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We present an algorithm for computing a symmetric rank-
revealing decomposition of a symmetric n × n matrix A, as 
defined in the work of Hansen & Yalamov [9]: we factorize the 
original matrix into a product A = QMQT , with Q orthogonal 
and M symmetric and in block form, with one of the blocks 
containing the dominant information of A, such as its largest 
eigenvalues. Moreover, the matrix M is constructed in a form 
that is easy to update when adding to A a symmetric rank-one 
matrix or when appending a row and, symmetrically, a column 
to A: the cost of such an updating is O(n2) floating point 
operations.
The proposed algorithm is based on the block anti-triangular 
form of the original matrix M , as introduced by the authors 
in [11]. Via successive orthogonal similarity transformations 
this form is then updated to a new form A = Q̂M̂Q̂T , 
whereby the first k rows and columns of M̂ have elements 
bounded by a given threshold τ and the remaining bottom 
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right part of M̂ is maintained in block anti-triangular 
form. The updating transformations are all orthogonal, 
guaranteeing the backward stability of the algorithm, and the 
algorithm is very economical when the near rank deficiency 
is detected in some of the anti diagonal elements of the block 
anti-triangular form. Numerical results are also given showing 
the reliability of the proposed algorithm.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Rank-revealing decompositions of dense matrices are widely used in applications such 
as signal and image processing, where accurate and reliable computation of the numer-
ical rank, as well as the numerical range and null space, are required [4,12]. In such 
applications it is crucial to compute in a fast and reliable way an updating of such a 
factorization when a row or a column is appended/deleted to the initial matrix (updat-
ing/downdating) or when the initial matrix is modified by a symmetric rank-one matrix 
(rank-one modification).

For the unsymmetric case many rank-revealing algorithms have been proposed in the 
literature based on the QR factorization and URV decomposition [4,3,1,2,6]. The singular 
value decomposition (SVD) is of course a decomposition that reveals the numerical rank, 
but in general updatings or rank-one modifications cannot be computed in an efficient 
way [9,5].

In many applications the underlying matrix is symmetric [9,5] and it is therefore 
useful to consider rank revealing factorizations exploiting this symmetry. Recently, a new 
factorization of symmetric indefinite matrices A = QMQT , with Q orthogonal and M
block-anti-triangular (BAT) has been introduced [11]. In particular, given a symmetric 
indefinite matrix A ∈ R

n×n with inertia (n−, n0, n+), the following decomposition can 
be computed,

A = QMQT , M =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 Y T

0 0 X ZT

0 Y Z W

⎤
⎥⎥⎥⎦
}n0
}n1
}n2
}n1

(1)

with Q ∈ R
n×n orthogonal, Z ∈ R

n1×n2 , W ∈ R
n1×n1 symmetric, Y ∈ R

n1×n1 nonsingu-
lar lower anti-triangular and X ∈ R

n2×n2 symmetric definite if n2 > 0, i.e., X = ωLLT

with L lower triangular and

ω =
{

1, if n+ > n−
−1, if n+ < n−

.
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When n+ = n−, ω is not defined. Hence, X is symmetric positive definite if ω = 1 and is 
symmetric negative definite if ω = −1. This BAT factorization of a symmetric matrix can 
be efficiently updated/downdated for a symmetric rank-one modification [11]. Moreover, 
a BAT decomposition modified by appending to it one more row and, symmetrically, one 
more column, can be updated in O(n2) floating point operations, where n is the matrix 
order.

In this paper we describe an algorithm that uses the BAT factorization as a pre-
processing step and computes a factorization of the form Q̂M̂Q̂T , where Q̂ is an orthog-
onal matrix and M̂ is a rank-revealing block anti-triangular one,

M̂ =

⎡
⎢⎢⎢⎣
M̂11 M̂T

21

M̂21

0 0 Ŷ T

0 X̂ ẐT

Ŷ Ẑ Ŵ

⎤
⎥⎥⎥⎦ (2)

with ‖M̂11‖2 +‖M̂12‖2 ≈ τ and all the entries of the main diagonal of the anti-triangular 
matrix Ŷ greater than τ in absolute value, with τ a fixed tolerance. Such a decomposition 
can then be exploited in various applications where an approximation of the numerical 
rank and/or range are needed.

The paper is organized as follows. In Section 2 the notations together with known 
results used in the manuscript are listed. In Section 3 the main ideas, on which the 
rank-revealing algorithm is based, are described followed by the section of numerical 
examples and conclusions.

2. Notation, definitions and known results

In this section we describe the notation, definitions and known results used in the 
manuscript.

• Matrices are indicated with upper-case letters A, B, . . . , vectors with bold lower-case 
letters u, v, . . . , scalars with lower-case letters α, β, . . . a, b, . . . Moreover, the element 
i, j of a matrix A is denoted by aij and the subvector of elements i, i + 1, . . . , i + j

of a vector b is denoted by bi:i+j .
• The identity matrix of order n is denoted by In, while the zero matrix of size (m, n)

is denoted by 0mn or simply by 0 if there is no ambiguity.
• The eigenvalues of a symmetric matrix A ∈ R

n×n are denoted by

λi(A), i = 1, . . . , n, with |λi(A)| ≥ |λi+1(A)|, i = 1, . . . , n− 1.

If there is no ambiguity, the eigenvalues of A are denoted simply by λi, i = 1, . . . , n.
• The singular values of a matrix A ∈ R

m×n; m ≥ n are denoted by

σi(A), i = 1, . . . , n, with σi(A) ≥ σi+1(A), i = 1, . . . , n− 1.
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If there is no ambiguity, the singular values of A are denoted simply by σi, i =
1, . . . , n.

• The ith vector of the canonical basis of Rn is denoted by e(n)
i , or just ei if there is 

no ambiguity.
• Depending on the context, a Givens rotation can be either a 2 ×2 orthogonal matrix

[
c s

−s c

]
, c2 + s2 = 1

or the matrix of order n ⎡
⎢⎢⎢⎣
Ii−1

c s

−s c

In−i−1

⎤
⎥⎥⎥⎦ .

• The numerical rank k of A, with respect to the threshold τ , is defined as the number of 
singular values greater than or equal to τ , i.e., σk(A) ≥ τ ≥ σk+1(A) [8, Section 3.1].

• The factorization

A = QMQT , (3)

of a symmetric matrix A ∈ R
n×n, with Q =

[
Q0 QR

]
∈ R

n×n orthogonal, Q0 ∈
R

n×(n−k), QR ∈ R
n×k,

M =
[
M11 M12
MT

12 M22

]
, (4)

M11 ∈ R
(n−k)×(n−k), M22 ∈ R

k×k, M12 ∈ R
k×(n−k), and 0 ≤ k ≤ n, is said to be 

rank-revealing3 [9] if

cond(M22) � σ1/σk and ‖M11‖2
F + ‖M12‖2

F � σ2
k+1 + · · · + σ2

n.

• The inertia of a symmetric matrix A ∈ R
n×n is defined as the triple Inertia(A) =

(n−, n0, n+), where n−, n0 and n+ are the number of negative, zero and positive 
eigenvalues of A, respectively, and n− + n0 + n+ = n [7].

• The numerical inertia of a symmetric matrix A ∈ R
n×n with respect to τ ∈ R, τ > 0, 

is defined as the quadruple Inertia(A, τ) = (nτ , n−, n0, n+), where n0, nτ , n−, and 
n+ are, respectively, the number of zero eigenvalues of A, the number of non zero 
eigenvalues of A that, in absolute value, are smaller than τ , the number of negative 

3 The definition of rank-revealing factorization introduced in [9] has the block matrices in (4) permuted.
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Fig. 1. Application of a Givens rotation to a matrix. (For interpretation of the references to colour in this 
figure, the reader is referred to the web version of this article.)

eigenvalues smaller than −τ , and the number of positive eigenvalues of A greater 
than τ , and nτ + n− + n0 + n+ = n.

• If A and E are two symmetric matrices of order n then

n∑
i=1

(λi(A + E) − λi(A))2 ≤ ‖E‖2
F , (5)

|λi(A + E) − λi(A)| ≤ ‖E‖2, i = 1, . . . , n, (6)

λi(A) + λn(E) ≤ λi(A + E) ≤ λi(A) + λ1(E), i = 1, . . . , n. (7)

The latter result is known as the Wielandt–Hoffman theorem [7, p. 442].
• Let A =

[
a1 · · · an

]
∈ R

m×n be a column partitioning with m ≥ n. If Ar =[
a1 · · · ar

]
, r = 1, . . . , n − 1, then

σ1(Ar+1) ≥ σ1(Ar) ≥ σ2(Ar+1) ≥ · · · ≥ σr(Ar+1) ≥ σr(Ar) ≥ σr+1(Ar+1). (8)

• If A ∈ R
m×n, m ≥ n and ω = ±1, then

|λi(ωATA)| = σ2
i (A), i = 1, . . . , n. (9)

Before considering the rank revealing algorithm, we analyze, in the same fashion de-
scribed in [12], the effects of applying a Givens rotation to a matrix A ∈ R

2×7 with entries 
of different size. The Givens rotation has been chosen to introduce a zero in position (2, 1). 
In general, in the figures of the manuscript we denote by ⊗ the entry of the matrix to 
be annihilated by the multiplication of the Givens rotation while the entries modified by 
the multiplication are in red. Moreover, ×’s, 0’s, and ε’s, respectively represent non zero 
entries, zero entries, and tiny entries (below a fixed threshold τ) of the matrix. Fig. 1
shows the modification of the matrix multiplied by the Givens matrix. In particular,

R.1: a pair of ×’s remains a pair of ×’s;
R.2: a × and a 0 are replaced by a pair of ×’s;
R.3: a × and an ε are replaced by a pair of ×’s;
R.4: a pair of ε’s remains a pair of ε’s;
R.5: an ε and a 0 are replaced by a pair of ε’s.

We observe that two tiny entries remain tiny after the multiplication due to the orthog-
onality of the Givens matrix.
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3. Rank-revealing block anti-triangular factorization

The aim of this section is to describe an algorithm that computes a rank-revealing 
factorization of type (3), after having computed the BAT factorization (1) of a symmetric 
indefinite matrix A = QMQT by the BAT algorithm described in [11].

Without loss of generality, we assume the matrix M nonsingular and the central block 
X positive definite. In fact, the singularities of A are already detected by the reduction 
of the original matrix into BAT form by the BAT algorithm.

When we thus consider the symmetric indefinite matrix

M =

⎡
⎢⎣ 0 0 Y T

0 X ZT

Y Z W

⎤
⎥⎦ }n1
}n2
}n1

(10)

where Z, W are symmetric, Y ∈ R
n1×n1 is lower anti-triangular and X ∈ R

n2×n2

symmetric definite, if one of the entries of the main anti-diagonal of Y is zero, then 
the whole matrix M is singular [11]. The latter entry can be removed from the main 
anti-diagonal of Y , transforming M into the BAT form (1).

In Subsection 3.1 we show that if an entry of the main anti-diagonal of Y is, in absolute 
value, below a fixed threshold τ , then the matrix M can be modified via orthogonal 
similarity transformations into the matrix (2).

Let

M̂ (1) =

⎡
⎢⎢⎢⎢⎣

0 0

0
0 0 Y (1)T

0 X(1) Z(1)T

Y (1) Z(1) W (1)

⎤
⎥⎥⎥⎥⎦ , E =

⎡
⎢⎢⎢⎢⎣
M

(1)
11 M

(1)
21

T

M
(1)
21

⎤
⎥⎥⎥⎥⎦ .

Then, by (7),

λi(M̂ (1)) ≤ λi(M) ≤ λi(M̂ (1)) + τ, i = 1, . . . , n.

Hence, if an entry of the main anti-diagonal of Y in (10) is, in absolute value, less than τ , 
then λn(M) ≤ τ , since λn(M̂ (1)) = 0. Moreover, we have transformed the matrix (10)
into a matrix of the form (4).

3.1. Removal of tiny entries of the main anti-diagonal of Y

As previously discussed, if an entry of the main anti-diagonal of Y in a BAT matrix 
M is, in absolute value, below a fixed threshold τ , then so is λn(M). In this subsection 
we show how to transform such a BAT matrix into form (2). For the sake of brevity, 
we describe the effects of algorithm only on the lower anti-triangular matrix Y . The 
extension of the algorithm to the whole matrix M is straightforward.
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Fig. 2. Removal of tiny entries of the main anti-diagonal of Y by multiplications of Givens rotations and a 
permutation matrix.

Let us suppose the element in position (n1 − k + 1, k) of the main anti-diagonal of 
Y ∈ R

n1×n1 (and, hence, the element (n0 + 2n1 + n2 − k + 1, n0 + k) of M) is less than 
τ in absolute value.

A sequence of Givens rotations Ĝ(a)
i ∈ R

n1×n1 , i = 1, . . . , k−1, are applied to the right 
of Y . Each Ĝ(a)

i acts on the columns k− i and k− i + 1 of Y Ĝ
(a)T
1 · · · Ĝ(a)T

i−1 annihilating 
the element in position (n1 − k + i + 1, k − i). Let

Y := Y Ĝ
(a)T
1 · · · Ĝ(a)T

k−1 . (11)

This step is graphically depicted in Fig. 2, (a) ⇒ (e), for n1 = 5 and k = 4. After this 
step, we observe that, by R.4, all the entries in the (n1 − k + 1)th row of Y , in columns 
1, . . . , k − 1, are less than τ in absolute value. Thus, the row n1 − k + 1 is moved after 
the last row of Y by means of the multiplication by a permutation matrix P (Fig. 2, 
(f) ⇒ (g)). Let

Y := PY. (12)

A second sequence of Givens rotations G̃(b)
i ∈ R

n1×n1 , i = 1, . . . , n1 − 1, is now applied 
to the left of Y . Each G̃(b)

i acts on the rows n1 − i and n1 − i + 1 annihilating the 
entry in position (n1 − i, i + 1) of G̃(b)

i−1 · · · G̃
(b)
1 Y . Let Y := G̃

(b)
n1−1 · · · G̃

(b)
1 Y . This step 

is graphically depicted in Fig. 2, (g) ⇒ (k). We observe that, because of R.4, all the 
entries in the first column of the new Y are less than τ in absolute value. Moreover 
Y (2 : n1, 2 : n1) is in lower anti-triangular form. Let

Q(1) = G
(b)
n1−1 · · ·G

(b)
1 PG

(a)
k−1 · · ·G

(a)
1

and
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Q := QQ(1)T , (13)

where

G
(a)
i =

[
Ĝ

(a)
i

In1+n2

]
, i = 1, . . . , k − 1, G

(b)
i =

[
G̃

(b)
i

In1+n2

]
, i = 1, . . . , n1 − 1.

Then M (1) = Q(1)MQ(1)T and A = QM (1)QT , with M (1) is in form (4) and the subma-
trix M (1)(2 : n, 2 : n) in a BAT form.

Let Y (1) = Y (2 : n1, 2 : n1) and vε = Y (1 : n1, 1), i.e., vε is made by the tiny 
entries of Y moved in its first column. After this step, the matrix M (1) has the following 
structure:

M (1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε vT
ε

Y (1)T

ε

X(1) v
vT γ

Z(1)T

vε Y (1) Z(1) W (1)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

To reduce M (1)(2 : n, 2 : n) in BAT form, we need to analyze if the submatrix

X̂(1) =
[
X(1) v
vT γ

]
(14)

is definite, being X(1) definite.
If X̂(1) is definite, we only need to extend the Cholesky factorization of X(1) =

ωL(1)L(1)T , L(1) ∈ R
n2×n2 , to X̂(1) = ωL̂(1)L̂(1)T , L̂(1) ∈ R

(n2+1)×(n2+1). It turns out 
that

L̂
(1)
1:n2,1:n2

= L(1),

L̂
(1)
n2+1,1:n2

= ω(L(1)\v)T ,

L̂
(1)
n2+1,n2+1 =

√
ωγ − L̂

(1)
n2+1,1:n2

L̂
(1)T
n2+1,1:n2

.

Hence, we set Inertia(M, τ) = (nτ + 1, n− − 1, n0, n+).
If X̂(1) is indefinite, we need to transform it into the following form (see [11, § 2.1])

⎡
⎢⎣ β

X̃(1) ṽ
β ṽT γ̃

⎤
⎥⎦ ,

with X̃(1)
R

(n2−1)×(n2−1). Hence, we set Inertia(M, τ) = (nτ + 1, n−, n0, n+ − 1).
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In both cases, the new matrix M (1) can be computed with O(n2) floating point oper-
ations.

3.1.1. Computational complexity
The multiplication of M by the first sequence of Givens rotations G(a)

i , i = 1, . . . , k − 1, 
requires O(k2) floating point operations, while the multiplication of the new M by the 
second sequence of Givens rotations G(b)

i requires O(n1(n1 + n2)) floating point opera-
tions. The updating of the orthogonal matrix Q in (13) requires O(n1(n1 +n2)) floating 
point operations.

3.2. Completing the rank-revealing BAT factorization

As already emphasized in [4] for the unsymmetric rank-revealing QR factorization, 
even though M has n −k singular values smaller than τ , it is very well possible that less 
than n − k entries in main anti-diagonal of Y are smaller than τ .

Let j ≤ n − k be the numerical rank of (2) detected after having removed the entries 
of Y less than τ in absolute value, i.e., j is the number is of columns of M (1)

11 and M (1)
21 . 

We now show how the full rank-revealing BAT factorization can be retrieved.
The smallest eigenvalue λn−j(M (1)

22 ) and the corresponding eigenvector un−j(M (1)
22 ) of 

M
(1)
22 ∈ R

(n−j)×(n−j), can be computed via inverse iteration, requiring O(n2
1+n2

2) floating 
point operations [10]. In the same paper an algorithm is described for transforming M (1)

22
into M (2)

22 , where

M
(2)
22 = Û (2)TM

(1)
22 Û (2) =

⎡
⎢⎢⎢⎣
λn−j(M (1)

22 ) 0 0 0
0 0 0 Y (2)T

0 0 X(2) Z(2)T

0 Y (2) Z(2) W (2)

⎤
⎥⎥⎥⎦ , (15)

with Û (2) orthogonal such that Û (2)un−j(M (1)
22 ) = ±e(1)

n−j . This can be accomplished 
with O(n2

1 + n2
2) floating point operations [10].

Let

U (2) =
[
Ij

Û (2)

]
.

Then A = Q(2)M (2)Q(2)T , where Q(2) = QÛ (2) and

M (2) =

⎡
⎢⎢⎢⎢⎣
M

(2)
11 M

(2)
21

T

M
(2)
21

0 0 Y (2)T

0 X(2) Z(2)T

Y (2) Z(2) W (2)

⎤
⎥⎥⎥⎥⎦
}j + 1⎫⎪⎬
⎪⎭n− j − 1. (16)
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We observe that the anti-triangular matrix Y (2) has been modified by the orthogonal 
transformation U (2). Hence, it can happen that, if j +1 < n − k, one of the entries in its 
main anti-diagonal is less than τ in absolute value. Hence we reapply over and over the 
procedure to remove the entries on the main anti-diagonal of Y (2) below τ in absolute 
value followed by the computation of the smallest eigenvalue and the corresponding 
eigenvector of the BAT submatrix M (2)

22 and its displacement to the left-up corner of the 
submatrix until the computed eigenvalue is grater than τ in absolute value.

The described method can be summarized in the following algorithm.

Algorithm Rank-Revealing Block Anti-Triangular
% input : A ∈ R

n×n symmetric indefinite,
% τ , the tolerance for the numerical rank
% output : M ∈ R

n×n, rank revealing BAT matrix
% Q ∈ R

n×n orthogonal such that A = QMQT

% kτ , the numerical rank
[M,Q, Inertia] = BAT(A);
kτ = 0;
Inertia(M, τ) = [0, Inertia];
flag = 0;
while flag == 0,

[M,Q, Inertia(M, τ), kτ ] = moveε_out_Y (M, τ, Inertia(M, τ), kτ );
[λ,u] = inv_it(M(kτ + 1 : n, kτ + 1 : n));
if |λ| < τ ,

[M,Q, Inertia(M, τ), kτ ] = moveλ_out(M, τ, Inertia(M, τ), λ,u, kτ );
else

flag = 1;
end

end

The function BAT, given as input the symmetric indefinite matrix A ∈ R
n×n, yields as 

output M, Q ∈ R
n×n, and Inertia, with M in BAT form, Q orthogonal and Inertia the 

inertia of A.
The function moveε_out_Y having as input M , τ , Inertia(M, τ), kτ , with

M =

⎡
⎢⎢⎢⎣
M11 MT

21

M21

0 0 Y T

0 X ZT

Y Z W

⎤
⎥⎥⎥⎦
}kτ⎫⎪⎬
⎪⎭n− kτ

(17)

“moves” all the entries of the anti-diagonal matrix Y smaller than τ in absolute value to 
M21 delivering as output the matrix
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M̂ =

⎡
⎢⎢⎢⎣
M̂11 M̂T

21

M̂21

0 0 Ŷ T

0 X̂ ẐT

Ŷ Ẑ Ŵ

⎤
⎥⎥⎥⎦

}
k̂τ⎫⎪⎬

⎪⎭n− k̂τ ,

where k = k̂τ − kτ are the number of entries of the main anti-diagonal of Y detected, 
the updated orthogonal matrix Q, the updated numerical inertia and rank k̂τ .

The function inv_it, having as input the matrix

M22 =

⎡
⎢⎣ 0 0 Y T

0 X ZT

Y Z W

⎤
⎥⎦ ,

yields its smallest eigenvalue and the corresponding eigenvector. The function
moveλ_out, has as input the matrix (17), λn−k̃τ

(M22), un−k̃τ
(M22). It has, as out-

put, the matrix

M̃ =

⎡
⎢⎢⎢⎢⎢⎣

M̃11 M̃T
21

M̃21

λn−k̃τ
(M22)

0 0 M̃T

0 X̃ Z̃T

Ỹ Z̃ W̃

⎤
⎥⎥⎥⎥⎥⎦

}
k̃τ⎫⎪⎪⎪⎬

⎪⎪⎪⎭
n− k̃τ ,

the updated orthogonal matrix Q, the updated numerical inertia and rank k̂τ .

4. Numerical results

Example 1. The purpose of this section is to illustrate the behavior of the described 
algorithm. All the experiments were carried out in matlab.

We considered 1000 test matrices of size n = 100, constructed as the product 
A = QDQT , where Q is a random orthogonal matrix generated by the function 
gallery(’qmult’, n), D is a diagonal matrix with diagonal elements dii = ±σi, 
i = 1, . . . , n, where the sign is chosen randomly. Furthermore, σi are geometrically dis-
tributed between σ1 and σk and also between σk+1 and σn, with k = 80, σ1 = 1, 
σk = 10−5, σk+1 = 10−7, σn = 10−10. Hence, the numerical rank ρτ with re-
spect τ = 10−6 is 80. Moreover, σk/σk+1 = 100, κ2(Mn−k+1:n,n−k+1:n) = 105 and √∑n

i=k+1 σ
2
i = 1.39 × 10−7. The distribution of the singular values of the considered 

matrices is displayed in Fig. 3 (on the right in logarithmic scale).
After computing the rank-revealing BAT matrix

M =
[
M11 MT

21
M21 M22

]
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Fig. 3. Distribution of the singular values of the matrices considered in Example 1 (log scale, right).

Fig. 4. Number of times (y axis), over 1000 runs, ρτ1 columns of M21 (x axis) are detected by the function
moveε_out. (For interpretation of the references to colour in this figure, the reader is referred to the web 
version of this article.)

with M11 ∈ R
(n−ρτ )×(n−ρτ ), M21 ∈ R

ρτ×(n−ρτ ), M22 ∈ R
ρτ×ρτ , where ρτ is the numerical 

rank wit respect to τ delivered by the algorithm, we construct the matrix

M̄22 =
[
M11 MT

21
M21 0

]
.

We denote by ρτ1 the number of columns of M21 in (2) “detected” by the function
moveε_out and by ρτ2 the number of columns of M21 “detected” by the function
moveλ_out such that ρτ = ρτ1 + ρτ2 .

In the histogram in Fig. 4 the height of each blue column denotes how many times, 
over 1000 runs, the same number of ρτ1 columns of M21 are detected by the function
moveε_out. This means that each time ρτ1 columns are detected by moveε_out, ρτ2 =
n −ρτ −ρτ1 are computed by the function moveλ_out. We observe that, on average, the 
number of columns detected by the function moveε_out is much larger than the number 
of columns detected by the function moveλ_out.
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Fig. 5. Condition numbers of the submatrices M22 (blue) and ratio σ1/σk (red). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Frobrenius norms of the computed submatrices M̄22 (green) and 
√∑n

i=n−k+1 σ2
i (red). (For inter-

pretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

In Fig. 5 the condition numbers of the computed submatrices M22 are depicted in 
blue, while the constant line in red represents the ratio σ1/σk.

For all the considered matrices, the computed numerical rank is ρτ = 80.
In Fig. 6 the Frobrenius norms of the computed submatrices M̄22 are depicted in 

green, while the constant line in red denotes 
√∑n

i=n−k+1 σ
2
i .

5. Conclusions

A rank-revealing algorithm, based on the block anti-triangular factorization of indef-
inite symmetric matrices, has been proposed. The computed factorization can be easily 
updated when added a rank-one matrix or one more row and column is appended. The 
numerical results show the reliability of the proposed algorithm.



JID:LAA AID:13390 /FLA [m1L; v1.160; Prn:8/10/2015; 10:54] P.14 (1-14)
14 N. Mastronardi, P. Van Dooren / Linear Algebra Appl. ••• (••••) •••–•••
References

[1] C.H. Bischof, P.C. Hansen, Structure preserving and rank-revealing QR factorizations, SIAM J. Sci. 
Statist. Comput. 12 (1991) 1332–1350.

[2] C.H. Bischof, P.C. Hansen, A block algorithm for computing rank-revealing QR factorizations, 
Numer. Algorithms 2 (1992) 371–392.

[3] C.H. Bischof, G. Quintana-Ortí, Computing rank-revealing QR factorizations of dense matrices, 
ACM Trans. Math. Software 24 (2) (1998) 226–253.

[4] T.F. Chan, Rank revealing QR factorizations, Linear Algebra Appl. 88–89 (1987) 67–82.
[5] R. Fierro, P. Hansen, Truncated VSV solutions to symmetric rank-deficient problems, BIT 42 (3) 

(2002) 531–540.
[6] R.D. Fierro, P.C. Hansen, Accuracy of TSVD solutions computed from rank-revealing decomposi-

tions, Numer. Math. 70 (4) (1995) 453–471.
[7] G.H. Golub, C.F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Bal-

timore, 2013.
[8] P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inver-

sion, SIAM, Philadelphia, 1998.
[9] P.C. Hansen, P.Y. Yalamov, Computing symmetric rank-revealing decompositions via triangular 

factorization, SIAM J. Matrix Anal. Appl. 23 (2001) 443–458.
[10] N. Mastronardi, P. Van Dooren, Recursive approximation of the dominant eigenspace of an indefinite 

matrix, J. Comput. Appl. Math. 236 (2012) 4090–4104.
[11] N. Mastronardi, P. Van Dooren, The antitriangular factorization of symmetric matrices, SIAM J. 

Matrix Anal. Appl. 34 (2013) 173–196.
[12] G. Stewart, An updating algorithm for subspace tracking, IEEE Trans. Signal Process. 40 (1992) 

1535–1541.

http://refhub.elsevier.com/S0024-3795(15)00564-9/bib626968613A3931s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib626968613A3931s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib626968613A3932s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib626968613A3932s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib626971753A393861s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib626971753A393861s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib6368616E3837s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib46696572726F48616E73656E3032s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib46696572726F48616E73656E3032s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib46696572726F48616E73656E3935s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib46696572726F48616E73656E3935s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib676F766C3A32303133s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib676F766C3A32303133s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib68616E733A3938s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib68616E733A3938s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib48616E73656E32303031s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib48616E73656E32303031s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib4D617374726F6E6172646956616E446F6F72656E32303132s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib4D617374726F6E6172646956616E446F6F72656E32303132s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib4D617374726F6E6172646956616E446F6F72656E32303133s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib4D617374726F6E6172646956616E446F6F72656E32303133s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib4757533932s1
http://refhub.elsevier.com/S0024-3795(15)00564-9/bib4757533932s1

	Rank-revealing decomposition of symmetric indeﬁnite matrices via block anti-triangular factorization
	1 Introduction
	2 Notation, deﬁnitions and known results
	3 Rank-revealing block anti-triangular factorization
	3.1 Removal of tiny entries of the main anti-diagonal of Y
	3.1.1 Computational complexity

	3.2 Completing the rank-revealing BAT factorization

	4 Numerical results
	5 Conclusions
	References


