, |c− ĉ| ≤ ∆|c|, ∆ = O(u),

∗The work of the first author is partly supported by the GNCS INdAM project “Metodi di
regolarizzazione per problemi di ottimizzazione vincolata” and by MIUR Progetto Premiale 2012
“Mathtech”. The work of the second author is partly supported by the Belgian Network DYSCO
(Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles
Programme, initiated by the Belgian State, Science Policy Office. The scientific responsibility rests
with its authors.
†Istituto per le Applicazioni del Calcolo “M. Picone”, sede di Bari, Consiglio Nazionale delle

Ricerche, Via G. Amendola, 122/D, I-70126 Bari, Italy (n.mastronardi@ba.iac.cnr.it).
‡Catholic University of Louvain, Department of Mathematical Engineering, Avenue Georges

Lemaitre 4, B-1348 Louvain-la-Neuve, Belgium (paul.vandooren@uclouvain.be).

1

2 N. MASTRONARDI ANDP. VAN DOOREN

which means that the computed roots are close to roots of a nearby polynomial, all
in a relative element-wise sense.

This last property is also shown to be stronger than the so-called Norm-wise
Backward Stability (NBS) which only imposes that the vector of perturbed coef-
ficients is close to the original vector in a relative norm sense :

a(x− x̂1)(x− x̂2) = ax2 + b̂x+ ĉ∥∥[a b c
]
−
[
a b̂ ĉ

]∥∥ ≤ ∆
∥∥[a b̂ ĉ

]∥∥ , ∆ = O(u).

This problem was studied already by several authors, but we could not find any
conclusive answer to the EBS of any of the proposed algorithms.

In this paper, we will first consider the case of real coefficients since it is more
commonly occurring and the results are slightly stronger. We then show how it
extends to the case of complex coefficients. We end with a section on numerical
experiments where we also show that there does not exist a method that is EBS for
all quadratic polynomials.

2. Real coefficients. Before handling the general case where all three coeffi-
cients are nonzero, we point out that when b and/or c are zero the proof of EBS is
rather simple.

2.1. A zero coefficient. Case c = 0.
If c = 0, then the roots can be computed as follows

x1 := −b/a, x2 = 0

which is element-wise backward stable since under the IEEE floating point standard,
we have that the computed roots satisfy

x̂1 = −fl(b/a) = −b(1 + δ)/a = −b̂/a, x̂2 = 0, |δ| ≤ u,

where u is the unit round-off of the IEEE floating point standard (see [1]). The
backward error then indeed satisfies the relative element-wise bounds

|b̂− b| ≤ u|b|, |ĉ− c| = 0|c|.

Case b = 0.
If b = 0 then the roots can be computed as follows

x1 =
√
−c/a, x2 := −x1,

which is also element-wise backward stable since under the IEEE floating point stan-
dard, we have that the computed roots satisfy the element-wise bounds

x̂1 = fl(
√
fl(−c/a)) =

√
−c(1 + η)/a, x̂2 = −x̂1, |η| ≤ γ3 :=

3u

1− 3u
.

Notice that if sign(c)=sign(a), the roots are purely imaginary. The backward error
for this computation satisfies the relative element-wise bounds

|b̂− b| ≤ 0|b|, |ĉ− c| ≤ γ3|c|.

STABILITY OF COMPUTING THE ROOTS OF A QUADRATIC POLYNOMIAL 3

2.2. Preliminary scaling. We can thus assume now that all coefficients are
nonzero. We start by reducing the problem to a simpler “standardized” form in order
to simplify the computational steps.

Scaling the polynomial p(x)
We scale the polynomial coefficients so that it is monic : b1 := b/a, c1 := c/a, which
can be performed in a backward and forward stable way since we assumed a 6= 0.
According to the IEEE floating point standard we have that the computed values
b̂1 = fl(b1) and ĉ1 = fl(c1) satisfy the relative element-wise bounds

|b1 − b̂1| ≤ u|b1|, |c1 − ĉ1| ≤ u|c1|.

This implies we can as well consider the monic polynomial

p1(x) := p(x)/a = x2 + b1x+ c1.

Scaling the variable x
We transform the variable x to y := −x/α where |α| :=

√
|c1| and sign(α) = sign(b1),

and consider the polynomial p1(−αy)/α2 which is now monic in y

q(y) := y2 − 2βy + e = 0, (2.1)

and where β ∈ R+ and e = ±1. The formulas to compute α, β and e are

α := sign(b1)
√
|c1|, β := |b1|/(2

√
|c1|), e := sign(c1) · 1.

Since the sign function is exact under relative perturbations, e is computed exactly.
It then follows that α and β can be performed in a backward and forward stable
way : the computed values α̂ = fl(α) and β̂ = fl(β) satisfy the relative element-wise
bounds

|α− α̂| ≤ u|α|, |β̂ − β| ≤ 2u|β|,

and e is computed exactly. This implies we can as well consider the polynomial
g(y) = y2 − 2βy + e. We recapitulate this in a formal lemma.

Lemma 2.1. The transformations

[α, β] = ga[b, c] and [b, c] = g−1
a [α, β]

between the polynomial p(x) = ax2 + bx + c, a 6= 0 and the monic polynomial
p(−αy)/(aα2) = q(y) = y2 − 2βy + e defined by the forward and backward relations

α := sign(b/a)
√
|c/a|, β := |b/a|/(2

√
|c/a|),

and

b = −2aβα, c = aeα2,

where a and e = sign(c/a) ·1 are not perturbed, are both element-wise well-conditioned
maps.

Proof. If we define the perturbations for the forward map as

[α(1 + δα), β(1 + δβ)] = ga[b(1 + δb), c(1 + δc)],

4 N. MASTRONARDI ANDP. VAN DOOREN

then the above discussion says that the relative perturbations δα, δβ on the result are
O(u) if the relative perturbations on the data δb, δc are O(u). The same reasoning
can be applied to the perturbation of the backward map

[b(1 + δb), c(1 + δc)] = g−1
a [α(1 + δα), β(1 + δβ)],

which says now that δb, δc = O(u) provided δα, δβ = O(u), since only multiplications
are involved in the backward relations.

This lemma implies that relative small perturbations in the coefficients of q(y) can
be mapped to relative small perturbations in the coefficients of p(x), both element-
wise and norm-wise.

2.3. Calculating the roots. The roots of the polynomial q(y) := y2 − 2βy + e
are given by

y1 = β +
√
β2 − e, y2 = β −

√
β2 − e.

The way that these roots are computed depend now on the values of β and e.
Case 1: e = −1 (real roots)

y1 = fl(β + fl(
√
fl(β2 + 1)), y2 = −fl(1/y1).

Case 2: e = 1 and β ≥ 1 (real roots)

y1 = fl(β + fl(
√
fl(β + 1)(β − 1)), y2 = fl(1/y1).

Case 3: e = 1 and β < 1 (complex conjugate roots)

y1 = β + fl(
√
fl(β + 1)(1− β)), y2 = y1.

Let us now check that the roots are computed in a forward stable manner. The
error analysis for the operations performed in the IEEE floating point standard give
the following bounds.
Case 1: e = −1 (real roots)

ŷ1 = (β +
√

(β2 + 1))(1 + η3), ŷ2 = −(1/ŷ1)(1 + η1), |ηi| ≤ γi.

Case 2: e = 1 and β ≥ 1 (real roots)

ŷ1 = (β +
√

(β + 1)(β − 1))(1 + η4), ŷ2 = (1/ŷ1)(1 + η1), |ηi| ≤ γi.

Case 3: e = 1 and β < 1 (complex conjugate roots)

ŷ1 = β + (
√

(β + 1)(1− β))(1 + η3), ŷ2 = ŷ1, |ηi| ≤ γi.

Notice that these bounds imply forward stability for all these computations. Com-
bining this with Lemma 1, we have thus shown the following theorem.

Theorem 2.2. The computed roots ŷi, i = 1, 2 of the polynomial q(y) satisfy the
relative forward bounds

|ŷ1 − y1| ≤ ∆|y1|, |ŷ2 − y2| ≤ ∆|y2|, ∆ = O(u),

and the transformed roots x̂i = fl(−αŷi), i = 1, 2 satisfy the mixed bounds

STABILITY OF COMPUTING THE ROOTS OF A QUADRATIC POLYNOMIAL 5

a(x− x̃1)(x− x̃2) = ax2 + b̂x+ ĉ

|x̂1 − x̃1| ≤ ∆|x̂1|, |x̂2 − x̃2| ≤ ∆|x̂2|,

|b− b̂| ≤ ∆|b|, |c− ĉ| ≤ ∆|c|, ∆ = O(u).
We can therefore also evaluate the backward bound by recomputing the sum and

product of the computed roots. We first point out that the sum and product will be
real because even when the two computed roots ŷ1 and ŷ2 are complex they will be
exactly complex conjugate.

Since the product of the exact roots is e = ±1, and the computed roots are
forward stable, we obviously have that the product of the computed roots satisfies

ŷ1ŷ2 = e(1 +O(u))

which is element-wise backward stable in a relative sense.
For the sum of the computed roots, it is more problematic. Since |y1| ≥ |y2| and

both these roots are computed in a forward stable way, we will have that

ŷ1 + ŷ2 = β +O(u)ŷ1 (2.2)

but ŷ1 can be much larger than β and the backward error will then be much larger
than β · O(u). Let us analyze the three cases. For Case 3 the sum of the computed
roots is exactly 2β since this is a representable number. In Case 2, ŷ1 ≤ 2β and (2.2)
then implies backward stability for the element β. But when β � 1 we can not obtain
a sufficiently small backward error for (2.2) since the recomputed sum has an error
that is of the order of O(u)ŷ1 � O(u)β. It is in this special case that element-wise
backward stability gets lost.

3. Complex coefficients. The case where b and/or c are zero are again easy to
handle but the relative error bounds are slightly larger. Since exact error bounds are
more difficult to describe, we preferred to just indicate their order of magnitude. Let
us first treat the case of 0 values.

If c = 0, then the roots can be computed as follows

x1 := −b/a, x2 = 0

which is element-wise backward stable since under the IEEE floating point standard,
we have that the computed roots satisfy (see [1])

x̂1 = −fl(b/a) = −b(1 + δ)/a = −b̂/a, x̂2 = 0, |δ| = O(u).

The backward error then indeed satisfies the relative element-wise bounds

|b̂− b| ≤ |δ||b|, |ĉ− c| ≤ 0|c|, |δ| = O(u).

If b = 0 then the roots can be computed as follows

x1 =
√
−c/a, x2 := −x1,

which is also element-wise backward stable since under the IEEE floating point stan-
dard, we have that the computed roots satisfy (see [1])

x̂1 = fl(
√
fl(−c/a)) =

√
−c(1 + η)/a, x̂2 = −x̂1, |η| = O(u).

6 N. MASTRONARDI ANDP. VAN DOOREN

The backward error then satisfies the relative element-wise bounds

|b̂− b| ≤ 0|b|, |ĉ− c| ≤ |η|.|c|, |η| = O(u).

When there are no zero values, we again first apply a scaling of the problem.

Scaling the polynomial p(x)
As in the real case, we scale the coefficients as follows : b1 := b/a, c1 := c/a, which
can be performed in a backward and forward stable way since a 6= 0. According to
the IEEE floating point standard we have indeed that

|b− b1| ≤ |∆||b|, |c− c1| ≤ |∆||c|, |∆| = O(u).

This implies that we can as well look at the monic polynomial
p(x)/a = p1(x) = x2 + b1x+ c1.

Scaling the variable x
This becomes more complicated for the case of complex coefficients. We now have
that y := −x/α where |α| :=

√
|c1| and arg(α) = arg(b1). This implies that we can

consider again the polynomial

q(y) = y2 − 2βy + e = 0, (3.1)

where β ∈ R+ and |e| = 1. The formulas to compute α, β and e are

b1 = |b1|eb, c1 = |c1|ec, α := eb
√
|c1|, β := |b1|/(2

√
|c1|), e := ec/(eb)

2

where eb := arg(b1) and ec := arg(c1). For computational reasons, we will also
compute the square root f of e, i.e. f2 = e.

We have again a similar lemma describing the transformation between the coef-
ficients of the polynomials

Lemma 3.1. The transformations

[α, β, f] = ha[b, c] and [b, c] = h−1
a [α, β, f]

between the polynomial p(x) = ax2 + bx + c, a 6= 0 and the monic polynomial
p(−αy)/(aα2) = q(y) = y2 − 2βy + f2 defined by the forward and backward rela-
tions

α := arg(b/a)
√
|c/a|, β := |b/a|/(2

√
|c/a|), f =

√
arg(b/a)/arg(c/a)

and

b = −2aβα, c = af2α2,

where a is not perturbed, are both element-wise well-conditioned maps.
Proof. The proof is very similar, except for the fact that the quantities are

complex, except for β which is real, and f that can be parameterized by a real angle.

This lemma implies again that relative small perturbations in the coefficients of
q(y) can be mapped to relative small perturbations in the coefficients of p(x), both
element-wise and norm-wise.

STABILITY OF COMPUTING THE ROOTS OF A QUADRATIC POLYNOMIAL 7

Calculating the roots
The roots of the polynomial (3.1) are now given by

y1 = β +
√
β2 − f2, y2 = β −

√
β2 − f2.

But we need only consider the case where e = f2 is not real since otherwise we can
apply the analysis of the previous section. The algorithm for computing the two roots
is to first compute y1 as the root of largest module, and then to compute y2 using
y2 = f2/y1. If we compute the square root of the complex number β2 − f2 as

γ =
√

(β − f)(β + f)

then the roots are given by

y1 := β + sign(real(γ))γ, y2 = f2/y1.

The rounding errors can be written as follows
γ̂ =

√
β2 − f2(1 + δ1)

ŷ1 = (β + |real(γ̂)|)(1 + δ2) + sign(real(γ̂))imag(γ̂),

ŷ2 = f2(1 + δ3)/ŷ1,
where all |δi|, i = 1, 2, 3 are of the order of the unit round-off u. These formulas yield
that y1 and y2 can be computed in a forward stable way.

The backward error analysis of these operations will be a problem when β is much
smaller than |f |. This leads to the same conclusions as in the case of real coefficients:
when the sum of the roots is much smaller than the roots themselves, the relative
backward error on the sum can be large, despite the fact that the forward errors on
the computation as a function of β and f are small.

4. Comparing the different stabilities. In this section we compare the dif-
ferent types of stability in terms of the constraints that they impose on the computed
roots. First of all, it is obvious that EBS implies EMS since EMS follows from EBS
by just choosing

x̃1 = x̂1, and x̃2 = x̂2.

We now prove that EBS implies NBS, which is slightly more involved.
Lemma 4.1. Let the computed roots x̂1 and x̂2 of p(x) = ax2 + bx+ c satisfy

a(x− x̃1)(x− x̃2) = ax2 + b̂x+ ĉ

|x̂1 − x̃1| ≤ ∆|x̃1|, |x̂2 − x̃2| ≤ ∆|x̃2|,

|b− b̂| ≤ ∆|b|, |c− ĉ| ≤ ∆|c|, ∆ = O(u),
then they also satisfy the norm-wise bound

a(x− x̂1)(x− x̂2) = ax2 +
ˆ̂
bx+ ˆ̂c∥∥∥[a b c

]
−
[
a

ˆ̂
b ˆ̂c

]∥∥∥ ≤ 3∆
∥∥[a b̂ ĉ

]∥∥ , ∆ = O(u).

Proof. It follows from the EMS constraints that

ˆ̂
b = b̂+ a(x̂1 − x̃1 + x̂2 − x̃2), and ˆ̂c = ĉ+ a(x̃1x̃2 − x̂1x̂2),

which yields the bounds

|b− ˆ̂
b| ≤ |b− b̂|+ |a|(|x̂1− x̃1|+ |x̂2− x̃2|), and |c− ˆ̂c| ≤ |c− ĉ|+ |a|(|x̃1x̃2− x̂1x̂2|).

8 N. MASTRONARDI ANDP. VAN DOOREN

Using the constraints of EMS we then also obtain

|b− ˆ̂
b| ≤ ∆|b|+ ∆|a|(|x̃1|+ |x̃2|)), and |c− ˆ̂c| ≤ ∆|c|+ ∆|a|(|x̃1||x̃2|).

Switching to norms and using the triangle inequality then yields

∥∥∥[0, |b− ˆ̂
b|, |c− ˆ̂c|

]∥∥∥
2
≤ ∆

∥∥[0, |b̂|, |ĉ|
]∥∥

2
+∆|a|

∥∥[0, |x̃1|+ |x̃2|, |x̃1x̃2|
]∥∥

2
.

Because of Lemma 4 in the appendix we also have

∆|a|
∥∥[0, |x̃1|+ |x̃2|, |x̃1x̃2|

]∥∥
2
≤
√

3∆
∥∥[a, |b̂|, |ĉ|

]∥∥
2

and we finally obtain the norm-wise bound

∥∥∥[0, |b− ˆ̂
b|, |c− ˆ̂c|

]∥∥∥
2
≤ 3∆

∥∥[a, b̂, ĉ
]∥∥

2
.

We then need to show that in general, EBS can not always be satisfied, i.e. there
does NOT exist any algorithm that achieves this. A counterexample is given by the
polynomial y2 − 2β − 1 where β = 2−t + 2−2t and 2−2t ≤ u/2 while 2−t ≈

√
u. One

easily checks that β is a representable number and that the roots of the polynomial
are given by the expansion

y1 = 1 + β + β2/2− β4/8 + ..., y2 = −1 + β − β2/2 + β4/8 + ...

Their exactly rounded values are given by the representable numbers

ŷ1 = 1 + 2−t, ŷ2 = −1 + 2−t

which gives a sum equal to the representable number

ŷ1 + ŷ2 = 2.2−t,

but that yields a relative error of the order of
√
u ! Moreover, all other representable

numbers in the neighborhood of y1 and y2 are on a grid of size u and all possible
combinations of their sums will still have a comparable relative error. It is thus
impossible to find representable numbers that would satisfy the EBS property.

5. Numerical results.

STABILITY OF COMPUTING THE ROOTS OF A QUADRATIC POLYNOMIAL 9

We tested this routine for the relative backward errors on three sets of 1000
random quadratic polynomials. We first took random real polynomials, then random
complex polynomials, and finally random real polynomials with a very small sum (of
the order of

√
ε). The test results are given below.

The first plot clearly shows EBS, since the relative errors of the recomputed sums
and products of the roots is of the order of the unit round-off u. The second plot shows
the same results for polynomials with complex coefficients. The third plot shows that
for real polynomials q(y) with a very small (but non-zero) coefficient β, EBS can not
be ensured by our algorithm. This is consistent with our analysis that shows that
there does not exist any algorithm to ensure EBS for such polynomials.

Appendix A. Lemma 5.1. For any real numbers a, b and c we have the in-
equality

(|a|+ |b|)2 + |ab|2 ≤ 2c2 + (a+ b)2 + (1 + 2/c2)(ab)2

which also implies for c2 = 3/2 that∥∥[0, |a|+ |b|, |ab|
]∥∥2

2
≤ 3

∥∥[1, (a+ b), ab
]∥∥2

2
.

10 N. MASTRONARDI ANDP. VAN DOOREN

Proof
The first inequality follows from

(|a|+ |b|)2 = (|a| − |b|)2 + 4|ab| ≤ (a+ b)2 + 4|ab|,

and

2(c− |ab|/c)2 ≥ 0 =⇒ 4|ab| ≤ 2c2 + 2(ab)2/c2.

Appendix B.
function [x1,x2,beta,e,scale] = quadroot(a,b,c)

% Function [x1,x2,beta,e] = quadroot(a,b,c) computes the two roots

% x1 and x2 of a quadratic polynomial ax^2+bx+c=0 in a stable manner

beta=[];e=[];scale=[];

% special cases of zero elements

if a==0, return, else b1=b/a;c1=c/a; end

if b==0, x1=sqrt(-c1);x2=-x1; return, end

if c==0, x1=-b1; x2=0; return, end

% generic case

if isreal([b1,c1]),

% with real coefficients

c1abs=abs(c1);

scale=sqrt(c1abs)*sign(b1);

beta=b1/(2*scale);

e=sign(c1);

% computing the roots

if e==-1, y1=beta+sqrt(beta^2+1);y2=-1/y1;

else,

if beta >= 1, y1=beta+sqrt((beta+1)*(beta-1)); y2=1/y1;

else, im=sqrt((beta+1)*(1-beta));y1=beta+j*im;y2=beta-j*im;

end

end

else,

% with complex coefficients

scale=sign(b1)*(sqrt(abs(c1)));

beta=abs(b1)/(2*sqrt(abs(c1)));f=sqrt(sign(c1))/sign(b1);

gamma=sqrt((beta-f)*(beta+f));

y1=beta+sign(real(gamma))*gamma;

y2=f^2/y1;

end

x1=-y1*scale;x2=-y2*scale;

REFERENCES

[1] N. Higham, Accuracy and Stability of Numerical Algorithms, Second ed., SIAM Publications,
Philadelphia, PA, 2002.

[2] G. Forsythe, What is a satisfactory quadratic equation solver?, in Constructive Aspects of
the Fundamental Theorem of Algebra, B. Dejon and P. Henrici, eds., Wiley–Interscience,
London, 1969, pp. 53–61.

[3] W. Kahan, A Survey of Error Analysis, in Proc. IFIP Congress, Ljubljana, Information Pro-
cessing 71, North-Holland, Amsterdam, 1972, pp. 1214–1239.

