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The equality constrained indefinite least squares problem involves the minimization of an indefinite
quadratic form subject to a linear equality constraint. In this paper, we study this problem and present
a numerical method that is proved to be backward stable in a strict sense, i.e., that the computed solu-
tion satisfies a slightly perturbed equality constrained indefinite least squares problem. We also perform
a sensitivity analysis of this problem and derive bounds for the accuracy of the computed solution. We
give several numerical experiments to illustrate these results.
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1. Introduction20

It is well known (see, e.g., Bojanczyk et al., 2003a) that the indefinite least squares problem with linear
equality constraints (abbreviated as ILSE) Q2

min
x

‖Ax − b‖2
Σpq

, subject to Bx = d, (1.1)

where A ∈ R
(p+q)×n, B ∈ R

s×n, x ∈ R
n, b ∈ R

(p+q), d ∈ R
s and

‖Ax − b‖2
Σpq

:= (Ax − b)TΣpq(Ax − b), Σpq := diag{Ip, −Iq}

has a unique solution if B has full row rank s and if the matrix ATΣpqA is positive definite on KerB.
Moreover, this unique solution is also obtained from the unique solution of the augmented linear system25

⎡
⎢⎣

0 0 B

0 Σpq A

BT AT 0

⎤
⎥⎦

⎡
⎣λ

s
x

⎤
⎦ =

⎡
⎣d

b
0

⎤
⎦ , (1.2)

c© The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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which we will denote for short by

My = f. (1.3)

This can be seen as follows. Let r := b − Ax be the residual of the linear system being minimized and
let λ be the Lagrange multiplier in the unconstrained problem

min
x

1

2
(Ax − b)TΣpq(Ax − b) − λT(Bx − d);

then defining s := Σpqr yields the equations

Bx = d, Σpqs + Ax = b, BTλ = −ATs = ATΣpq(Ax − b).

This problem has been analysed by several authors, including Chandrasekaran et al. (1998) and30

Bojanczyk et al. (2003b) (without constraints), Liu & Wang (2010), Liu et al. (2010) and Mastronardi
& Van Dooren (2013a). Two different algorithms were proposed in Bojanczyk et al. (2003a). The first
one, called GQR–Cholesky, was shown to be backward stable. The second one, called GHQR, was
shown to be forward stable, that is, the forward error is bounded in the same way as if the algorithm
were backward stable. The algorithm proposed in Mastronardi & Van Dooren (2013a) transforms the Q335

block matrix in (1.2) to lower antitriangular form, mixing up the blocks. The algorithm proposed here
transforms the block matrix in (1.2) to lower antitriangular form preserving the original block structure.
Although independently derived, the algorithm is closely related to GQR–Cholesky, but slightly more
efficient. Moreover, we give a new proof of backward numerical stability in a strict sense. We also give
a new sensitivity analysis, which we believe brings new insights with the problem. Finally, we show40

that a proper scaling of the problem may yield significant improvements in estimating the sensitivity of
the problem.

The paper is organized as follows. The definitions and the notation used in the paper, followed by the
description on how to scale the augmented system, are described in Section 2. The proposed algorithm
is described in Section 3. The sensitivity of the solution computed by the proposed method is studied in45

Section 4, followed by the section on the numerical experiments and by the conclusions.

2. Background

2.1 Definitions and notation

The method we will describe here is heavily based on a so-called antitriangular decomposition presented
in Mastronardi & Van Dooren (2012, 2013b), and hence it is useful to recall some basic definitions here.50

A matrix A ∈ R
n×n is called upper (respectively, lower) antitriangular if all the entries below (respec-

tively, above the main antidiagonal are zero. An antitriangular matrix is obviously nonsingular if all the Q4
entries in the main antidiagonal are different from zero. Moreover, the solution of a square linear sys-
tem, with coefficient matrix a nonsingular upper (respectively, lower) antitriangular matrix of order n,
can be computed by forward (respectively, backward) substitution in n2 floating point operations (see,55

e.g., Mastronardi & Van Dooren, 2012, 2013b).
The right lower anti-QR factorization of a matrix A ∈ R

n×m, m � n, rank(A) = n, is as

A = [0 Y ]V T, [0 Y ] =
[ ]

,
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with Y ∈ R
n×n lower antitriangular and V ∈ R

m×m orthogonal. The left upper anti-QR factorizations of
a matrix A ∈ R

m×n, m � n, rank(A) = n, is defined as Q5

A = U

[
Y
0

]
,

[
Y
0

]
=

[ ]
,

with Y ∈ R
n×n upper antitriangular and U ∈ R

m×m orthogonal.60

We will say that a symmetric indefinite matrix A ∈ R
n×n is symmetric block upper antitriangular if

A =
⎡
⎣ X Z Y

ZT W
Y T

⎤
⎦ }n1

}n2

}n1

, (2.1)

with Y ∈ R
n1×n1 nonsingular upper antitriangular, X ∈ R

n1×n1 symmetric, W ∈ R
n2×n2 symmetric, Z ∈

R
n1×n2 and 2n1 + n2 = n. We say that it is symmetric block lower antitriangular if

A =
⎡
⎣ Y

W Z
Y T ZT X

⎤
⎦ }n1

}n2

}n1

, (2.2)

with Y ∈ R
n1×n1 nonsingular lower antitriangular, X ∈ R

n1×n1 symmetric, W ∈ R
n2×n2 symmetric, Z ∈

R
n2×n1 and 2n1 + n2 = n. These forms are convenient to determine the inertia of the matrix A, which is65

defined as the triple In(A) = (n−, n0, n+), where n−, n0 and n+ are, respectively, the number of negative,
zero and positive eigenvalues of the symmetric matrix A. Indeed, if A is in one of the two symmetric
block antitriangular forms, then the following theorem holds (see, e.g., Gould, 1985; Mastronardi &
Van Dooren, 2013b).

Theorem 2.1 Let A be a symmetric matrix partitioned either as in (2.1) or in (2.2). Then,70

In(A) = (n1, 0, n1) + In(W).

Finally, let v ∈ R
n be partitioned in subvectors as follows:

v =

⎡
⎢⎢⎢⎣

v1

v2
...
vj

⎤
⎥⎥⎥⎦

}ι1
}ι2

...}
ιj

, j � n,
j∑

l=1

ιl = n.

Then, the vector containing the following subvectors:⎡
⎢⎢⎢⎣

vι1

vι1+1
...

vι2

⎤
⎥⎥⎥⎦ , 1 � ι1 < ι2 � j

is denoted by vι1:ι2 .
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2.2 Scaling the problem

In order to study the sensitivity of this problem, we first show that we can construct a simple scaling75

such that all nonzero blocks and the vector f in (1.3) have spectral norm equal to 1. If we multiply the
system Ax = b by an appropriate scalar α and the system Bx = d by an appropriate scalar β, we can
impose ‖αA‖2 = 1 and ‖βB‖2 = 1. Finally, we can multiply the right-hand side and the solution with a
scalar γ so that the new right-hand side has norm 1. If we apply these scalings to the equation My = f
as (DMD)(D−1yγ ) = (Dfγ ) with D = diag{(β/α)Is, Ip+q, αIn} we obtain the equivalent scaled system80

⎡
⎢⎣

0 0 βB

0 Σpq αA

βBT αAT 0

⎤
⎥⎦

⎡
⎢⎢⎢⎣

αγ

β
λ

γ s
γ

α
x

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

βγ

α
d

γ b

0

⎤
⎥⎥⎦ , (2.3)

which shows that this yields the same solution x up to a scaling as well. We will therefore assume in
the future that this scaling has been applied on the above problem and associated system My = f, and
hence that ‖A‖2 = ‖B‖2 = ‖Σpq‖2 = ‖f‖2 = 1, which implies that 1 � ‖M‖2 � 2, since

M =
⎡
⎣ 0 0 B

0 Σpq 0
BT 0 0

⎤
⎦ +

⎡
⎣0 0 0

0 0 A
0 AT 0

⎤
⎦ .

In the algorithm that we develop in this paper, that scaling does not appear to affect the accuracy of the
computed solution, but it does improve significantly the error bounds for the computed solution.85

3. Solution of the augmented linear system

Since the solution of the ILSE problem can be described in terms of the augmented system⎡
⎢⎣

0 0 B

0 Σpq A

BT AT 0

⎤
⎥⎦

⎡
⎣λ

s
x

⎤
⎦ =

⎡
⎣d

b
0

⎤
⎦ ⇔ My = f, (3.1)

it is convenient to use it to describe our algorithm. Here λ is the vector of the Lagrange multipliers
and N := p + q + n + s is the order of the matrix M . It can then be shown (see, e.g., Mastronardi &
Van Dooren, 2013a) that if B has full row rank and ATΣpqA is positive definite on KerB, then its inertia90

is given by

In(M ) = (q + n, 0, p + s). (3.2)

Let M (0) = M , y(0) = y, f(0) = f, where y(0) and f(0) are partitioned as follows:

y(0) =
⎡
⎣λ

s
x

⎤
⎦ }s

}p + q
}n

, f(0) =
⎡
⎣d

b
0

⎤
⎦ }s

}p + q
}n

.

We then perform orthogonal congruence transformations to reduce M (0) to a more convenient form.
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Step 1. Reduction of the constraint Bx = d
Here we eliminate that part of the vector x that can be assigned via the constraint Bx = d. For this, we95

first compute the left lower antitriangular factorization of B, i.e.,

B = [0, Y1]QT
B, (3.3)

with Y1 ∈ R
s×s nonsingular lower antitriangular and QB ∈ R

n×n orthogonal, partitioned as follows:

QT
B =

[
QT

B1

QT
B2

]
}n − s
}s , (3.4)

with the columns of QB1 ∈ R
n×(n−s) spanning the nullspace of B. Let

Q(1) =
[

Ip+q+s

QB

]
;

then the linear system (3.1) is transformed into the equivalent system

M̃ (0)ỹ(0) = f̃
(0)

, (3.5)

where100

M̃ (0) = Q(1)T
M (0)Q(1) =

⎡
⎢⎢⎢⎢⎣

Y1

Σpq A1 A2

A1
T 0 0

Y1
T A2

T 0 0

⎤
⎥⎥⎥⎥⎦ ,

with

A1 = AQB1 ∈ R
(p+q)×(n−s), A2 = AQB2 ∈ R

(p+q)×s (3.6)

and

ỹ(0) = Q(1)T
y(0) =

⎡
⎢⎢⎣

λ

s
x1

x2

⎤
⎥⎥⎦

}s
}p + q
}n − s
}s

, f̃
(0) = Q(1)T

f(0) =

⎡
⎢⎢⎢⎣

d

b

0

0

⎤
⎥⎥⎥⎦

}s
}p + q
}n − s
}s

.

This thus allows us to solve (by backward substitution) the nonsingular lower antitriangular linear
system

Y1x2 = d, (3.7)

and eliminate x2. Therefore, we can also update the right-hand side with b̂ = b − A2x2 as follows:105

f̂
(0) =

⎡
⎢⎢⎣

0
b̂
0
0

⎤
⎥⎥⎦ ,
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and extract from this a new (smaller) system:

M (1)y(1) = f(1), (3.8)

where

M (1) =
[

Σpq A1

A1
T

]
, y(1) =

[
s
x1

]
, f(1) =

[
b̂
0

]
. (3.9)

Note that in this smaller system we have not only eliminated x2, but also the associated Lagrange
multiplier λ. Moreover, since Σ−1

pq = Σpq,

M (1) =
[

I
A1

TΣpq I

][
Σpq

−A1
TΣpqA1

] [
I ΣpqA1

I

]
.

Therefore, by (3.2), it follows that its inertia is given by110

In(M (1)) = (q + n − s, 0, p). (3.10)

Step 2. Breaking up the variable s
We first point out that p � n − s since AT

1 ΣpqA1 is supposed to be positive definite (Bojanczyk et al.,
2003a). Let us then partition A1 as follows:

A1 =
[

A11

A12

] }p
}q ,

and y(1) and f(1) as follows:

y(1) =

⎡
⎢⎢⎢⎣

s1

s2

s3

x1

⎤
⎥⎥⎥⎦

}n − s
}p − n + s
}q
}n − s

, f(1) =

⎡
⎢⎢⎣

b̂1

b̂2

b̂3

0

⎤
⎥⎥⎦

}n − s
}p − n + s
}q
}n − s

.

Compute the left upper antitriangular factorization of A11,115

A11 = Qp

[
Ỹ2

0

] }n − s
}p − n + s

, (3.11)

with Ỹ2 nonsingular upper antitriangular and let

Q(2) =
[

Qp

In+q−s

]
.
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Then, the linear system (3.8) is transformed into the following equivalent system:

M̃ (1)ỹ(1) = f̃
(1)

, (3.12)

where

M̃ (1) = Q(2)T
M (1)Q(2) =

⎡
⎢⎢⎣

In−s Ỹ2

Ip−n+s 0
−Iq A12

Ỹ T
2 0 AT

12

⎤
⎥⎥⎦ ,

ỹ(1) = Q(2)T
y(1) =

⎡
⎢⎢⎣

Qp
T

[
s1

s2

]
[

s3

x1

]
⎤
⎥⎥⎦ , f̃

(1) = Q(1)T
f(1) =

⎡
⎢⎢⎢⎣

Qp
T

[
b̂1

b̂2

]
[
b̂3

0

]
⎤
⎥⎥⎥⎦ (3.13)

are partitioned as y(1) and f(1), respectively.120

Then compute the left upper antitriangular factorization of

[
Ỹ2

A12

]
= U

[
Y2

0

] }n − s
}q , (3.14)

with U ∈ R
(q+n−s)×(q+n−s) orthogonal and Y2 nonsingular upper antitriangular. We partition U as

follows:

U =
[

U11 U12

U21 U22

]
,

with U11 ∈ R
(n−s)×(n−s), U12 ∈ R

(n−s)×q, U21 ∈ R
q×(n−s) and U22 ∈ R

q×q, and let

QΣ =
⎡
⎣U11 U12

Ip−n+s

U21 U22

⎤
⎦ , Q(3) =

[
QΣ

In−s

]
.

Observe that, due to the particular structure of the left-hand side of (3.14), the matrix U11 is upper125

triangular. Then, the linear system (3.12) is transformed into the following equivalent one:

M (2)y(2) = f(2), (3.15)

where

M (2) = Q(3)T
M̃ (1)Q(3) =

⎡
⎢⎢⎢⎣

X11 X12 Y2

Ip−n+s

X12
T X22

Y T
2

⎤
⎥⎥⎥⎦ ,
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with

X11 = U11
TU11 − U21

TU21,

X12 = U11
TU12 − U21

TU22, (3.16)130

X22 = U12
TU12 − U22

TU22,

y(2) =

⎡
⎢⎢⎢⎢⎣

s̃1

s̃2

s̃3

x1

⎤
⎥⎥⎥⎥⎦ = Q(3)T

ỹ(1) =

⎡
⎢⎢⎢⎢⎣

U11
Ts̄1 − U21

Ts3

s̄2

U12
Ts̄1 − U22

Ts3

x1

⎤
⎥⎥⎥⎥⎦ , (3.17)

f(2) =

⎡
⎢⎢⎢⎢⎣

b̃1

b̃2

b̃3

0

⎤
⎥⎥⎥⎥⎦ = Q(3)T

f̃
(1) =

⎡
⎢⎢⎢⎢⎣

U11
Tb̄1 − U21

Tb̂3

b̄2

U12
Tb̄1 − U22

Tb̂3

0

⎤
⎥⎥⎥⎥⎦ (3.18)

and [
s̄1

s̄2

]
= QT

p

[
s1

s2

]
,

[
b̄1

b̄2

]
= QT

p

[
b̂1

b̂2

]
.

Observe that, by (3.10), In(M (2)) = In(M (1)) = (q + n − s, 0, p). Therefore, by Theorem 2.1,135

In
([

Ip−n+s

X22

])
= (q, 0, p − n + s).

Hence, X22 is symmetric negative definite and has a Cholesky factorization

X22 = −L22LT
22. (3.19)

Step 3. Computing the solution
We can now solve for y(2) from the linear system (3.15) as follows:

• s̃2 = b̃2;

• solve the lower antitriangular linear system Y T
2 s̃1 = 0 which implies s̃1 = 0;140

• solve the negative definite linear system X22s̃3 = −L22LT
22s̃3 = b̃3;

• solve the upper antitriangular linear system Y2x1 = (b̃1 − X12s̃3) by forward substitution.

Once y(2) has been obtained, ỹ(1) can be computed as well using

[
v1

v2

]
= U

[
y(2)

1

y(2)
3

]
,
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Table 1 Computation complexity of the
algorithm described in Section 3

Flops

(3.3) 2s2(n − s/3)

(3.11) 2(n − s)2(p − (n − s)/3)
(3.14) 4q(n − s)(q + n − s)
(3.16) (n − s)3/3 + q(n − s)2 + q3

and, because of (3.17),

ỹ(1) = Q(3)y(2) =

⎡
⎢⎢⎢⎢⎣

v1

y(1)
2

v2

y(1)
4

⎤
⎥⎥⎥⎥⎦ .

Furthermore, by (3.9) and (3.13),145

ỹ(0)
2:3 = y(1) = Q(2)ỹ(1) =

[
Qpỹ(1)

1:2

ỹ(1)
3:4

]
. (3.20)

The solution of the linear system (3.5) can then completely be computed. Since, by (3.7) and (3.20), ỹ(0)
2:4

has been already computed, we only need to compute ỹ(0)
1 . We first update the right-hand side:

f̂(0) =
[

f̃
(0)

1:3

f̃
(0)

4 − ATỹ(0)
2

]
, (3.21)

then solve the lower antitriangular linear system

Y T
1 ỹ(0)

1 = f̂(0)
4 , (3.22)

and finally construct

y(0) = Q(1)ỹ(0) =
[

ỹ(0)
1:2

QBỹ(0)
3:4

]
.

We observe that if one is interested only in the solution x of the initial problem, it is not needed to150

compute (3.21) and (3.22). These computations are needed only if one wants to know the Lagrange
multipliers of (3.1).

In Table 1, we give the number of floating point operations needed in this algorithm, thereby neglect-
ing the lower-order terms.
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Remark 3.1 The algorithm just described can be used for any values of q. When q > n − s, steps 2 and155

3 can be modified to yield a more efficient algorithm. Such a modification is described in the appendix.

Let us now make the link between the above algorithm and GQR–Cholesky described in Bojanczyk
et al. (2003a). The orthogonal transformation matrix constructed by this algorithm is in fact given by

Q =
⎡
⎣Is

QA

QB

⎤
⎦ where QA =

[
Qp

Iq

]
QΣ .

It is important to note here that this block transformation does not mix variables λ, s and x or b and d,
or matrices A, B and Σpq. This is why the block scaling performed earlier will not affect the round-off160

errors of the algorithm, but we will see in the next section that it does affect the condition estimates.
The orthogonal transformation matrix implicitly constructed by GQR–Cholesky is

U =
⎡
⎣Is

UA

QB

⎤
⎦ ,

where UA is the orthogonal factor of the QL factorization of A1. The computational complexity of
GQR–Cholesky, neglecting the terms of lower order, is (n − s)2(7(p + q) − 2(n − s)).

Let us now show how the algorithm described here can be considered as an algorithm to compute the165

lower block antitriangular factorization of the coefficient matrix in (1.2). The algorithm just described
transforms problem (1.2) into the following equivalent one:

Mqyq = fq,

with

Mq := QTMQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

X11 X12 Y2 A(2)
1

Ip−n+s A(2)
2

X T
12 X22 A(2)

3

Y T
2

Y T
1 A(2)

1
T

A(2)
2

T
A(2)

3
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.23)

[
yq fq

]
:= QT

[
y f

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ d

s1 b1

s2 b2

s3 b3

x1 0
x2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.24)170
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where ⎡
⎢⎣

A(2)
1

A(2)
2

A(2)
3

⎤
⎥⎦ := QT

AA2 = QT
Σ

[
QT

p

Iq

]T

A2.

Observe that the latter product is not explicitly computed. Moreover, after a suitable symmetric permu-
tation, (3.23) becomes a block antitriangular system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y T
2

Ip−n+s A(2)
2

X22 X T
12 A(2)

3

Y2 X12 X11 A(2)
1

Y T
1 A(2)

2
T

A(2)
3

T
A(2)

1
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

λ

x1

s2

s3

s1

x2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

d
0
b2

b3

b1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

4. Stability

We consider the solution of the (normalized) symmetric system of Equation (1.2) using the last block175

antitriangular form, obtained from an orthogonal transformation which we will call QM :

QM

⎡
⎢⎣

0 0 B

0 Σpq A

BT AT 0

⎤
⎥⎦ QT

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y T
2

Ip−n+s A(2)
2

X22 X T
12 A(2)

3

Y2 X12 X11 A(2)
1

Y T
1 A(2)

2
T

A(2)
3

T
A(2)

1
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.1)

Since the algorithm produces an orthogonal congruence transformation, the backward error will be
symmetric, and since the transformation has a block form compatible with the block structure of M , the
backward error will also have this structure. Hence, if we denote the computed quantities with a hat, we
have that180

Q̂M (M + ΔM )Q̂T
M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ŷ1

Ŷ T
2

Ip−n+s Â(2)
2

X̂22 X̂ T
12 Â(2)

3

Ŷ2 X̂12 X̂11 Â(2)
1

Ŷ T
1 Â(2)

2
T

Â(2)
3

T
Â(2)

1
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.2)
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with

ΔM :=

⎡
⎢⎣

0 0 ΔB

0 ΔΣpq ΔA

ΔBT ΔAT 0

⎤
⎥⎦ , ΔΣpq = ΔΣT

pq, (4.3)

and also ‖ΔM‖2, ‖Q̂T
M Q̂M − I‖2 ≈ ε, with ε the machine precision, because this algorithm is known

to be backward stable. Let ‖ΔΣpq‖2 := cε. There exists, according to Lemma A.1 in the appendix, an
updating transformation Qup such that

Qup(Σpq + ΔΣpq)Q
T
up = Σpq, ‖Qup − I‖2 � c

2
ε.

Incorporating this transformation into Q̂M then yields again the result (4.2) and (4.3), but now with185

ΔΣpq = 0. We now turn to the perturbation of the solution of the linear system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ŷ1

Ŷ T
2

Ip−n+s Â(2)
2

X̂22 X̂ T
12 Â(2)

3

Ŷ2 X̂12 X̂11 Â(2)
1

Ŷ T
1 Â(2)

2
T

Â(2)
3

T
Â(2)

1
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

λ

x1

s2

s3

s1

x2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

d
0
b2

b3

b1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It follows from this system that s1 = 0, and hence the computed solution x̂1, x̂2, ŝ1, ŝ2, ŝ3 satisfies ŝ1 = 0
and the perturbed system of equations

⎡
⎢⎢⎢⎢⎣

Ỹ1

Ip−n+s Ã(2)
2

X̃22 Ã(2)
3

Ỹ2 X̃12 Ã(2)
1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

x̂1

ŝ2

ŝ3

x̂2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

d
b2

b3

b1

⎤
⎥⎥⎦ , (4.4)

where standard error analysis of triangular linear system solvers (Higham, 2002, Chapter 8) says that
‖Ỹ1 − Ŷ1‖2, ‖Ỹ2 − Ŷ2‖2, ‖Ã(2)

1 − Â(2)
1 ‖2, ‖Ã(2)

2 − Â(2)
2 ‖2, ‖Ã(2)

3 − Â(2)
3 ‖2, ‖X̃22 − X̂22‖2 and ‖X̃12 − X̂12‖2190

are all of the order of ε. Note that we did not include in this system the equation used to solve for λ̂,
since it does not affect the solution for x and s. This is important, since the structure of (4.4) has no
repeated blocks and only the constraint that X̃22 ought to be symmetric; but it is shown in (Mackey
et al., 2008) that this is easy to satisfy with a similar backward error.

It thus follows from this discussion that the computed solution (x̂, ŝ) corresponds exactly to the195

solution of a nearby problem with data (Ã, B̃, Σpq, b̃, d). Note that we cannot say this for the computed
solution λ̂. It is also important to note that Σpq and b do not get perturbed.
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5. Sensitivity

In this section, we analyse the condition number of this problem. Since there is an orthogonal transfor-
mation between the system My = f and the permuted system Mpyp = fp:200

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 Ŷ T
2

0 Ŷ1

0 Ip−n+s Â(2)
2

0 X̂22 Â(2)
3 X̂ T

12

Ŷ2 X̂12 Â(2)
1 X̂11

Ŷ T
1 Â(2)

2
T

Â(2)
3

T
Â(2)

1
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

λ

x1

s2

s3

x2

s1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
d
b2

b3

b1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5.1)

we can as well look at that one. Note that we have displayed all sub-blocks that can be perturbed. The
missing blocks are thus hard zeros that are not perturbed by our algorithm.

We first look at the effect of perturbation in b and d only. In this case, the zero blocks displayed
in (5.1) remain zero as well, and we have thus Mpδyp = δfp. From these two equations we observe that
s1 = 0 and δs1 = 0. We then finally obtain the equations:205

M̂

⎡
⎢⎢⎣

x1

s2

s3

x2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

d
b2

b3

b1

⎤
⎥⎥⎦ , M̂

⎡
⎢⎢⎣

δx1

δs2

δs3

δx2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

δd
δb2

δb3

δb1

⎤
⎥⎥⎦ , (5.2)

for both the original data and the perturbation, where M̂ is the submatrix

M̂ :=

⎡
⎢⎢⎢⎢⎣

Ŷ1

Ip−n+s Â(2)
2

X̂22 Â(2)
3

Ŷ2 X̂12 Â(2)
1

⎤
⎥⎥⎥⎥⎦ .

It immediately follows from this that∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

δx1

δs2

δs3

δx2

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

/∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

x1

s2

s3

x2

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

� ‖M̂‖2‖M̂ −1‖2

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

δd
δb2

δb3

δb1

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

/∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

d
b2

b3

b1

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

,

and since the vector s1 is always zero, we also obtain∣∣∣∣
∣∣∣∣
[
δx
δs

]∣∣∣∣
∣∣∣∣
2

/∣∣∣∣
∣∣∣∣
[
x
s

]∣∣∣∣
∣∣∣∣
2

� ‖M̂‖2‖M̂ −1‖2

∣∣∣∣
∣∣∣∣
[
δd
δb

]∣∣∣∣
∣∣∣∣
2

/ ∣∣∣∣
∣∣∣∣
[
d
b

]∣∣∣∣
∣∣∣∣
2

.

We point out that since M̂ and M̂ −1 are submatrices of, respectively, M and M −1, the condition number
of M̂ can be no larger than M .210
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We now turn to the analysis of perturbations in M only, but this is a more complicated issue. From
the equations (Mp + ΔMp)(yp + δyp) = fp and Mpyp = fp, we obtain (up to second-order terms) the
identity

Mpδyp + ΔMpyp = 0. (5.3)

Selecting the middle block of equations from (5.3), we then obtain from (5.1) the identity (up to second-
order terms)215

M̂

⎡
⎢⎢⎣

δx1

δs2

δs3

δx2

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0

X̂ T
12

X̂11

⎤
⎥⎥⎦ δs1 + ΔM̂

⎡
⎢⎢⎣

x1

s2

s3

x2

⎤
⎥⎥⎦ = 0.

The vector δs1 can also be computed from (5.3) and yields

δs1 = −Y−T
2 [Δ11, Δ13, Δ14]

⎡
⎣λ

s2

s3

⎤
⎦ ,

where Δij are the nonzero blocks of ΔMp, partitioned as in (5.1). Since

M̂ −1

⎡
⎢⎢⎢⎢⎣

0

0

X̂ T
12

X̂11

⎤
⎥⎥⎥⎥⎦ Y−T

2 = −

⎡
⎢⎢⎣

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

⎤
⎥⎥⎦ M̃ −1

⎡
⎢⎢⎣

I
0
0
0

⎤
⎥⎥⎦ , M̃ :=

⎡
⎢⎢⎢⎢⎣

Y T
2

Ip−n+s

X̂22 X̂ T
12

Y2 X̂12 X̂11

⎤
⎥⎥⎥⎥⎦ ,

this then yields the bound

∣∣∣∣
∣∣∣∣
[
δx
δs

]∣∣∣∣
∣∣∣∣
2

� ‖M̂ −1‖2

∣∣∣∣∣∣
∣∣∣∣∣∣ΔM

⎡
⎣0

s
x

⎤
⎦

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ ‖M̃ −1‖2

∣∣∣∣∣∣
∣∣∣∣∣∣ΔM

⎡
⎣λ

s
0

⎤
⎦

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (5.4)

It is obvious to see that, in general, ‖M̂ −1‖2, ‖M̃ −1‖2�‖M −1‖2, which indicates that the ILSE problem
is less sensitive than the problem of solving the linear system My = f. In order to better understand the220

difference between both terms in the above expression, let us look at the case when Σpq = I. Then, it
easily follows that X̂22 and X̂12 are void and X̂11 = Ip, and hence

‖M̂ −1‖2 =

∥∥∥∥∥∥∥∥

⎡
⎢⎣

0 0 Ŷ1

0 I Â(2)
2

Ŷ2 0 Â(2)
1

⎤
⎥⎦

−1∥∥∥∥∥∥∥∥
2

≈
∥∥∥∥∥∥
[

0 Ŷ1

Ŷ2 Â(2)
1

]−1
∥∥∥∥∥∥

2

≈ ‖Ŷ−1
2 Â(2)

1 Ŷ−1
1 ‖2,

‖M̃ −1‖2 =

∥∥∥∥∥∥∥∥

⎡
⎢⎣

0 0 Ŷ T
2

0 I 0

Ŷ2 0 I

⎤
⎥⎦

−1
∥∥∥∥∥∥∥∥

2

≈
∥∥∥∥∥∥
[

0 Ŷ T
2

Ŷ2 I

]−1
∥∥∥∥∥∥

2

≈ ‖Ŷ−1
2 Ŷ−T

2 ‖2.
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If, moreover, there are no constraints, then Ŷ1, Â(2)
1 and Â(2)

2 are also void and these respective matrix225

norms become

‖M̂ −1‖2 ≈ ‖Y−1
2 ‖2, ‖M̃ −1‖2 ≈ ‖Y−1

2 Y−1
2 ‖2.

We can recognize here the two components of the sensitivity analysis of the classical linear least
squares problem as analysed, e.g., in Golub & Van Loan (1996) and in Elden (1980). Note also that
when the residual s is nearly zero, then also λ is zero, and the second term of the sensitivity bound
disappears. This was also observed by Grcar (2011) who showed that the conditioning problem of230

our problem is much better when the residual vector is nearly zero (i.e., when the systems are nearly
consistent).

6. Numerical experiments

In this section, we report the results of some numerical experiments performed in Matlab c©R2010b
with machine precision ε ≈ 2.2 × 10−16. For each example, the matrix B ∈ R

s×n, given its condition235

number1 κB, is constructed by using the matlab command B = κB × gallery(’randsvd’, [s, n], κB),
so that ‖B‖2 = κB and its singular values are geometrically distributed between κB and 1. Moreover, Q6
given κA, A = QΣpq DUQT

B, with QΣpq ∈ R
(p+q)×(p+q) Σpq-orthogonal, i.e., such that QT

Σpq
ΣpqQΣpq =

Σpq, generated by the method described in Higham (2003), D ∈ R
(p+q)×n a diagonal matrix with

decreasing diagonal values geometrically distributed between κA and 1, U ∈ R
n×n random orthogo-240

nal generated by the function gallery(’qmult’, n), and with QB ∈ R
n×n the orthogonal factor of

the right lower antitriangular factorization (3.3) of B, B = [0, Y1]QT
B, so that κ(A) ≈ ‖A‖ ≈ κA. This

construction guarantees that ATΣpqA > 0. The solution x of problem (1.1), depending on a param-
eter c1 ∈ R, is chosen as x = QBv1, with v1 = c1 × randn(n, 1). Furthermore, partitioning QB and Q7
A as in (3.4) and (3.6), respectively, QB = [QB1, QB2], with QB1 ∈ R

n×(n−s) spanning the nullspace245

of B, A1 = AQB1 ∈ R
(p+q)×(n−s), A2 = AQB2 ∈ R

(p+q)×s, the vector s, depending on a parameter c2 ∈ R,
is chosen as and s = c2V2 × randn(s, 1), where V2 ∈ R

(p+q)×s has orthogonal columns spanning the
nullspace of A1. Hence, d = Y1v1(n − s + 1 : n), b = Σpqs + AQT

Bv1 and λ = −Y T
1 \(AT

2 s). Then, the
solution of the augmented system (3.1) is given by y = [λT, sT, xT]T. For all the experiments, we choose
n = 50, s = 20, p = 60, q = 40.250

Each set of experiments consists of 16 runs; in each of these κA and κB are taken from the set
{1e + 1, 1e + 2, 1e + 4, 1e + 8}. The solution computed by the proposed method, denoted by xMV , is
compared to the one computed by matlab using the command ‘\’ applied to (1.2), denoted by xB, to
the solutions yielded by the methods GQR-Cholesky and GHQR described in Bojanczyk et al. (2003a),
denoted by xBHP1 and xBHP2, respectively, and to the solution computed by the method proposed in255

Mastronardi & Van Dooren (2013a) and denoted by xMVB. Moreover, we add an ‘S’ to the name of Q8
the considered methods when they are used to solve the corresponding scaled augmented system (2.3).
Moreover, the corresponding scaled matrix is denoted by MS .

1 The condition number of a rectangular matrix A ∈ R
m×n, m �n, rank(A) = n, is defined as σmax(A)/σmin(A) (Golub &

Van Loan, 1996).
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We denote by

r(w) =

∥∥∥∥
[
d
b

]
−

[
0 B

Σpq A

]
w

∥∥∥∥
2

‖w‖2
,

the ‘restricted’ relative residual, where w = [sT xT]T.260

Since the GQR-Cholesky and GHQR methods compute only the solution x of (1.1), then the miss-
ing s is computed as s = Σpq(b − Ax) for these two methods. Q9

6.1 First set

For this set of experiments, we choose c1 = c2 = 1.
In columns 2, 3, 4 and 5 of Table 2, the condition numbers of A, B, M and MS are displayed, respec-265

tively. The condition numbers of the matrices M̂ , M̂S , M̃ and M̃S are displayed in columns 6, 7, 8 and
9, respectively. We can observe that the condition number of the scaled matrix MS is often smaller
than the condition number of matrix M . This also holds for the condition numbers of the matrices M̂S

and M̂ .
In Table 3, the restricted relative residuals of the vector w computed by the considered methods are270

reported. It can be observed that solving the scaled problem using the matlab ‘\’ gives more accurate
results than ‘\’ without scaling. Moreover, the considered methods have a similar behaviour and this is
independent of the use of scaling since these methods work on the individual blocks of M .

In Table 4, the relative residuals of the w and y computed by the proposed method are reported
in columns 2 and 3, respectively. Since c1 and c2 are of the same size, the vectors s and x have275

approximately the same norm. Therefore, in this case we have that the error of the computed solu-
tion depends on both ‖M̂S‖ and ‖M̃S‖, as shown by (5.4). In Table 5, columns 2, 3, 4, 5 and 6, the
relative error of the solutions computed by the considered methods are displayed. These experiments
show that the proposed method has often a smaller relative error.

6.2 Second set280

For this second set of experiments, we choose c1 = 1e10, and c2 = 1. We omit a table similar to Table 1
because the construction of M does not depend on the coefficients c1 and c2.

We can see in Table 6 that the backslash of matlab now behaves even worse when using the
unscaled matrix (see also the discussion at the end of Section 4) (Table 7). Q10

Since c1 � c2, it follows that ‖x‖ � ‖s‖. Therefore, taking (5.4) into account, the error in the com-285

puted solution depends more on ‖M̂S‖. This can be clearly seen in comparing columns 2, 3, 4 and 5 of
Table 8.

6.3 Third set

For this third set of experiments, we choose c1 = 1, and c2 = 1e10. Also in this case, we omit a table
similar to Table 2 because the construction of M does not depend on the coefficients c1 and c2 (Table 9). Q10290

Since c2 � c1, it follows that ‖s‖ � ‖x‖. Therefore, taking (5.4) into account, the error in the com-
puted solution depends more on ‖M̃S‖. This can be clearly seen in comparing columns 2, 3, 4 and 5 of
Tables 10 and 11. Q10
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Table 2 Condition numbers of the matrix of the augmented system, of the scaled one and of their
related submatrices

# κ(A) κ(B) κ(M ) κ(MS) κ(M̂ ) κ(M̂S) κ(M̃ ) κ(M̃S)

1 4.8e+01 1.0e+01 3.0e+03 1.8e+03 3.0e+03 2.0e+02 2.0e+03 1.4e+03
2 2.3e+02 1.0e+01 4.6e+04 1.5e+04 1.9e+04 6.2e+02 1.5e+04 1.3e+04
3 2.3e+04 1.0e+01 3.9e+08 8.6e+06 5.4e+06 6.1e+03 3.6e+05 7.4e+06
4 3.5e+08 1.0e+01 5.2e+15 9.2e+11 4.7e+12 4.2e+06 2.0e+11 8.1e+11
5 2.5e+01 1.0e+02 1.6e+03 5.3e+02 1.6e+03 2.2e+02 4.0e+02 4.9e+02
6 1.6e+02 1.0e+02 1.8e+04 9.4e+03 3.3e+03 3.9e+02 1.9e+03 8.5e+03
7 1.5e+04 1.0e+02 6.8e+07 5.2e+06 2.1e+06 4.4e+03 3.6e+05 4.6e+06
8 2.1e+08 1.0e+02 6.3e+15 4.8e+11 3.8e+12 1.8e+06 8.6e+09 4.4e+11
9 2.2e+01 1.0e+04 1.4e+05 1.7e+06 1.3e+05 2.2e+04 3.0e+02 5.0e+02

10 7.1e+02 1.0e+04 1.8e+06 1.6e+05 1.8e+06 3.2e+04 1.2e+05 1.4e+05
11 1.4e+04 1.0e+04 3.2e+07 6.1e+06 1.2e+06 4.0e+04 2.3e+05 5.6e+06
12 1.6e+08 1.0e+04 4.2e+14 1.5e+11 4.9e+11 6.0e+05 1.5e+09 1.3e+11
13 2.5e+01 1.0e+08 2.0e+09 1.1e+14 2.0e+09 1.8e+08 5.0e+02 5.3e+02
14 4.4e+02 1.0e+08 9.3e+09 4.4e+12 9.2e+09 4.2e+08 3.1e+04 3.9e+04
15 2.5e+04 1.0e+08 4.3e+11 6.1e+10 1.0e+10 6.2e+08 1.0e+06 6.4e+06
16 1.8e+08 1.0e+08 9.2e+14 6.6e+11 9.2e+11 5.9e+08 8.0e+09 5.9e+11

Table 3 Relative residuals (c1 = c2)

# r(xB) r(xBS) r(xMVS) r(xBHP1S) r(xBHP2S) r(xMVBS)

1 5.741e−15 1.79e−16 5.43e−16 2.43e−16 2.25e−16 4.49e−16
2 3.878e−14 2.36e−16 5.44e−16 2.05e−16 2.38e−16 4.45e−16
3 2.912e−14 1.95e−16 4.46e−16 2.07e−16 2.28e−16 3.45e−16
4 1.113e−12 2.61e−16 4.71e−16 2.88e−16 2.39e−16 4.19e−16
5 3.821e−15 2.92e−16 5.67e−16 2.17e−16 2.77e−16 5.48e−16
6 1.629e−14 3.17e−16 5.69e−16 1.85e−16 2.36e−16 5.42e−16
7 1.136e−13 2.48e−16 5.36e−16 2.48e−16 2.51e−16 5.57e−16
8 5.817e−12 2.18e−16 4.12e−16 1.94e−16 1.97e−16 4.07e−16
9 5.727e−14 1.14e−14 4.64e−16 2.11e−16 2.58e−16 4.41e−16

10 8.307e−15 1.87e−16 4.40e−16 2.02e−16 2.04e−16 4.85e−16
11 5.011e−14 2.49e−16 5.07e−16 2.34e−16 2.18e−16 4.32e−16
12 4.201e−13 2.05e−16 5.19e−16 2.07e−16 2.35e−16 6.17e−16
13 2.534e−10 2.61e−11 4.70e−16 2.61e−16 2.18e−16 4.39e−16
14 6.324e−12 1.12e−12 4.81e−16 2.02e−16 2.18e−16 4.41e−16
15 1.434e−13 5.15e−14 7.61e−16 2.09e−16 2.55e−16 5.34e−16
16 2.926e−12 7.33e−16 3.90e−16 1.54e−16 2.06e−16 4.08e−16
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Table 4 Relative residuals and ‘modified’ condition numbers of κ(M̂S) and κ(M̃S)

#
‖w − wMVS‖

‖w‖
‖y − yMVS‖

‖y‖ ε × κ(M̂S) ε × κ(M̃S)

1 1.48e−14 1.47e−14 4.45e−14 3.26e−13
2 1.27e−13 1.27e−13 1.40e−13 3.07e−12
3 1.08e−11 1.08e−11 1.35e−12 1.66e−09
4 1.03e−06 1.03e−06 9.34e−10 1.81e−04
5 5.68e−15 3.42e−15 4.99e−14 1.10e−13
6 3.18e−14 2.42e−14 8.69e−14 1.90e−12
7 9.79e−12 9.79e−12 9.92e−13 1.03e−09
8 9.02e−07 9.02e−07 4.19e−10 9.80e−05
9 2.11e−13 1.31e−13 5.04e−12 1.13e−13

10 3.26e−13 3.63e−14 7.28e−12 3.20e−11
11 2.05e−11 7.40e−12 9.06e−12 1.25e−09
12 1.06e−07 1.06e−07 1.35e−10 2.92e−05
13 9.73e−10 5.60e−10 4.02e−08 1.19e−13
14 4.41e−10 2.84e−11 9.44e−08 8.71e−12
15 7.10e−10 3.70e−12 1.40e−07 1.42e−09
16 5.25e−07 3.30e−09 1.33e−07 1.31e−04

Table 5 Relative errors of the solutions

#
‖xBS − x‖

‖x‖
‖x − xMVS‖

‖x‖
‖x − xBHP1S‖

‖x‖
‖x − xBHP1S‖

‖x‖
‖x − xMVBS‖

‖x‖
1 2.84e−14 1.64e−14 2.16e−14 1.73e−14 2.58e−14
2 3.48e−13 1.45e−13 1.30e−13 1.05e−13 3.74e−13
3 6.44e−11 1.20e−11 1.73e−11 7.96e−12 9.22e−11
4 2.03e−06 1.16e−06 2.08e−06 2.68e−06 5.22e−06
5 2.88e−14 6.99e−15 2.39e−14 2.33e−14 1.10e−14
6 1.63e−13 3.80e−14 8.68e−14 9.38e−14 4.04e−13
7 7.35e−11 1.26e−11 5.06e−12 1.13e−11 5.98e−11
8 2.30e−06 1.04e−06 1.83e−06 2.90e−06 5.63e−06
9 2.69e−12 2.38e−13 1.64e−12 1.64e−12 2.39e−13

10 9.57e−12 3.88e−13 1.19e−11 1.20e−11 1.66e−12
11 2.39e−11 2.34e−11 4.49e−11 5.09e−11 8.57e−11
12 7.73e−07 1.33e−07 5.82e−07 4.67e−07 4.03e−07
13 1.22e−05 1.15e−09 9.61e−09 9.61e−09 1.15e−09
14 4.33e−05 5.24e−10 3.08e−07 3.08e−07 5.24e−10
15 2.57e−06 8.76e−10 5.45e−07 5.45e−07 8.56e−10
16 8.79e−04 5.92e−07 1.15e−03 1.15e−03 7.47e−06
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Table 6 Relative residuals (c1 � c2)

# r(xB) r(xBS) r(xMVS) r(xBHP1S) r(xBHP2S) r(xMVBS)

1 4.96e−15 1.27e−16 1.68e−16 1.82e−16 1.68e−16 2.36e−16
2 3.20e−14 1.96e−16 2.39e−16 2.24e−16 1.93e−16 4.04e−16
3 1.17e−12 1.43e−16 2.02e−16 1.47e−16 1.44e−16 2.31e−16
4 2.23e−08 1.70e−16 2.32e−16 2.24e−16 1.71e−16 2.83e−16
5 1.35e−14 1.83e−16 2.16e−16 1.22e−16 1.02e−16 2.99e−16
6 3.15e−14 2.40e−16 2.30e−16 1.15e−16 1.36e−16 2.58e−16
7 1.66e−12 1.73e−16 1.95e−16 1.11e−16 9.85e−17 2.91e−16
8 1.25e−08 1.89e−16 1.90e−16 1.19e−16 1.62e−16 2.17e−16
9 4.38e−13 1.62e−16 2.57e−16 6.28e−17 7.50e−17 2.98e−16

10 6.11e−13 1.44e−16 2.51e−16 1.11e−16 8.41e−17 2.26e−16
11 2.45e−12 1.28e−16 1.88e−16 7.12e−17 6.60e−17 1.87e−16
12 1.61e−08 1.02e−16 1.37e−16 7.13e−17 6.16e−17 1.83e−16
13 5.60e−09 2.08e−16 3.21e−16 9.39e−17 1.49e−16 2.95e−16
14 2.46e−09 1.75e−16 2.60e−16 6.48e−17 7.33e−17 2.64e−16
15 5.18e−09 1.34e−16 1.22e−16 7.01e−17 5.59e−17 2.12e−16
16 1.55e−08 4.48e−17 9.02e−17 8.08e−17 4.45e−17 1.92e−16

Table 7 Relative residuals and ‘modified’ condition numbers of κ(M̂S) and κ(M̃S)

#
‖w − wMVS‖

‖w‖
‖y − yMVS‖

‖y‖ ε × κ(M̂S) ε × κ(M̃S)

1 1.34e−15 1.34e−15 3.60e−14 1.97e−13
2 8.99e−15 8.99e−15 1.11e−13 5.96e−12
3 5.10e−14 5.10e−14 7.27e−13 6.00e−10
4 4.58e−12 4.58e−12 1.06e−10 1.87e−05
5 2.32e−15 2.59e−15 4.42e−14 1.25e−13
6 1.16e−14 1.18e−14 9.06e−14 1.15e−12
7 2.31e−14 2.31e−14 4.14e−13 2.40e−10
8 1.25e−11 1.25e−11 2.21e−10 2.09e−05
9 2.16e−14 1.36e−12 4.77e−12 4.93e−14

10 1.54e−13 4.13e−13 7.78e−12 4.19e−12
11 4.56e−13 4.56e−13 1.38e−11 8.44e−10
12 1.04e−11 1.04e−11 4.15e−10 9.40e−05
13 2.28e−10 3.25e−04 4.62e−08 7.11e−14
14 7.08e−11 6.80e−06 5.33e−08 1.20e−12
15 1.03e−09 2.33e−07 1.02e−07 1.67e−09
16 8.62e−10 8.62e−10 1.06e−07 3.04e−04
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Table 8 Relative errors of the solutions

#
‖xBS − x‖

‖x‖
‖x − xMVS‖

‖x‖
‖x − xBHP1S‖

‖x‖
‖x − xBHP1S‖

‖x‖
‖x − xMVBS‖

‖x‖
1 1.52e−14 1.34e−15 1.64e−15 1.73e−15 5.99e−15
2 1.40e−13 8.83e−15 1.12e−14 4.48e−15 7.36e−13
3 4.60e−11 5.10e−14 5.07e−14 3.60e−14 3.40e−11
4 1.77e−06 4.58e−12 1.31e−11 6.37e−12 5.01e−07
5 6.24e−15 2.30e−15 4.77e−15 4.39e−15 6.97e−15
6 1.13e−13 1.16e−14 1.41e−14 1.42e−14 3.68e−14
7 1.99e−12 2.31e−14 3.58e−14 3.71e−14 7.97e−12
8 6.95e−07 1.25e−11 1.60e−11 2.01e−11 3.71e−07
9 1.18e−13 2.13e−14 2.05e−13 2.05e−13 2.13e−14

10 3.06e−13 1.54e−13 3.72e−13 3.69e−13 1.99e−13
11 1.53e−11 4.56e−13 7.25e−13 7.67e−13 1.39e−11
12 2.10e−06 1.04e−11 2.10e−11 1.08e−11 2.01e−06
13 3.59e−09 2.22e−10 3.91e−09 3.91e−09 2.22e−10
14 1.37e−09 7.08e−11 5.66e−10 5.66e−10 7.08e−11
15 2.45e−09 1.03e−09 2.20e−09 2.20e−09 1.04e−09
16 7.32e−07 8.62e−10 1.23e−09 1.25e−09 6.49e−06

Table 9 Relative residuals (c1 	 c2)

# r(xB) r(xBS) r(xMVS) r(xBHP1S) r(xBHP2S) r(xMVBS)

1 3.664e−015 4.50e−016 8.11e−016 3.91e−016 3.06e−016 7.19e−016
2 1.575e−014 4.24e−016 9.48e−016 2.80e−016 3.10e−016 8.32e−016
3 5.872e−014 3.31e−016 7.54e−016 2.60e−016 3.27e−016 6.40e−016
4 1.730e−012 4.59e−016 7.90e−016 3.73e−016 2.57e−016 6.54e−016
5 9.230e−015 3.84e−016 8.21e−016 3.22e−016 3.62e−016 7.77e−016
6 2.798e−014 3.90e−016 1.01e−015 3.30e−016 3.35e−016 7.97e−016
7 3.893e−014 5.87e−016 9.34e−016 4.18e−016 3.07e−016 8.58e−016
8 9.193e−013 3.13e−016 8.64e−016 3.07e−016 3.59e−016 8.09e−016
9 3.179e−015 6.63e−015 8.30e−016 3.76e−016 4.76e−016 8.58e−016

10 7.444e−015 6.43e−015 8.95e−016 2.78e−016 2.91e−016 6.82e−016
11 1.406e−014 3.24e−016 7.58e−016 3.22e−016 3.55e−016 7.60e−016
12 3.054e−012 3.42e−016 1.02e−015 3.55e−016 2.94e−016 7.68e−016
13 3.665e−015 6.54e−011 8.39e−016 2.89e−016 2.99e−016 7.46e−016
14 1.084e−014 4.21e−011 6.91e−016 2.32e−016 4.44e−016 7.68e−016
15 9.280e−014 3.18e−012 8.82e−016 3.73e−016 2.56e−016 6.82e−016
16 7.577e−013 3.45e−016 8.27e−016 2.76e−016 3.65e−016 8.68e−016
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Table 10 Relative residuals and ‘modified’ condition numbers of κ(M̂S) and κ(M̃S)

#
‖w − wMVS‖

‖w‖
‖y − yMVS‖

‖y‖ ε × κ(M̂S) ε × κ(M̃S)

1 4.50e−015 3.84e−015 6.83e−015 4.40e−014
2 9.21e−014 9.02e−014 3.51e−014 9.75e−013
3 4.02e−011 4.02e−011 9.55e−013 7.06e−010
4 2.18e−006 2.18e−006 2.38e−010 8.31e−005
5 2.02e−014 6.96e−015 4.40e−014 2.57e−013
6 3.41e−013 1.70e−013 1.38e−013 4.30e−012
7 1.59e−011 1.58e−011 4.94e−013 3.60e−010
8 5.16e−006 5.16e−006 5.94e−010 2.49e−004
9 1.73e−014 9.10e−016 4.82e−012 2.29e−013

10 1.48e−013 4.33e−015 5.65e−012 1.75e−012
11 2.10e−011 1.09e−011 8.35e−012 1.50e−009
12 3.66e−006 3.65e−006 2.68e−010 9.10e−005
13 1.52e−014 1.05e−015 4.74e−008 7.45e−014
14 6.22e−014 1.71e−015 6.30e−008 2.10e−012
15 5.20e−011 4.30e−014 6.04e−008 1.10e−009
16 5.18e−007 7.65e−009 2.17e−007 1.43e−004

Table 11 Relative errors of the solutions

#
‖xBS − x‖

‖x‖
‖x − xMVS‖

‖x‖
‖x − xBHP1S‖

‖x‖
‖x − xBHP1S‖

‖x‖
‖x − xMVBS‖

‖x‖
1 3.31e−005 2.27e−005 6.18e−005 5.31e−005 4.14e−005
2 9.26e−004 7.72e−004 6.21e−004 8.78e−004 8.50e−004
3 1.34e−001 2.27e−001 1.99e−001 7.75e−002 3.29e−001
4 4.59e+004 1.49e+004 6.37e+003 1.33e+004 9.99e+003
5 3.97e−004 1.49e−004 6.15e−004 6.72e−004 1.06e−004
6 7.13e−003 2.86e−003 6.59e−003 7.58e−003 2.67e−003
7 4.28e−002 7.51e−002 2.70e−002 9.20e−003 5.07e−002
8 2.81e+003 2.83e+004 2.10e+004 9.00e+002 5.33e+004
9 1.29e−001 1.48e−004 1.93e−002 1.93e−002 2.49e−004

10 3.30e−002 5.69e−004 7.96e−003 8.03e−003 1.14e−003
11 4.08e−001 1.44e−001 1.43e+000 1.43e+000 2.28e+000
12 7.29e+003 2.31e+004 1.05e+003 3.58e+003 1.30e+004
13 1.71e+006 9.56e−005 4.42e+001 4.42e+001 1.13e−004
14 1.20e+007 3.39e−004 8.98e+002 8.98e+002 3.58e−004
15 1.45e+005 3.09e−001 2.22e+004 2.22e+004 2.77e−001
16 1.56e+006 3.10e+003 1.69e+006 1.68e+006 9.02e+004
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7. Conclusions

An algorithm for computing the solution of indefinite least squares problems with equality constrained295

is described in the paper. The proposed algorithm is related to the so-called GQR-Cholesky method
proposed in Bojanczyk et al. (2003a), even though it turns out to be slightly more accurate and efficient.
Moreover, the proof of the backward numerical stability is given in a strict sense. A sensitivity analysis,
bringing a new insight in the problem, is also given.
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Appendix

A.1 Congruence transformation lemma

Lemma A.1 Let M := Σ + Δ be an ε-perturbation of Σ := diag{Ip, −Iq}; then there exists a congru-
ence transformation restoring the original matrix: Σ = (I + C)(Σ + Δ)(I + C)T where (I + C) is an
ε-perturbation of the identity.340

Proof. Let the matrices M and C be denoted by

M :=
[

Ip + Δ11 Δ12

ΔT
12 −Iq + Δ22

]
, C :=

[
C11 C12

C21 C22

]
.

If the symmetric perturbation matrix Δ has 2-norm cε 	 1, then an approximate solution is given by
C0 = −ΔΣ/2 since

(I + C0)(Σ + Δ)(I + C0)
T = Σ − 3

4ΔΣΔ + 1
4ΔΣΔΣΔ,

which is O(ε2)-close to the solution. Since the scalar function (1 + δ)−1/2 has a converging Taylor
series for δ < 1, one then shows that C has a converging Taylor series in powers of ΔΣ of which C0 is345

the first term. It then follows that ‖C‖2 = (c/2)ε + O(ε2), which completes the proof. �

A.2 Case q > n − s

Here we describe an algorithm to handle the case q > n − s. Partition A1 as follows:

A1 =
[

A11

A12

] }p
}q ,

and y(1) and f(1) as

y(1) =

⎡
⎢⎢⎢⎢⎣

s1

s2

s3

s4

x1

⎤
⎥⎥⎥⎥⎦

}n − s
}p − n + s
}n − s
}q − n + s
}n − s

, f(1) =

⎡
⎢⎢⎢⎢⎢⎣

b̂1

b̂2

b̂3

b̂4

0

⎤
⎥⎥⎥⎥⎥⎦

}n − s
}p − n + s
}n − s
}q − n + s
}n − s

.

Compute the left upper antitriangular factorization of A11 and A12:350

A11 = Qp

[
Ỹ2

0

] }n − s
}p − n + s

, A12 = Qq

[
Ỹ3

0

] }n − s
}q − n + s

, (A.1)

with Ỹ2 ∈ R
(n−s)×(n−s) nonsingular upper antitriangular, Ỹ3 ∈ R

(n−s)×(n−s) upper antitriangular and
Qp ∈ R

p×p Qq ∈ R
q×q orthogonal, and let

Q(2) =
⎡
⎣Qp

Qq

In−s

⎤
⎦ .
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Then, the linear system (3.8) is transformed into the following equivalent one:

M̃ (1)ỹ(1) = f̃
(1)

, (A.2)

where

M̃ (1) = Q(2)T
M (1)Q(2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

In−s Ỹ2

Ip−n+s 0

−In−s Ỹ3

−Iq−n+s 0

Ỹ T
2 0 Ỹ T

3 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,355

ỹ(1) = Q(2)T
y(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Qp
T

[
s1

s2

]

Qq
T

[
s3

s4

]

x1

⎤
⎥⎥⎥⎥⎥⎥⎦

, f̃
(1) = Q(1)T

f(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Qp
T

[
b̂1

b̂2

]

Qq
T

[
b̂3

b̂4

]

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A.3)

partitioned as y(1) and f(1), respectively. Q11
Then, compute the left upper antitriangular factorization of

[
Ỹ2

Ỹ3

]
= U

[
Y2

0

] }n − s
}n − s

, (A.4)

with U ∈ R
(q+n−s)×(q+n−s) orthogonal and R11 ∈ R

(n−s)×(n−s) nonsingular upper antitriangular. Let us
partition U as follows:360

U =
[

U11 U12

U21 U22

]
,

with U11 ∈ R
(n−s)×(n−s), U12 ∈ R

(n−s)×q, U21 ∈ R
q×(n−s) and U22 ∈ R

q×q, and let

Q(3) =

⎡
⎢⎢⎣

U11 U12

Ip−n+s

U21 U22

Iq

⎤
⎥⎥⎦ .
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Observe that, due to the particular structure of (A.4), U11 and U21 are upper triangular. Then, the linear
system (A.2) is transformed into the following equivalent one:

M (2)y(2) = f(2), (A.5)

where

M (2) = Q(3)T
M̃ (1)Q(3) =

⎡
⎢⎢⎢⎢⎣

X11 X12 R11

Ip−n+s

X12
T X22

−Iq−n+s

RT
11

⎤
⎥⎥⎥⎥⎦ ,

with365

X11 = U11
TU11 − U21

TU21,

X12 = U11
TU12 − U21

TU22, (A.6)

X22 = U12
TU12 − U22

TU22,

y(2) =

⎡
⎢⎢⎢⎢⎣

s̃1

s̃2

s̃3

s̃4

x1

⎤
⎥⎥⎥⎥⎦ = Q(3)T

ỹ(1) =

⎡
⎢⎢⎢⎢⎣

U11
Ts̄1 − U21

Ts̄3

s̄2

U12
Ts̄1 − U22

Ts̄3

s̄4

x1

⎤
⎥⎥⎥⎥⎦ , f(2) = Q(3)T

f̃
(1) =

⎡
⎢⎢⎢⎢⎣

U11
Tb̄1 − U21

Tb̄3

b̄2

U12
Tb̄1 − U22

Tb̄3

b̄4

0

⎤
⎥⎥⎥⎥⎦

and370 [
s̄1

s̄2

]
= QT

p

[
s1

s2

]
,

[
s̄3

s̄4

]
= QT

q

[
s3

s4

]
,

[
b̄1

b̄2

]
= QT

p

[
b̂1

b̂2

]
,

[
b̄3

b̄4

]
= QT

q

[
b̂3

b̂4

]
.

In(M (2)) = In(M (1)) = (q + p − s, 0, p). Therefore, by Gould (1985, Theorem 2.2),

In

⎛
⎝

⎡
⎣Ip−n+s

X22

−Iq−n+s

⎤
⎦

⎞
⎠ = (q, 0, p − n + s).

Hence, X22 ∈ R
(n−s)×(n−s) is symmetric negative definite with Cholesky factorization

X22 = −L22LT
22. (A.7)

The linear system (A.5) can now be solved in the same way the system (3.15) in Step 3 of Section 3
is solved. For the sake of brevity, we omit the details.



�

�

“dru004” — 2014/2/17 — 13:54 — page 26 — #26
�

�

�

�

�

�

26 of 26 N. MASTRONARDI AND P. VAN DOOREN

Q13
Table A1 Computation complexity of the
algorithm described in Appendix A.3

Flops

(3.3) 2s2(n − s/3)

(A.1) 2(n − s)2(p + q − 2(n − s)/3)

(A.4) 2(n − s)3

(A.6) 11/6(n − s)3

In Table A1, we report the number of floating point operation due to compute the most expensive375

parts of this variant of the algorithm, neglecting the terms of lower order. Q12


	Introduction
	Background
	Definitions and notation
	Scaling the problem

	Solution of the augmented linear system
	Stability
	Sensitivity
	Numerical experiments
	First set
	Second set
	Third set

	Conclusions
	Congruence transformation lemma
	Case  q > n-s



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




