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Abstract An algorithm for computing the solution of indefinite least squares prob-
lems and of indefinite least squares problems with equality constrained is pre-
sented. Such problems arise when solving total least squares problems and in
H∞-smoothing.

The proposed algorithm relies only on stable orthogonal transformations reducing
recursively the associated augmented matrix to proper block anti-triangular form.
Some numerical results are reported showing the properties of the algorithm.
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1 Introduction

An algorithm for computing the solution of indefinite least squares (ILS) problems
and of indefinite least squares problems with equality constraints (ILSEC) is de-
scribed in this paper.

Given a matrix A ∈R
(p+q)×n, a vector b ∈ R

p+q , and

�pq =
[

Ip

−Iq

]
, (1.1)

with Ik the identity matrix of order k, the ILS problem is formulated as follows:

min
x

(b − Ax)T �pq(b − Ax). (1.2)

This problem is considered in [2, 3] where some numerical methods for computing
the solution are proposed. The problem arises in solving total least squares problems
[3, 4, 14] and in H∞-smoothing [3, 7]. It is shown in [2] that the ILS problem has
a unique solution if and only if AT �pqA is positive definite. This means that p ≥ n

and that A(1 : p,1 : n) has full column rank n and so has A. Denote the residual by
r = b − Ax, the solution of (1.2) satisfies the augmented system[

�pq A

AT 0

][
s

x

]
=

[
b

0

]
, (1.3)

with �pqs = r. Furthermore, given a matrix B ∈ R
s×n and a vector d ∈ R

s , the
ILSEC problem can be formulated as follows :

min
x

(b − Ax)T �pq(b − Ax) subject to Bx = d. (1.4)

As noted in [1], the ILSEC problem has a solution assuming that the following con-
ditions

rank(B) = s, xT AT �pqAx > 0, x ∈ ker(B) (1.5)

hold. The first condition implies that the constraint equation admits a solution. The
second one, imposing the positive definiteness of AT �pqA on the nullspace of B ,
ensures that (1.4) has a unique solution [1]. Moreover, since AT �pqA has rank at
most p and dim(null(B)) = n − s, then

p ≥ n − s. (1.6)

The solution of the problem (1.4) satisfies the augmented system⎡
⎢⎣

0 0 B

0 �pq A

BT AT 0

⎤
⎥⎦

⎡
⎢⎣

λ

s

x

⎤
⎥⎦ =

⎡
⎢⎣

d

b

0

⎤
⎥⎦ ⇔ My = f, (1.7)

where −λ is the vector of the Lagrange multipliers.
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The problem of computing the solution of (1.7) is considered in [1, 9, 10, 13].
Recently, an algorithm to reduce an indefinite symmetric matrix to a matrix in proper
block anti-triangular form via orthogonal transformations has been described [11].
In this paper we describe an algorithm for computing the solution of both ILS and
ILSEC problems by solving the augmented systems (1.3) and (1.7) using this block
anti-triangular form. The main idea is to first reduce recursively the coefficient matrix
of the augmented system, already in block anti-triangular form to proper block anti-
triangular form via orthogonal transformations. Then the obtained linear system is
solved.

The algorithm described in the paper computes the solution for the general ILSEC
problem. The corresponding algorithm for computing the solution of the ILS problem
can be easily derived from the latter one.

The paper is organized as follows. After having introduced some definitions and
notations in Sect. 2, the algorithm to reduce the augmented matrix to proper block
anti-triangular form via orthogonal transformations is described in Sect. 3, followed
by the numerical results and the conclusions.

2 Notations

– The inertia of a symmetric matrix A ∈ R
n×n is denoted by Inertia(A) =

(n−, n0, n+), where n−, n0 and n+ are the number of negative, zero and posi-
tive eigenvalues of A, respectively, and n− + n0 + n+ = n.

– The identity matrix and the anti-triangular unit matrix of order n are denoted by In

and En, respectively, i.e.,

In =

⎡
⎢⎢⎣

1

. . .

1

⎤
⎥⎥⎦ ∈R

n×n, En =
⎡
⎢⎣

1

...

1

⎤
⎥⎦ ∈R

n×n.

– We denote by aqrl the function computing the lower anti-QR factorization of X ∈
R

m×n, m ≥ n, rank(X) = n, i.e., [Q,L] = aqrl(X), with Q ∈ R
m×m orthogonal

and

X = QL, L =
[

0

L̂

]
=

[
0

] }m − n,

}n,

L̂ ∈ R
n×n lower anti-triangular, i.e., all the entries above the main anti-diagonal

are zero. The matrix L̂ is nonsingular if X has full column rank n. In case m < n,
the matrix L = L̂ is lower anti-trapezoidal, i.e., L̂(i, j) = 0, for i + j < m + 1,

L̂ = [ ]
.

– We denote by aqru the function computing the upper anti-QR factorization of X ∈
R

m×n, m ≥ n, rank(X) = n, i.e., [Q,R] = aqru(X), with Q ∈ R
m×m orthogonal
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and

X = QR, R =
[

R̂

0

]
=

[
0

] }n,

}m − n,

R̂ ∈ R
n×n upper anti-triangular, i.e., all the entries below the main anti-diagonal

are zero. The matrix R̂ is nonsingular if X has full column rank n. In case m < n,
the matrix R = R̂ is upper anti-trapezoidal, i.e., R̂(i, j) = 0, for i + j > n + 1,

R̂ = [ ]
.

– We denote by 0i,j and 0k the i × j zero matrix and the square zero matrix of
order k, respectively. Moreover, we omit the indexes if the size of the matrix can
be deduced from the context.

3 Reduction of the augmented matrix to anti-triangular form

Given a nonsingular indefinite symmetric matrix A ∈ R
n×n with inertia In(A) =

(n−,0, n+), an orthogonal matrix Q can be computed such that Â = QT AQ is in
proper lower block anti-triangular form [11, 12],

Â =
⎡
⎢⎣

0 0 YT

0 X ZT

Y Z W

⎤
⎥⎦

}= min{n−, n+}
}= |n− − n+|
}= min{n−, n+}

(3.1)

with W symmetric, Y nonsingular lower anti-triangular, i.e., all the entries above the
main anti-diagonal are zero, and X = LLT symmetric positive definite if n+ > n−,
X = −LLT symmetric negative definite if n− > n+, L nonsingular lower triangular,
X = [ ] if n− = n+.

In a similar way, an orthogonal matrix Q̂ can be computed such that Â = Q̂T AQ̂

is in proper upper block anti-triangular form [11, 12],

Â =

⎡
⎢⎢⎣

Ŵ Ẑ Ŷ

ẐT X̂ 0

Ŷ T 0 0

⎤
⎥⎥⎦

}= min{n−, n+}
}= |n− − n+|
}= min{n−, n+}

(3.2)

with Ŵ symmetric, Ŷ nonsingular upper anti-triangular, i.e., all the entries below the
main anti-diagonal are zero, and X̂ = L̂L̂T symmetric positive definite if n+ > n−,
X̂ = −L̂L̂T symmetric negative definite if n− > n+, L nonsingular lower triangular,
X = [ ] if n− = n+.

The solution of a linear system with the coefficient matrix in proper lower (upper)
block anti-triangular form can be computed with a cost depending quadratically on
the size of the matrix [11, 12].

The main idea of the algorithm we want to propose is to recursively transform
the nonsingular coefficient matrix of the linear system (1.7), already in block anti-
triangular form, in proper block anti-triangular form by orthogonal transformations.
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Let us partition y and f in (1.7) as follows,

y =

⎡
⎢⎢⎢⎢⎣

λ

s

x1

x2

⎤
⎥⎥⎥⎥⎦

}s,
}p + q,

}n − s,

}s,

with x =
[

x1

x2

]
, f =

⎡
⎢⎢⎢⎢⎣

d

b

0

0

⎤
⎥⎥⎥⎥⎦

}s,
}p + q,

}n − s,

}s.

(3.3)

Let us consider the anti-QR factorization of BT ,[
Q̃(1), L̃1

] = aqrl
(
BT

)
, Q̃(1) = [QN ,QR], (3.4)

Q̃1 ∈ R
n×n orthogonal, with QN ∈ R

n×(n−s) spanning the nullspace of B , QR ∈
R

n×s spanning the range of BT , and L̃1 = [ 0
YT

1
] ∈ R

n×s , Y1 ∈ R
s×s nonsingular

lower anti-triangular. Let

Q(1) =
[

Ip+q+s

Q̃(1)

]
.

Then (1.7) is transformed into the following equivalent linear system,

M(1)y(1) = f(1), (3.5)

with

M(1) = Q(1)T MQ(1) =

⎡
⎢⎢⎢⎢⎣

0 0 0 Y1

0 �pq AQN AQR

0 QT
NAT 0 0

YT
1 QT

RAT 0 0

⎤
⎥⎥⎥⎥⎦

}s,
}p + q,

}n − s,

}s,

y(1) =

⎡
⎢⎢⎢⎢⎣

λ

s

x̃1

x̃2

⎤
⎥⎥⎥⎥⎦ = Q(1)T y =

⎡
⎢⎢⎢⎢⎣

λ

s

Q̃(1)T

[
x1

x2

]
⎤
⎥⎥⎥⎥⎦ , x̃1 ∈ R

n−s , x̃2 ∈R
s , (3.6)

and f(1) = Q(1)T f = f, since, by (3.3), the last n entries of f are zero.
Let A1 = AQN and A2 = AQR. We can already compute x̃2 from the lower

anti-triangular linear subsystem

Y1x̃2 = d (3.7)

in (3.5), and, using b̃ = b − A2x̃2, update the right-hand-side,

f̃(1) =

⎡
⎢⎢⎢⎢⎣

d

b̃

0

0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

d⎡
⎢⎣

b

0

0

⎤
⎥⎦ −

⎡
⎢⎣

A2

0

0

⎤
⎥⎦ x̃2

⎤
⎥⎥⎥⎥⎦ .
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Therefore, we now need to solve the linear system

⎡
⎢⎣

0 �pq A1

0 AT
1 0

YT
1 AT

2 0

⎤
⎥⎦

⎡
⎢⎣

λ

s

x̃1

⎤
⎥⎦ =

⎡
⎢⎣

b̃

0

0

⎤
⎥⎦ . (3.8)

If we first solve the “smaller” linear system

M(2)y(2) = f(2), (3.9)

with

M(2) =
[

�pq A1

AT
1 0

]
, y(2) =

[
s

x̃1

]
, f(2) =

[
b̃

0

]
,

then λ can be computed from YT
1 λ = −AT

2 s.
Since

M(2) =
[

I

AT
1 �pq I

][
�pq

−AT
1 �pqA1

][
I �pqA1

I

]
,

it follows from (1.5) that Inertia(M(2)) = (q + n − s,0,p) and Inertia(M) =
Inertia(M(1)) = (q + n,0,p + s).

We now consider the case q ≥ n − s.
Let us partition A1, s and b̃ as follows,

A1 =
[

A11

A12

] }p,

}q,
, s =

⎡
⎢⎢⎢⎢⎣

s1

s2

s3

s4

⎤
⎥⎥⎥⎥⎦

}p − n + s,

}n − s,

}n − s,

}q − n + s,

b̃ =

⎡
⎢⎢⎢⎢⎣

b̃1

b̃2

b̃3

b̃4

⎤
⎥⎥⎥⎥⎦

}p − n + s,

}n − s,

}n − s,

}q − n + s.

Compute the lower anti-QR factorization of A11, [Q11,L11] = aqrl(A11) and the
QR factorization of A12, [Q12,R12] = qr(A12).

Let

Q̃(2) =
[

Q11

Q12

] }p
}q and Q(2) =

[
Q̃(2)

In−s

]
.

Then (3.9) is transformed into the equivalent linear system

M(3)y(3) = f(3), (3.10)
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where

M(3) = Q(2)T M(2)Q(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ip−n+s 0

In−s L11

−In−s R12

−Iq−n+s 0

0 LT
11 RT

12 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

y(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s(1)
1

s(1)
2

s(1)
3

s(1)
4

x̃1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Q(2)T

⎡
⎢⎢⎢⎢⎢⎢⎣

s1

s2

s3

s4

x̃1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

QT
11

[
s1

s2

]

QT
12

[
s3

s4

]

x̃1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.11)

f(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(3)
1

f(3)
2

f(3)
3

f(3)
4

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Q(2)T

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b̃1

b̃2

b̃3

b̃4

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

QT
11

[
b̃1

b̃2

]

QT
12

[
b̃3

b̃4

]

0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Due to the structure of M(3), it follows from (3.10) that we can compute s(1)
1

and s(1)
4 ,

s(1)
1 = f(3)

1 , s(1)
4 = −f(3)

4 , (3.12)

and “shrink” (3.10) to

M̃(3)ỹ(3) = f̃(3), (3.13)

with

M̃(3) =

⎡
⎢⎢⎣

In−s L11

−In−s R12

LT
11 RT

12 0

⎤
⎥⎥⎦ , ỹ(3) =

⎡
⎢⎢⎣

s(1)
2

s(1)
3

x̃1

⎤
⎥⎥⎦ , f̃(3) =

⎡
⎢⎢⎣

f(3)
2

f(3)
3

0

⎤
⎥⎥⎦ ,

with Inertia(M̃(3)) = (q+n−s,0,p)−(q−n+s,0,p−n+s) = (2(n−s),0, n−s).
Let

Q̃(3) =
[ 1√

2
In−s

1√
2
En−s

− 1√
2
En−s

1√
2
In−s

]
and Q(3) =

[
Q̃(3)

In−s

]
. (3.14)
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Then (3.13) is transformed into the following linear system,

M(4)y(4) = f(4), (3.15)

with

M(4) = Q(3)T M̃(3)Q(3) =
⎡
⎢⎣

En−s Ỹ2

En−s R2

Ỹ T
2 RT

2 0

⎤
⎥⎦ ,

y(4) =

⎡
⎢⎢⎣

s̃(1)
2

s̃(1)
3

x̃1

⎤
⎥⎥⎦ = Q(3)T

⎡
⎢⎢⎣

s(1)
2

s(1)
3

x̃1

⎤
⎥⎥⎦ =

⎡
⎢⎣Q̃(3)T

[
s(1)

2

s(1)
3

]

x̃1

⎤
⎥⎦

=

⎡
⎢⎢⎣

1/
√

2(s(1)
2 − flipud(s(1)

3 ))

1/
√

2(s(1)
3 + flipud(s(1)

2 ))

x̃1

⎤
⎥⎥⎦ , (3.16)

f(4) =

⎡
⎢⎢⎣

f̃(3)
2

f̃(3)
3

0

⎤
⎥⎥⎦ = Q(3)T

⎡
⎢⎢⎣

f(3)
2

f(3)
3

0

⎤
⎥⎥⎦ =

⎡
⎢⎣Q̃(3)T

[
f(3)
2

f(3)
3

]

0

⎤
⎥⎦

=

⎡
⎢⎢⎣

1/
√

2(f(3)
2 − flipud(f(3)

3 ))

1/
√

2(f(3)
3 + flipud(f(3)

2 ))

0

⎤
⎥⎥⎦ ,

and Ỹ2 = 1/
√

2(L11 − En−sR12) and R2 = 1/
√

2(R12 + En−sL11), and the mat-
lab function flipud(x) returning x with the entries flipped in the up-down di-
rection. There are different approaches to reduce the coefficient matrix in (3.10) to
anti-triangular form. Here we describe one based on the multiplication of a sequence
of n − s Householder matrices.

Let

M
(4)
0 = M(4) and C0 =

[
En−s

Ỹ T
2

]
=

[ ]
.

At the i-th step, i = 1,2, . . . , n−s, a Householder transformation H̃i ∈R
2(n−s)×2(n−s)

is applied to Ci−1 = H̃i−1H̃i−2 · · · H̃1C0,

Ci = H̃iCi−1,

such that the rows (n − s) − i + 1, (n − s) − i + 2, . . . , n − s,2(n − s) − i + 1 are
modified and the entries (n− s)− i + 1, (n− s)− i + 2, . . . , n− s of the i-th column
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Fig. 1 Sequence of the matrices M
(4)
i

, i = 0,1, . . . ,4. At the i-th step, i = 1, . . . ,4, the entries to be
annihilated are denoted by ⊗ and the entries to be modified by the orthogonal transformations are in gray

annihilated. Let

Hj =
[

In−s

H̃j

]
, j = 1, . . . , i,

and M
(4)
i−1 = Hi−1Hi−2 · · ·H1M

(4)
0 HT

1 · · ·HT
i−2H

T
i−1. Then

M
(4)
i = HiM

(4)
i−1H

T
i ,

has the rows (columns) 2(n − s) − i + 1,2(n − s) − i + 2,2(n − s),3(n − s) − i + 1
modified and the entries 2(n− s)− i +1,2(n− s)− i +2,2(n− s) of the i-th column
(row) annihilated. This process is graphically depicted in Fig. 1 for n − s = 4.

Let Q̃(4) = H̃ T
1 H̃ T

2 · · · H̃ T
n−s ∈ R

2(n−s)×2(n−s) and Q(4) = HT
1 HT

2 · · ·HT
n−s ∈

R
3(n−s)×3(n−s).
Then the linear system (3.15) is transformed into the equivalent one

M(5)y(5) = f(5), (3.17)

with M(5) having the following structure,

M(5) = Q(4)T M(4)Q(4) =

⎡
⎢⎢⎣

Y (5)

X(5) Z(5)

Y (5)T Z(5)T W(5)

⎤
⎥⎥⎦

}n − s,

}n − s,

}n − s,

Y (5) ∈ R
(n−s)×(n−s) nonsingular lower anti-triangular, X(5),W(5) ∈ R

(n−s)×(n−s)

symmetric, and

y(5) =

⎡
⎢⎢⎣

y(5)
1

y(5)
2

y(5)
3

⎤
⎥⎥⎦ = Q(4)T y(4) =

⎡
⎢⎢⎣

s̃(1)
2

Q̃(4)T

[
s̃(1)

3

x̃1

]
⎤
⎥⎥⎦ ,

f(5) =

⎡
⎢⎢⎣

f(5)
1

f(5)
2

f(5)
3

⎤
⎥⎥⎦ = Q(4)T f(4) =

⎡
⎢⎢⎣

f̃(3)
2

Q̃(4)T

[
f̃(3)
3

0

]
⎤
⎥⎥⎦ .

(3.18)
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Since Inertia(M(5)) = Inertia(M̃(3)) = Inertia(M(4)) = (2(n − s),0, n − s), then,
by [6], the submatrix X(5) of M(5) is symmetric negative definite with Cholesky
factorization X(5) = −L(5)L(5)T , L(5) ∈ R

(n−s)×(n−s) nonsingular lower triangular.
We can now compute the solution of the linear system (3.17) in the following

steps:

– solve the lower anti-triangular linear system

Y (5)y(5)
3 = f(5)

1 ;

– update of the right-hand-side:

⎡
⎢⎢⎣

f̃(5)
1

f̃(5)
2

f̃(5)
3

⎤
⎥⎥⎦ =

⎡
⎢⎣

f(5)
1[

f(5)
2

f(5)
3

]
−

[
Z(5)

W(5)

]
y(5)

3

⎤
⎥⎦ ;

– solve the linear system X(5)y(5)
2 = f̃(5)

2 ,

L(5)t = −f̃(5)
2

L(5)T y(5)
2 = t;

– update of the right-hand-side:

⎡
⎢⎢⎣

f̃(5)
1

f̃(5)
2

f̃(5)
3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f̃(5)
1

f̃(5)
2

f̃(5)
3 − Z(5)T y(5)

2

⎤
⎥⎥⎦ ;

– solve the lower anti-triangular linear system

Y (5)T y(5)
1 = f̃(5)

3 .

From (3.18) we can compute

y(4) =

⎡
⎢⎢⎣

s̃(1)
2

s̃(1)
3

x̃1

⎤
⎥⎥⎦ = Q(4)y(5) =

⎡
⎢⎢⎣

y(5)
1

Q̃(4)

[
y(5)

2

y(5)
3

]
⎤
⎥⎥⎦ .

If one is only interested in the computation of the solution x of (1.4), since x̃2 is
already computed in (3.7), it can be obtained from (3.6) as

[
x1

x2

]
= Q̃(1)

[
x̃1

x̃2

]
.



An algorithm for solving the indefinite least squares problem 211

If one is also interested in the computation of the whole solution of the augmented
system (1.7), from (3.16),

[
s(1)

2

s(1)
3

]
= Q̃(3)

[
s̃(1)

2

s̃(1)
3

]
= 1√

2

[
s̃(1)

2 + flipud(s̃(1)
3 )

s̃(1)
3 − flipud(s̃(1)

2 )

]
.

Furthermore, from (3.11) and (3.12),

s =

⎡
⎢⎢⎢⎢⎣

s1

s2

s3

s4

⎤
⎥⎥⎥⎥⎦ = Q̃(2)

⎡
⎢⎢⎢⎢⎢⎣

s(1)
1

s(1)
2

s(1)
3

s(1)
4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Q11

[
s(1)

1

s(1)
2

]

Q12

[
s(1)

3

s(1)
4

]
⎤
⎥⎥⎥⎥⎦ .

Finally, also λ can be computed from (3.8) by solving the lower anti-triangular linear
system

YT
1 λ = −AT

2 s.

3.1 Computational complexity and implementation details

In Table 1 the number of floating point operations required to compute the solution x
of (1.4) by the proposed algorithm is reported. Observe that, as usual, only the terms
of higher order in n, s, p, q , of the floating point operations are displayed, neglecting
the other terms.

About the storage requirement for the proposed algorithm, we need additional
memory for storing X(5), W(5), and Q̃(4). Of course, instead of storing Q̃(4), we
store the coefficients βi ∈ R and the vectors vi ∈ R

i+1 of the Householder ma-
trices H̃i = In−s − βivivT

i , i = 1, . . . , n − s. Since X(5),W(5) ∈ R
(n−s)×(n−s) and

vi ∈ R
i+1, i = 1, . . . , n − s, and p + q > p,n > n − s, the additional memory re-

quired is negligible with respect to that required to store A and B .
The case q < n − s is very similar but requires ranges for the Householder trans-

formations that are adapted to the trapezoidal shape of R12. Since the formulas are
similar, we moved the description of this case to the appendix. Notice that the com-
plexity and storage requirement are then also reduced.

Table 1 Number of floating
point operations required to
solve the (1.4) problem by the
proposed algorithm

# flops

Y1 2s2(n − s/3)

[A1,A2] 2s(p + q)(n − s)

L11 2(n − s)2(p − (n − s)/3)

R12 2(n − s)2(q − (n − s)/3)

M(5) 4(n − s)3

L(5) (n − s)3
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4 Numerical examples

In this section we report the results of some numerical experiments performed in
Matlab©R2010b with machine precision ε ≈ 2.2 × 10−16. For each example, the
matrix A, given κA, is constructed as A = Q�pq DU , where Q�pq ∈ R

(p+q)×(p+q)

is a �pq -orthogonal matrix, i.e., such that QT
�pq

�pqQ�pq = �pq , generated by the

method described in [8], D ∈ R
(p+q)×n is a diagonal matrix with decreasing diag-

onal values geometrically distributed between 1 and 1/κA, and U ∈ R
n×n is a ran-

dom orthogonal matrix generated by the function gallery(’qmult’, n). It turns
out that the condition number1 of A, κ(A) ≈ κA. Furthermore, A is normalized so
that ‖A‖2 = 1. The matrix B ∈ R

s×n, given its condition number κB , is constructed
by using the matlab command B = gallery(’randsvd’, [s, n], κB), so that ‖B‖2 = 1
and its singular values are geometrically distributed between 1 and 1/κB .

The solution x of problem (1.7), depending on a parameter c1 ∈ R, is chosen as
x = Q̃(1)v1, with v1 = c1 × randn(n,1), where = Q̃(1) ∈ R

n×n is the Q factor
of the anti-QR factorization of BT . Furthermore, partitioning Q̃(1) as in (3.4), the
vector s, depending on a parameter c2 ∈ R, is chosen as s = c2V2 × randn(s,1),
V2 ∈ R

(p+q)×s with orthogonal columns spanning the nullspace of AQN . Hence,
d = Y1v1(n − s + 1 : n), b = �pqs + AQ̃(1)v1 and λ = −YT

1 \(AT
2 s). Then the solu-

tion of the augmented system (1.7) is given by y = [λT , sT ,xT ]T .
We observe that, given the matrices �pq , A ∈ R

(p+q)×n, B ∈ R
s×n, with

‖A‖2,‖B‖2 ≥ 1, the corresponding linear system (1.7) can be always scaled by
the matrix D1 = diag{β

α
Is, Ip+q,αIn}, with α = 1/‖A‖2, β = 1/‖B‖2, to have an

equivalent linear system

MSyS = fS,

where

MS = D1MD1 =
⎡
⎢⎣

0 0 BS

0 � AS

BT
S AT

S 0

⎤
⎥⎦ ,

with AS = αA, BS = βB , so that ‖AS‖2 = ‖BS‖2 = 1, yS = D−1
1 y, and fS = D1f. In

[13] it is shown that the matrix MS is often better conditioned than M .
For all the experiments, we choose n = 50, s = 20, p = 60, q = 40.
Each set of experiments consists of 16 runs, in each of these κA and κB are taken

from the set {1e + 1,1e + 2,1e + 4,1e + 8}. The solution computed by the pro-
posed method, denoted by xNP , is compared to the one computed by matlab using
the command “\”, denoted by xB , and the solutions yielded by the methods GQR-
Cholesky and GHQR described in [1], denoted by xGC and xGH , respectively.

In each table we report the results for matrices A and B with different condition
number. In particular, the condition number of the matrices A, B and M and are

1The condition number of a rectangular matrix A ∈ R
m×n, m ≥ n, rank(A) = n, is defined as

σmax(A)/σmin(A) [5].
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displayed in columns 2, 3 and 4, respectively. Moreover, the relative errors of the so-
lution computed by “\” of matlab, by the GQR-Cholesky method, by the GHQR
method and by the proposed method are reported in columns 5, 6, 7, and 8, respec-
tively. In Table 2 are reported the results for c1 = c2 = 1, in Table 3 the results for
c1 = 1, c2 = 1e4, and in Table 4 the results for c1 = 1e4, c2 = 1.

For each of the compared methods the forward errors are compatible with the
condition of backward stability. Indeed, if these methods would be backward stable
then the relative forward error would be bounded by the condition number κ(M)

times the machine accuracy ε (i.e., the relative backward error). One can check that
this bound indeed holds for all the methods and for all the examples. Nevertheless, the
GQR-Cholesky method, the GHQR method and the proposed one often outperform
the matlab “\”, but with varying success. This is due to the fact that these methods
exploit the structure of the problem. Moreover, we can observe that in Table 4, when
the condition number of A is large, GQR-Cholesky and GHQR behave better than
the proposed algorithm. This is mainly due to the fact that the proposed algorithm
modifies the initial zero blocks in the original structure of the matrix in (1.3). In such
cases GQR-Cholesky and GHQR should be preferred. A new algorithm proposed
in [13], also guarantees the backward error to respect the structure of the augmented
system.

Table 2 Relative errors of the computed solutions with the c1 = 1 = c2 = 1

# κ(A) κ(B) κ(M)
‖x−xB‖2‖x‖2

‖x−xGC‖2‖x‖2

‖x−xGH ‖2‖x‖2

‖x−xNP ‖2‖x‖2

1 2.88e+01 1.00e+01 7.45e+02 2.48e-14 1.13e-14 1.09e-14 1.79e-14

2 1.33e+02 1.00e+01 6.96e+03 1.84e-13 3.88e-14 3.49e-14 5.84e-14

3 1.27e+04 1.00e+01 2.32e+06 6.84e-12 1.73e-11 1.19e-11 1.36e-11

4 2.21e+08 1.00e+01 9.07e+11 3.91e-06 1.95e-06 1.27e-06 1.03e-05

5 4.24e+01 1.00e+02 1.46e+03 1.57e-14 2.38e-14 2.44e-14 4.15e-14

6 1.92e+02 1.00e+02 1.27e+04 7.74e-14 1.83e-13 1.19e-13 1.36e-13

7 2.99e+04 1.00e+02 9.68e+06 7.67e-11 5.14e-11 3.39e-11 1.51e-10

8 1.37e+08 1.00e+02 1.87e+11 8.62e-07 6.95e-07 5.34e-07 3.82e-06

9 2.07e+01 1.00e+04 2.76e+06 1.07e-11 5.07e-13 5.07e-13 8.32e-14

10 2.44e+02 1.00e+04 9.05e+04 1.09e-11 1.36e-11 1.36e-11 2.35e-13

11 1.58e+04 1.00e+04 9.06e+06 2.15e-11 6.78e-11 8.39e-11 9.97e-11

12 1.64e+08 1.00e+04 1.09e+11 4.63e-07 2.75e-07 2.86e-07 3.48e-07

13 1.44e+01 1.00e+08 6.81e+14 2.34e-04 2.34e-09 2.34e-09 5.12e-10

14 3.91e+02 1.00e+08 3.54e+12 3.51e-06 8.44e-08 8.44e-08 4.93e-10

15 2.67e+04 1.00e+08 2.48e+10 1.96e-06 5.84e-07 5.84e-07 7.75e-10

16 2.63e+08 1.00e+08 3.41e+12 9.40e-05 6.25e-04 6.22e-04 3.36e-05
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Table 3 Relative errors of the computed solutions with the c1 = 1, c2 = 1e4

# κ(A) κ(B) κ(M)
‖x−xB‖2‖x‖2

‖x−xGC‖2‖x‖2

‖x−xGH ‖2‖x‖2

‖x−xNP ‖2‖x‖2

1 2.69e+01 1.00e+01 5.82e+02 6.04e-11 4.07e-11 6.26e-11 1.18e-10

2 2.25e+02 1.00e+01 2.29e+04 9.00e-10 1.36e-09 8.20e-10 2.12e-09

3 3.30e+04 1.00e+01 1.39e+07 6.98e-07 3.76e-07 3.86e-07 8.34e-07

4 1.77e+08 1.00e+01 2.18e+12 4.35e-02 1.01e-01 1.01e-01 2.62e-02

5 1.99e+01 1.00e+02 4.30e+02 3.76e-10 1.57e-10 1.58e-10 8.65e-11

6 1.52e+02 1.00e+02 7.24e+03 2.21e-09 2.78e-09 2.93e-09 7.61e-10

7 3.19e+04 1.00e+02 1.56e+07 3.33e-07 4.34e-07 5.32e-07 1.83e-06

8 1.81e+08 1.00e+02 5.55e+11 8.03e-03 7.97e-03 7.37e-03 9.75e-03

9 7.54e+01 1.00e+04 1.94e+05 4.17e-08 3.68e-08 3.68e-08 8.76e-10

1 6.84e+02 1.00e+04 1.12e+05 3.28e-07 4.17e-07 4.21e-07 1.39e-08

11 1.72e+04 1.00e+04 2.22e+06 5.68e-07 4.05e-07 3.88e-07 1.66e-07

12 4.51e+08 1.00e+04 4.53e+12 1.36e-01 4.87e-02 1.06e-01 4.11e-01

13 4.77e+01 1.00e+08 3.65e+13 9.21e-02 1.12e-05 1.12e-05 2.60e-10

14 2.08e+02 1.00e+08 2.78e+13 9.74e-01 2.50e-04 2.50e-04 1.73e-09

15 2.83e+04 1.00e+08 8.03e+09 4.42e-03 4.23e-03 4.23e-03 7.07e-07

16 1.00e+08 1.00e+08 3.99e+11 4.40e-01 5.51e-02 5.27e-02 1.47e-02

Table 4 Relative errors of the computed solutions with the c1 = 1e4, c2 = 1

# κ(A) κ(B) κ(M)
‖x−xB‖2‖x‖2

‖x−xGC‖2‖x‖2

‖x−xGH ‖2‖x‖2

‖x−xNP ‖2‖x‖2

1 8.01e+01 1.00e+01 5.49e+03 5.70e-14 1.18e-14 4.14e-15 8.81e-14

2 3.73e+02 1.00e+01 3.71e+04 5.34e-14 1.52e-14 5.30e-15 2.18e-13

3 1.96e+04 1.00e+01 6.89e+06 5.56e-11 1.57e-13 3.76e-14 1.78e-11

4 1.07e+08 1.00e+01 2.08e+11 2.14e-06 5.95e-11 6.60e-11 2.12e-07

5 2.53e+01 1.00e+02 5.40e+02 9.74e-15 3.95e-15 4.14e-15 4.73e-15

6 3.01e+02 1.00e+02 2.60e+04 9.91e-14 1.11e-14 1.39e-14 1.89e-13

7 1.85e+04 1.00e+02 7.87e+06 9.90e-12 7.06e-14 5.52e-14 3.64e-11

8 2.73e+08 1.00e+02 8.04e+11 2.48e-06 9.97e-11 7.22e-11 1.07e-05

9 3.65e+01 1.00e+04 9.76e+05 2.65e-13 1.10e-13 1.09e-13 4.95e-14

10 3.50e+02 1.00e+04 1.19e+05 3.96e-13 3.90e-13 3.88e-13 3.29e-13

11 1.65e+04 1.00e+04 2.66e+06 9.56e-12 2.48e-13 2.57e-13 6.26e-12

12 2.85e+08 1.00e+04 4.67e+11 2.59e-07 2.42e-10 2.46e-10 3.03e-07

13 3.54e+01 1.00e+08 9.03e+13 4.20e-09 2.03e-10 2.03e-10 6.57e-10

14 1.00e+03 1.00e+08 8.46e+11 1.36e-09 3.06e-09 3.06e-09 3.48e-10

15 1.91e+04 1.00e+08 7.24e+10 1.77e-09 1.61e-09 1.61e-09 3.71e-10

16 1.25e+08 1.00e+08 9.02e+10 2.14e-07 5.38e-09 5.39e-09 3.52e-07
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5 Conclusions

An algorithm for computing the solution of indefinite least squares problems and
indefinite least squares problems with equality constraints is presented. The algorithm
performs a similarity transformation on the associated augmented matrices to block
anti-triangular form, relying only on Givens, and Householder transformations.

Some numerical examples are provided showing that the presented algorithm is
numerically stable.

Appendix

We now describe how the linear system (3.9) can be solved when q < n − s.
Let s partition A1, s and b̃ as follows,

A1 =
[

A11

A12

] }p,

}q,
s =

⎡
⎢⎣

s1

s2

s3

⎤
⎥⎦

}n − s,

}p − n + s,

}q,

b̃ =

⎡
⎢⎢⎣

b̃1

b̃2

b̃3

⎤
⎥⎥⎦

}n − s,

}p − n + s,

}q.

Compute the upper anti-QR factorization of A11, [Q11,R11] = aqru(A11) and A12,
[Q12,R12] = aqru(A12).

Let

Q̃(2) =
[

Q11

Q12

] }p
}q and Q(2) =

[
Q̃(2)

In−s

]
.

Then (3.9) is transformed into the equivalent linear system

M(3)y(3) = f(3), (6.1)

where

M(3) = Q(2)T M(2)Q(2) =

⎡
⎢⎢⎢⎢⎣

In−s R11

Ip−n+s 0

−Iq R12

RT
11 0 RT

12 0

⎤
⎥⎥⎥⎥⎦ ,

y(3) =

⎡
⎢⎢⎢⎢⎢⎣

s(1)
1

s(1)
2

s(1)
3

x̃1

⎤
⎥⎥⎥⎥⎥⎦ = Q(2)T

⎡
⎢⎢⎢⎢⎣

s1

s2

s3

x̃1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

QT
11

[
s1

s2

]

QT
12s3
x̃1

⎤
⎥⎥⎥⎦ , (6.2)
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f(3) =

⎡
⎢⎢⎢⎢⎢⎣

f(3)
1

f(3)
2

f(3)
3

0

⎤
⎥⎥⎥⎥⎥⎦ = Q(2)T

⎡
⎢⎢⎢⎢⎣

b̃1

b̃2

b̃3

0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

QT
11

[
b̃1

b̃2

]

QT
12b̃3
0

⎤
⎥⎥⎥⎦ .

De to the structure of M(3), from (6.1) we can compute s(1)
2 ,

s(1)
2 = f(3)

2 , (6.3)

and “shrink” (6.1) to

M̃(3)ỹ(3) = f̃(3), (6.4)

with

M̃(3) =

⎡
⎢⎢⎣

In−s R11

−Iq R12

RT
11 RT

12 0

⎤
⎥⎥⎦ , ỹ(3) =

⎡
⎢⎢⎣

s(1)
1

s(1)
3

x̃1

⎤
⎥⎥⎦ , f̃(3) =

⎡
⎢⎢⎣

f(3)
1

f(3)
3

0

⎤
⎥⎥⎦ ,

with Inertia(M̃(3)) = (q + n − s,0,p) − (0,0,p − n + s) = (q + n − s,0, n − s).
The matrix M̃(3) can be reduced to upper block antitriangular form by a sequence

of n − s Householder transformations.
Let M̃

(3)
0 = M̃(3).

At step i, i = 1, . . . , q − 1, the matrix M̃
(3)
i−1 = Hi−1 · · ·H1M̃

(3)
0 HT

1 · · ·HT
i−1, is

multiplied to the left by a Householder matrix Hi ∈R
(2(n−s)+q)×(2(n−s)+q) and to the

right by the transpose of Hi , such that

M̃
(3)
i = HiM̃

(3)
i−1H

T
i

has the rows (columns) i, n − s + 1, n − s + 2, . . . , n − s + i modified and the entries
n − s + 1, n − s + 2, . . . , n − s + i in column (row) 2(n − s) + q − i + 1 annihilated.

Furthermore, at step i, i = q, . . . , n−s, the matrix M̃
(3)
i−1 is multiplied to the left by

a Householder matrix Hi ∈ R
(2(n−s)+q)×(2(n−s)+q) and to the right by the transpose

of Hi , such that

M̃
(3)
i = HiM̃

(3)
i−1H

T
i−1

has the rows (columns) i, n− s + 1, n− s + 2, . . . , n− s + q modified and the entries
n− s + 1, n− s + 2, . . . , n− s + q in column (row) 2(n− s)+ q − i + 1 annihilated.

Let Q(3) = HT
1 HT

2 · · ·HT
n−s ∈ R

(2(n−s)+q)×(2(n−s)+q).
Then the linear system (6.4) is transformed into the equivalent one

M(4)y(4) = f(4), (6.5)
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with M(4) having the following structure,

M(4) = Q(3)T M̃(3)Q(3) =

⎡
⎢⎢⎣

W(4) Z(4) Y (4)

Z(4)T X(4)

Y (4)T

⎤
⎥⎥⎦

}n − s,

}q,

}n − s,

Y (4) ∈ R
(n−s)×(n−s) nonsingular upper anti-triangular, X(4),W(4) ∈ R

(n−s)×(n−s)

symmetric, and

y(4) =

⎡
⎢⎢⎣

y(4)
1

y(4)
2

y(4)
3

⎤
⎥⎥⎦ = Q(3)T ỹ(3) = Q(3)T

⎡
⎢⎢⎣

s(1)
1

s(1)
3

x̃1

⎤
⎥⎥⎦ , (6.6)

f(4) =

⎡
⎢⎢⎣

f(4)
1

f(4)
2

f(4)
3

⎤
⎥⎥⎦ = Q(3)T f̃(3) = Q(3)T

⎡
⎢⎢⎣

f(3)
1

f(3)
3

0

⎤
⎥⎥⎦ .

Observe that y(4)
3 = x̃1 and f(4)

3 = 0, because of the structure of Q(3). Since
Inertia(M(4)) = Inertia(M̃(3)) = (q + n − s,0, n − s), then, by [6], the submatrix
X(4) of M(4) is symmetric negative definite with Cholesky factorization X(4) =
−L(4)L(4)T , L(4) ∈ R

q×q nonsingular lower triangular.
We can now solve the linear system (3.17) in the following steps.

– Observe that y(4)
1 = 0, since f(4)

3 = 0. Therefore the y(4)
1 = 0 is the solution of the

upper anti-triangular linear system

Y (4)T y(4)
1 = f(4)

3 ;
– update the right-hand-side

[
f̃(4)
1

f̃(4)
2

]
=

[
f(4)
1

f(4)
2

]
−

[
W(4)

Y (4)T

]
y(4)

1 ;

– solve the linear system X(4)y(4)
2 = f̃(4)

2 ,

L(4)t = −f̃(4)
2

L(4)T y(4)
2 = t;

– solve the upper anti-triangular linear system

Y (4)y(4)
3 = Y (4)x̃1 = f̃(4)

1 − Z(4)y(4)
2 .
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Once x̃1 is computed, the solution x of the problem (1.4) can be obtained as

x = Q̃(1)

[
x̃1

x̃2

]
.

If one is also interested in the computation of the solution of the augmented sys-

tem (1.7), from (6.6) ỹ(3) = [
s(1)
1

s(1)
3
x̃1

] = Q(3)y(4) can be computed and, therefore, y(3),

since, by (6.3), s(1)
2 is already computed. Finally, from (6.2), y(2) = Q(2)y(3) can be

computed.
About the computational complexity of this step, the computation of R11 and

R12 requires 2(n − s)2(p − (n − s)/3) and 2q2(q + n − s) floating point opera-
tions, respectively. Moreover, the computation of Y (4) requires 4q(n − s − q)2 +
2q2(n − s) − 2/3q3 floating point operations.
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