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THE \bfitQ \bfitR STEPS WITH PERFECT SHIFTS\ast 

NICOLA MASTRONARDI\dagger AND PAUL VAN DOOREN\ddagger 

Abstract. In this paper we revisit the problem of performing a QR step on an unreduced
Hessenberg matrix H when we know an ``exact"" eigenvalue \lambda 0 of H. In exact arithmetic, this
eigenvalue will appear on the diagonal of the transformed Hessenberg matrix \~H and will be decoupled
from the remaining part of the Hessenberg matrix, thus resulting in a deflation. But it is well known
that in finite-precision arithmetic the so-called perfect shift can get blurred and that the eigenvalue \lambda 0

can then not be deflated and/or is perturbed significantly. In this paper, we develop a new strategy
for computing such a QR step so that the deflation is almost always successful. We also show how
to extend this technique to double QR steps with complex conjugate shifts.
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1. Introduction. Computing the eigenvalues of a matrix A is a widely studied
problem in numerical linear algebra. Eigenvalues play an important role in the solution
of explicit differential equations, which can be modeled as

(1.1) \lambda x(t) = Ax(t), x(0) = x0, A \in \BbbR n\times n,

where \lambda stands for the differential operator. The solutions of (1.1) depend heavily on
the Jordan structure of A at each of its eigenvalues (see [11], [4] for more details).

There are two basic steps in the standard computation of the eigenvalues of a
general matrix A. The first step is to reduce A to a Hessenberg matrix H = UAUT

using an orthogonal similarity transformation U . This is a well-understood process,
and its complexity is \scrO (n3) floating point operations. The second step is to perform
a series of QR steps with so-called shifts that are computed during this process and
``converge"" to very good approximations of the eigenvalues of A. If such a shift is
an exact eigenvalue \lambda 0 of A, then, in exact arithmetic, this eigenvalue will appear
on the diagonal of the transformed Hessenberg matrix \~H and will be decoupled from
the remaining part of the Hessenberg matrix, thus resulting in a deflation. But it
is well known that in finite-precision arithmetic the so-called perfect shift can get
blurred and that the eigenvalue \lambda 0 can then not be deflated. In this paper, we develop
a new strategy for computing such a QR step so that the deflation is almost always
successful. The method is based on the preliminary computation of the corresponding
eigenvector x such that the residual (H  - \lambda 0I)x is sufficiently small. The eigenvector
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is then transformed to a unit vector e1 by a sequence of Givens transformations, which
are also performed on the Hessenberg matrix. Notice that what we just described is
a ``backward"" QR step in which we transform the eigenvalue \lambda 0 to the (1,1) position
in \~H, whereas the standard (forward) QR step moves it to the (n, n) position. These
two are in a sense dual to each other, but we chose to describe the backward variant
here because it is more closely related to the calculation of the staircase form [19],
[12], which was the inspiration for this new method.

The calculation of the Jordan form of a given eigenvalue \lambda 0, described in [6], [12],
is perhaps the most direct application of the new perfect shift strategy developed
in this paper. In order to find the complete Jordan structure of a given eigenvalue,
one needs to perform a sequence of deflations with the exact eigenvalue \lambda 0. That
eigenvalue is supposed to be known or computed to sufficiently high accuracy. This
is needed in the calculation of the Drazin inverse of a matrix A [1], but it can also
be applied to the (regular) generalized eigenvalue problem \lambda B  - A to deflate the so-
called infinite eigenvalues. The length of the Jordan chains at the infinite eigenvalue
then defines the so-called index of the corresponding system of differential-algebraic
equations (DAEs), and the deflated system gives the differential subsystem of the
DAEs [13], [10].

Another application is the use of perfect shifts in the implicitly restarted Arnoldi
method [16]. As pointed out in [17, Chapter 5, section 2.1], the polynomial filter
applied in this procedure will purge a shifted eigenvalue \mu only if it can be deflated
after the shifted QR step has been applied. The forward instability of the QR step
with a perfect shift \mu may therefore fail to deflate the eigenvalue \mu , resulting in an
undesired Ritz value \mu being locked in the spectrum of the approximated eigenspace.

The problem of forward instability of perfect shifts also occurs in the symmetric
case, where the Hessenberg matrix is now tridiagonal. This was pointed out in [3],
where the authors also present an alternative deflation technique which requires a two-
phase procedure with both a forward and a backward decomposition of the tridiagonal
matrix. This procedure is shown experimentally to almost always work and is also
implemented in the MRRR method of LAPACK [15], but it is more elaborate than
the new method presented in this paper.

For the sake of simplicity, we consider only real matrices, since the extension to
complex matrices is straightforward. On the other hand, we will consider the case
where the real matrix A has complex conjugate eigenvalues \lambda 0 and \=\lambda 0, and we then
apply a real double shift QR step for these two eigenvalues. We will use the following
notation. Matrices and submatrices are denoted by capital letters, i.e., A,B,H. The
entry (i, j) of the matrix A is denoted by the lowercase letter ai,j . Vectors are denoted
by bold letters, i.e., a,b, . . . . The identity matrix of order n is denoted by In and

its ith column by e
(n)
i , or, if there is no ambiguity, simply by I and ei, respectively.

Generic entries different from zero in matrices or vectors are denoted by ``\times "". The unit
roundoff of a computer is denoted by u and the machine epsilon by \epsilon M . For a machine
using the IEEE floating point standard in double precision, we have u \approx 1.11e-16 and
\epsilon M \approx 2.22e-16. We denote by

Gi =

\left[    
Ii - 1

c  - s
s c

In - i - 1

\right]    ,

\biggl[ 
c  - s
s c

\biggr] \biggl[ 
c  - s
s c

\biggr] T
= I2,

the Givens rotation acting on the consecutive rows/columns i and i+1 of a compatible
matrix.
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The paper is organized as follows. We introduce the deflation problem of a real
eigenvalue in the next section and do its error analysis in section 3. In section 4 we
give sufficient conditions for a perfect shift QR step and give a procedure to compute
it in section 5. We discuss the extension to a double QR step for complex conjugate
eigenvalues in section 6 and give some numerical examples in section 7. We then end
the paper with a number of concluding remarks in section 8.

2. Deflating a real eigenvalue. We will suppose here that we are already
given the Hessenberg form H := UAUT of the matrix A, and that H is unreduced. If
not, the operations described below can be applied to each unreduced submatrix of a
general Hessenberg matrix H.

In exact arithmetic, if \lambda 0 is an eigenvalue of the unreduced matrix H and we
perform one backward QR step with shift \lambda 0, the matrix \~H = QHQT is still in Hes-
senberg form, with its first column equal to \lambda 0e1, and Q is an unreduced Hessenberg
matrix formed by the product of n  - 1 Givens rotations Gn - i, i = 1, . . . , n  - 1.
Unfortunately this may not be the case anymore in finite precision because of the
phenomenon known as ``blurring"" [20] or because of the ill-conditioning of the eigen-
value \lambda 0. The first column of the computed \~H might be far from \lambda 0e1, depending on
the condition number of the eigenvalue \lambda 0.

Therefore, we need to consider alternative constructions of the QR step, for which
we recall the following theorem. Since we want to relate the rotations used in these
different constructions, we will make them unique by choosing the sign of s always
positive when s \not = 0, and choosing c = 1 when s = 0. The results of this theorem are
well known (see, e.g., [14]) but since we rephrase them for the backward QR step, we
repeat it here.

Theorem 2.1. Let H \in \BbbR n\times n be an unreduced Hessenberg matrix with eigenvalue
\lambda 0. Then the following hold:

1. H has a normalized eigenvector x corresponding to \lambda 0,

Hx = \lambda 0x, \| x\| 2 = 1,

which is unique up to a scale factor \pm 1, and has its last component xn

nonzero.
2. There is an ``essentially unique"" sequence of Givens rotations Gn - 1, . . . , G1

whose product
Q := G1G2 \cdot \cdot \cdot Gn - 1

transforms the pair (H,x) to a similar one,

( \~H, \~x) := (QHQT , Qx),

where
\~x = \pm e1, \~He1 = \lambda 0e1, \~H is in Hessenberg form.

3. The Hessenberg matrix (H  - \lambda 0I) is reduced to upper triangular form R with
r1,1 = 0 by the orthogonal transformation QT = GT

n - 1 \cdot \cdot \cdot GT
2 G

T
1 , yielding the

factorization
H  - \lambda 0I = RQ.

Proof. The fact that the normalized eigenvector x is unique (up to a scaling factor
\pm 1) follows from the equation

(H  - \lambda 0I)x = 0, \| x\| 2 = 1,
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where (H  - \lambda 0I) has rank n - 1 since it is unreduced and Hessenberg. For the same
reason, its last component xn is nonzero, since otherwise the whole vector x would be
zero. The reduction of x to \~x = Qx = \pm e1 requires a sequence of Givens rotations,

(2.1) Gi - 1 \in \BbbR n\times n, i = n, n - 1, . . . , 2,

in order to eliminate the entries xi, i = n, n  - 1, . . . , 2, of the vector x. By choosing
the sign of s in these Givens rotations positive, we made them unique. It follows
from (H  - \lambda 0In)x = 0 that

\bigl[ 
hn,n - 1, hn,n - \lambda 0

\bigr] 
[ xn - 1

xn
] = 0. The orthogonality of

these two vectors implies then that the Givens rotation Gn - 1 eliminating xn in the
product Gn - 1x is the transpose of the rotation that eliminates hn,n - 1 in the product
(H  - \lambda 0In)G

T
n - 1. We then obtain the expression

\bigl( 
(H  - \lambda 0In)G

T
n - 1

\bigr) 
(Gn - 1x) =

\left[       
\times \times . . . \times \times 
\times \times . . . \times \times 

. . .
. . .

...
...

\times \times \times 
0 \^\times 

\right]       

\left[       
\times 
...
\times 
\^\times 
0

\right]       = 0,

where the elements \^\times are nonzero. Deflating the last row and column in this expression
yields again an unreduced Hessenberg matrix and a corresponding eigenvector. We can
thus follow the same reasoning by induction to show that the rotations transforming
the vector Qx to \pm e1 are the same rotations transforming (H - \lambda 0In)Q

T to triangular
form:

(H  - \lambda 0I)Q
T = = R.

Since Q is an upper Hessenberg matrix, it then follows that the product

Q(H  - \lambda 0I)Q
T = = \~H  - \lambda 0I

is in Hessenberg form again. This therefore shows that the upper Hessenberg trans-
formation Q transforming the eigenvector x to Qx = \pm e1 is essentially the same as
the one implementing an explicit QR step. For the equivalence between the explicit
QR step and the implicit QR step, we refer the reader to [14].

Finally, since x = \pm QTe1, we also have

Re1 = r1,1e1 = 0, ( \~H  - \lambda 0I)e1 = 0,

from which it follows that \~He1 = \lambda 0e1.

Remark 2.1. The implicit Q theorem is closely related to Theorem 2.1. It implies
that the transformation Q can also be determined from the first rotation Gn - 1 that
computes

(2.2)
\bigl[ 
hn,n - 1, hn,n  - \lambda 0

\bigr] 
GT

n - 1 =
\bigl[ 
0 \times 

\bigr] 
and from the fact that QHQT is still Hessenberg. This is known as ``chasing the
bulge"" [21].



THE QR STEPS WITH PERFECT SHIFTS 1595

Theorem 2.1 also says that there are three alternative ways to determine the
sequence of Givens rotations (2.1):

1. Determine Q from Qx = \pm e1.
2. Determine Q from (H  - \lambda 0I) = RQ.
3. Determine Gn - 1 from (2.2) and the rest of Q from the Hessenberg form of

\~H := QHQT .
Although these three different approaches are equivalent in exact arithmetic, their

numerical implementations are different. In the following two little examples the
eigenvector approach is clearly the most reliable method.

Example 2.1. Let H be the following 3 \times 3 unreduced Hessenberg matrix with
eigenvalue \lambda 0 = 0, given by its factorized form:

H = RQ, R :=

\left[  0 1 0
0

\surd 
\epsilon M 1

0 0
\surd 
\epsilon M

\right]  , Q :=

\left[  \surd 
2  - 1 1\surd 
2 1  - 1

0
\surd 
2

\surd 
2

\right]  /2,

where R is upper triangular, Q is orthogonal and Hessenberg, and \epsilon M is the machine
epsilon in double precision. The product is given by

H =

\left[  0.707106781186548 0.500000000000000  - 0.500000000000000
0.000000010536712 0.707106788637128 0.707106773735967

0 0.000000010536712 0.000000010536712

\right]  ,

and the exact QR step would thus yield the transformed Hessenberg matrix

\~Hexact = QR =

\left[  0 0.707106773735967  - 0.499999992549419
0 0.707106788637128 0.499999992549419
0 0.000000010536712 0.707106791723260

\right]  ,

which clearly yields a deflated problem with the eigenvalue \lambda 0 = 0 in the (1,1) position.
But when recalculating the RQ factorization of H by using two Givens rotations
constructed from the elements of H, we obtain

R1 =

\left[  0.000000001471273 1.000000000000000 0
0 0.000000014901161 1.000000000000000
0 0 0.000000014901161

\right]  ,

and for the resulting product Q1R1,

\~H1 =

\left[  0.000000001040347 0.707106773735967  - 0.499999992549419
0.000000001040347 0.707106788637128 0.499999992549419

0 0.000000010536712 0.707106791723260

\right]  ,

which shows the blurring of the shift. The same is observed when using the implicit
shift strategy, which yields essentially the same updated Hessenberg matrix (they only
differ in the 16th digit)

\~H2 =

\left[  0.000000001040347 0.707106773735967  - 0.499999992549419
0.000000001040347 0.707106788637128 0.499999992549419

0 0.000000010536712 0.707106791723260

\right]  .

On the other hand, if we compute the right eigenvector x of H, it appears to be
(up to \epsilon M accuracy) the vector

x =
\bigl[ 
0.707106781186548  - 0.500000000000000 0.500000000000000

\bigr] T
,
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and the Givens rotations used to transform this vector to e1 appear to implement
correctly the perfect shift QR step, since now we obtain the desired result up to \epsilon M
accuracy:

\~H3 =

\left[  0 0.707106773735967  - 0.499999992549419
0 0.707106788637128 0.499999992549419
0 0.000000010536712 0.707106791723260

\right]  .

We point out that we have put equal to zero all elements below the machine accuracy.

The next example is a symmetric one, which was considered in [3] in order to
analyze the failure of perfect shifts for symmetric matrices.

Example 2.2. Let T be the symmetric tridiagonal matrix

T =

\left[      
2 1
1 1 + \rho \rho 

\rho 2\rho \rho 
\rho 1 + \rho 1

1 2

\right]      .

For \rho \ll 1, the smallest eigenvalue \lambda 1 of T lies in the interval (0, 2\rho ). Let \lambda M
1 be

the smallest eigenvalue of T computed by eig of MATLAB (version 2014b), and let
us try to perform a perfect shift with this approximation \lambda M

1 . For different values
of \rho , we computed one step of the implicit QR method (IQR) obtaining the matrix
T I ; one step of the explicit QR method (EQR) obtaining the matrix TE ; one step
of the ``eigenvector"" method (Eigv) obtaining the matrix TV , where the eigenvector
x1 was computed applying one step of inverse iteration to (T  - \lambda M

1 I5); and one step
of the ``eigenvector"" method with balancing (Eigv B), as explained later in section 5,
obtaining the matrix TB .

In Table 2.1 the difference between the entry (1, 1) and \lambda M
1 and the absolute

value of the entry in position (2, 1) of the computed matrices are displayed. Moreover,
in the last row we give the 2-norm of the part of the matrix obtained applying the
eigenvector method, below the first subdiagonal. If the implementation of the QR step
is successful, the corresponding values should be of the order of \epsilon M\| T\| 2 \approx 5.8132e-16.

For the other eigenvalues of T the deflation is performed in an accurate way with
all the considered methods.

Table 2.1
Numerical errors in the perfect shift strategies IQR, EQR, Eigv, and Eig B.

\rho 10 - 8 10 - 10 10 - 12 10 - 14

IQRs | tI1,1  - \lambda M
1 | 2.2204e-16 8.0483e-12 3.3766e-07 2.5821e-07

IQRs | tI2,1| 7.5101e-09 2.8369e-06 5.8108e-04 1.6067e-02

EQRs | tE1,1  - \lambda M
1 | 4.4000e-16 8.1391e-12 2.8734e-07 2.5467e-06

EQRs | tE2,1| 1.6564e-08 2.8529e-06 5.3604e-04 1.5958e-03

Eigv | tV1,1  - \lambda M
1 | 1.3235e-23 2.5849e-26 8.0779e-28 3.1554e-30

Eigv | tV2,1| 6.0072e-15 2.9330e-17 3.6704e-16 1.2927e-17

Eigv tril(TV , - 2) 3.2725e-15 2.2572e-16 1.3975e-16 4.9607e-17

Eigv B | tB1,1  - \lambda M
1 | 1.3235e-23 2.5849e-26 4.0390e-28 3.1554e-30

Eigv B | tB2,1| 2.1766e-24 5.1699e-26 8.0779e-28 3.1554e-30

Eigv B tril(TB , - 2) 4.8057e-24 8.7043e-26 1.6339e-28 3.5734e-30
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In [3] an alternative method for implementing the perfect shifts was presented
for this example, but it is more involved than the eigenvector approach presented in
this paper. We will also analyze when the eigenvector method can be proved to be
successful.

3. Error analysis of a \bfitQ \bfitR step. In this section we briefly recall the error
analysis of aQR step. For this, we use the model described in [8] for inexact arithmetic
on a machine with unit roundoff u and \gamma n := nu

1 - nu , and we will ignore the effects of
gradual underflow. For the proof, we refer the reader to the appendix.

Theorem 3.1. Let H be an unreduced Hessenberg matrix, and let \lambda 0 be an ar-
bitrary shift. Let the sequence of Givens transformations Gi be constructed from the
explicit QR step, and let Q be the accumulated product of the corresponding exactly
orthogonal transformations \~Gi. Then, in inexact arithmetic, the computed Hessenberg
matrix \~H satisfies

(3.1) Q(H +\Delta H)QT = \~H +\Delta \~H

with
\| \Delta H\| F \leq \gamma cn\| H  - \lambda 0In\| F , \| \Delta \~H\| F \leq \gamma cn\| \~H  - \lambda 0In\| F ,

where the perturbations \Delta H and \Delta \~H are Hessenberg as well and where c is a moderate
constant of the order of 1, provided the rotation parameters are computed via the
standard construction.

Remark 3.1. We point out here that Theorem 3.1 does not apply to the implicit
QR step. For this, one can prove the weaker result that Q(H +\Delta H)QT = \~H, where
the backward error \Delta H satisfies \| \Delta H\| F \leq 2\gamma cn\| H\| F , but without the constraint that
it is Hessenberg. We refer the reader again to the appendix for its proof.

Remark 3.2. Notice that the bounds for \| \Delta H\| F in Theorem 3.1 and Remark 3.1
are comparable, since \| H  - \lambda 0In\| F and \| H\| F are almost equal when the shift \lambda 0 is
selected according to the standard QR procedure.

We will then say that the QR step with shift \lambda 0 is ``perfect,"" provided \~H is
Hessenberg and if, moreover, the (1, 1) and (2, 1) entries of \~H +\Delta \~H satisfy

\~h1,1 + \~\delta 1,1 = \lambda 0, \~h2,1 + \~\delta 2,1 = 0,

or equivalently, up to machine accuracy, one would have

\~h1,1 \approx \lambda 0, \~h2,1 \approx 0.

This would imply that e1 is the eigenvector of \~H+\Delta \~H corresponding to the eigenvalue
\lambda 0 and that the vector x := QTe1 is the exact eigenvector of a perturbed Hessenberg
matrix H +\Delta H corresponding to its exact eigenvalue \lambda 0. Notice that the use of the
forward error \Delta \~H is needed for this interpretation. Usually, a tolerance \tau is specified
for the errors \Delta H and \Delta \~H in (3.1) that is of the order \epsilon M\| H\| F and compatible with
the bound of Theorem 3.1 or Remark 3.1, i.e., \tau \geq \gamma cn max(\| H  - \lambda 0In\| F , 2\| H\| F ).
In what follows, we will insist that the backward error \Delta H is Hessenberg, because we
will be able to construct such a perturbation.

Definition 3.2. A (backward) QR step with shift \lambda 0 is ``perfect"" if it corresponds
to a perturbed Hessenberg matrix H +\Delta H with \| \Delta H\| F \leq \tau for which the (backward)
QR step satisfies (3.1) exactly and for which (\lambda 0,x) is an exact eigenvalue/eigen-
vector pair. Moreover, the property that \lambda 0 is an exact eigenvalue of the transformed
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matrix \~H is made possible by a perturbation \Delta \~H of norm \| \Delta \~H\| F \leq \tau by setting the

elements \~h1,1 and \~h2,1 to the nearby values \lambda 0 and 0, respectively.

Notice that this error analysis does not say if, for a given matrix H, a shift \lambda 0 will
be ``perfect"" and show up in the (1, 1) position of the computed matrix \~H since we
do not know what backward errors correspond to it, and these can affect the forward
errors a lot. One would think that it suffices to have the property

(3.2) \| (H  - \lambda 0In)x\| 2 \approx \epsilon M\| H  - \lambda 0In\| 2,

where x is the presumed eigenvector since it yields a small residual, and where \epsilon M is
the machine epsilon of the computer used. This would imply that the first column of
( \~H  - \lambda 0I) is of the order of \epsilon M\| H  - \lambda 0In\| 2, or in other words

\~h1,1  - \lambda 0 \approx \epsilon M\| H  - \lambda 0In\| 2, \~h2,1 \approx \epsilon M\| H  - \lambda 0In\| 2,

and this would mean that the (1, 1)-element is very close to \lambda 0 and can be deflated.
But clearly this is not what happens in Example 3.1 below, since that condition is
not sufficient there.

Example 3.1. Let H be the following 3\times 3 unreduced Hessenberg matrix,

H :=

\left[  0 1 3
\surd 
\epsilon M

3
\surd 
\epsilon M 0 1
0 3

\surd 
\epsilon M 0

\right]  , \| H\| 2 \approx 1,

and let us suppose that we have an approximate eigenvalue/eigenvector pair (\lambda 0,x),

where \lambda 0 = 0 and x =
\bigl[ 
1 3

\sqrt{} 
\epsilon 2M  - 3

\surd 
\epsilon M

\bigr] T
, with residual

(H  - \lambda 0I)x = \epsilon M

\left[  0
0
1

\right]  .

The \epsilon M -small residual indicates that there exists an \epsilon M -perturbation \Delta that makes
H +\Delta singular, but it is not Hessenberg. For example,

(H +\Delta  - \lambda 0I)x = (H +\Delta )

\left[  1
3
\sqrt{} 

\epsilon 2M
 - 3
\surd 
\epsilon M

\right]  = 0 for \Delta :=

\left[  0 0 0
0 0 0

 - \epsilon M 0 0

\right]  .

If we insist that the perturbation is Hessenberg and with the same eigenvector x, then
we have as minimum norm solution

\Delta H =

\left[  0 0 0
0 0 0

0  - \epsilon M
3
\sqrt{} 
\epsilon 2M

\right]  /

\biggl( 
1 + 3

\sqrt{} 
\epsilon 2M

\biggr) 
, with \| \Delta H\| 2 \approx 3

\sqrt{} 
\epsilon 2M .

So in order to be able to perform a perfect QR step, we must know the eigen-
value/eigenvector pair (\lambda 0,x) to higher accuracy. But what precision is actually
needed?
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4. Sufficient conditions for a perfect shift \bfitQ \bfitR step. In general, we do not
have an exact eigenvalue/eigenvector pair of a given matrix H, but rather just an
estimate of the eigenvector x and corresponding eigenvalue \lambda 0. We have shown in
Example 3.1 that this can be quite problematic in general. But as we will see below,
it suffices to know some of the components of the eigenvector to a higher accuracy.

Let us assume thatH - \lambda 0I is nearly singular in the sense that its smallest singular
value \sigma := \sigma min(H  - \lambda 0I) is equal to \epsilon \| H  - \lambda 0I\| 2, with \epsilon of the order of the machine
accuracy. This suggests that \lambda 0 might be a good choice for a perfect shift. Let us
then choose as approximate eigenvector the vector v minimizing the residual

(4.1) min
v

\| (H  - \lambda 0I)v\| 2, \| v\| 2 = 1.

An optimal solution v to this problem is given by the right singular vector of (H - \lambda 0I):

(4.2) (H  - \lambda 0I)v = u, \| u\| 2 = \sigma := \sigma min(H  - \lambda 0I).

From this, one also finds the minimum norm perturbation \Delta =  - uvT of 2-norm \sigma 
ensuring that v is a true eigenvector of H +\Delta ,

(H +\Delta  - \lambda 0I)v = 0,

but this solution is not Hessenberg in general. In the next lemma we look for the
minimum norm perturbation while imposing this Hessenberg structure, starting from
an arbitrary pair of vectors (u,v) satisfying

(4.3) \| v\| 2 = 1, u = (H  - \lambda 0I)v.

Lemma 4.1. The minimum Frobenius norm solution \Delta H of Hessenberg form

\Delta H =

\left[     
\delta h1,1 \delta h2,1 \cdot \cdot \cdot \delta h1,n

\delta h2,1 \delta h2,2 \cdot \cdot \cdot \delta h2,n

. . . \cdot \cdot \cdot 
...

\delta hn,n - 1 \delta hn,n

\right]     
to the system

(4.4) (H +\Delta H  - \lambda 0I)v = 0, (H  - \lambda 0I)v = u,

where \| v\| 2 = 1 and vn \not = 0, has Frobenius norm equal to

(4.5) \| \Delta H\| F = \| u1/\nu 1, u2/\nu 2, . . . , un/\nu n\| 2,

where
\nu 1 = 1, \nu i = \| [vi - 1, vi, . . . , vn - 1, vn]\| 2, i = 2, . . . , n.

Proof. It follows from (4.4) that

\Delta Hv =  - u,

which is a linear set of equations. It has a minimum Frobenius norm solution which
we solve row by row. Let row i of this equation be

(4.6)

\left[   0, . . . , 0, \bfitdelta \bfith T
i\underbrace{}  \underbrace{}  

min(n,n - i+2)

\right]   v =  - ui,
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with
\bfitdelta \bfith T

i = [\delta hi,i - 1, \delta hi,i, . . . , \delta hi,n],

and let
vT
i = [vi - 1, vi, . . . , vn - 1, vn], \nu i := \| vi\| 2,

be the subvector of v involved in (4.6). Then clearly the minimum norm solution of
this equation is

\bfitdelta \bfith T
i =  - uiv

T
i

\| vi\| 22
, \| \bfitdelta \bfith i\| 2 =

| ui| 
\nu i

for i = 2, . . . , n

and
\bfitdelta \bfith T

1 =  - u1v
T , \| \bfitdelta \bfith 1\| 2 = | u1| .

Since these equations all involve independent rows of \Delta H , the result follows.

Remark 4.1. It is easy to see that the subsequent vector norms \nu i satisfy the
inequalities

\nu n \leq \cdot \cdot \cdot \leq \nu 3 \leq \nu 2 = \nu 1 = 1,

where \nu n = \| 
\bigl[ 
vn - 1 vn

\bigr] 
\| 2. Therefore the Frobenius norm for \Delta H is bounded by

\| \Delta H\| F \leq \| u\| 2
\nu n

,

and hence the Hessenberg perturbation \Delta H is then of the same order as the unstruc-
tured perturbation \Delta if \nu n \approx 1.

Another way to guarantee a bound for \Delta H that is of the same order as the
unstructured error \Delta is to compute the approximate eigenvector x in such a way
that the residual vector (which we now denote by r = (H  - \lambda 0I)x) satisfies stricter
conditions. This is shown in the next theorem.

Theorem 4.2. Let H be an unreduced Hessenberg matrix, and let us have an
estimate of an eigenvalue/eigenvector pair (\lambda 0,x) satisfying

r := (H  - \lambda 0I)x, \| x\| 2 = 1,

where

xT
i := [xi - 1, xi, . . . , xn - 1, xn], \nu i := \| xi\| 2, i = 2, . . . , n,

\nu 1 = 1, \^\epsilon i := ri/\nu i, and \| [\^\epsilon 1, \^\epsilon 2, . . . , \^\epsilon n]\| 2 \leq \epsilon M\| H\| F ,(4.7)

and let the Givens rotations Gi be computed to annihilate element xi+1 for i = n  - 
1, . . . , 1 of the approximate eigenvector x and transforming it to e1. Then the product

Q := \~G1
\~G2 \cdot \cdot \cdot \~Gn - 1,

where each \~Gi is the exactly orthogonal Givens rotation corresponding to Gi, yields a
perfect shift implementation of the QR step applied to H, in the sense that there exist
backward perturbations \Delta H and \Delta x such that

Q(H +\Delta H)QT = \~H, Q(x+\Delta x) = e1, \| \Delta H\| F \leq c\epsilon M\| H\| F , \| \Delta x\| 2 \leq c\epsilon M ,

where c is a constant of the order of 1.
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Proof. We first prove that the Givens rotations constructed to annihilate the
successive entries of xi+1 for i = n  - 1, . . . , 1 of the approximate eigenvector x also
yield the RQ factorization of a nearby Hessenberg matrix, as indicated in Theorem 3.1
and Lemma 4.1. We can solve for the backward perturbation \Delta H recursively by only
considering problems in \BbbR 2. For the first step we define

h :=

\biggl[ 
hn - 1,n

hn,n  - \lambda 0

\biggr] 
, v :=

\biggl[ 
xn - 1

xn

\biggr] 
.

Then our conditions imply that hTv/\| v\| 2 = rn/\nu n = \^\epsilon n \leq \epsilon M\| H\| F . Obviously we
are satisfying the condition of Lemma A.2, and the transformation constructed to
eliminate xn in v can thus be applied safely so that there exists an \^\epsilon n-small pertur-
bation in the bottom row of (H  - \lambda 0I) that yields a ``0"" in the (n, n - 1) position of
the matrix R (the relevant elements are indicated with a \^. ). After applying this first
Givens transformation Gn - 1, the effect of the first \Delta H thus yields

(H +\Delta H  - \lambda 0I) =

\left[       
\times \times . . . \times \times 
\times \times . . . \times \times 

. . .
...

...
\times \times \times 

\^\times \^\times 

\right]       =

\left[       
\times \times . . . . . . \times 
\times \times . . . . . . \times 

. . .
...

\times \times \times 
\^0 \^r

\right]       \~Gn - 1,

where \~Gn - 1 is the exactly orthogonal Givens rotation eliminating xn, and the guar-
anteed bound for \Delta H is

\| \Delta H\| F \leq rn/\nu n = \^\epsilon n \leq \epsilon M\| H\| F .

Since now we also have

\~Gn - 1x =

\left[     
\times 
...
\times 
0

\right]     ,

we need only consider the ``deflated"" problem of order n - 1, which is again in Hessen-
berg form, and the deflated eigenvector x corresponding to it. Taking Lemma A.2 into
account, the next set of Givens rotations Gn - i, i = 2, . . . , n - 1, is computed in a sim-
ilar way, and for each of them the conditions (4.7) are exactly those of Lemma A.2.
Moreover, the squared Frobenius norm of \Delta H grows with \^\epsilon 2n - i = (rn - i/\nu n - i)

2 at
each step. Therefore we obtain by induction that the RQ factorization step of the
QR step yields the required backward bound \| \Delta H\| F \leq c.\epsilon M\| H\| F . The bound
\| \Delta x\| 2 \leq \epsilon M\| x\| 2 = c.\epsilon M follows from the standard analysis of Givens rotations ap-
plied to a vector. One then still needs to perform the Givens transformations on the
left of the matrix R to complete the similarity transformation, but it follows from the
proof of Theorem 3.1 that the increase of \Delta H in this second step is of the same order
as in the first step, and that it stays Hessenberg.

We summarize this so-called eigenvector method below by giving a pseudocode.

1) function [H,\lambda ,x] = eigenvector method(H,x, n);
2) for i = n - 1 :  - 1 : 1,
3) G = givens(xi, xi+1);
4) xi:i+1 = Gxi:i+1;
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5) Hi:i+1,: = GHi:i+1,:;
6) H:,i:i+1 = H:,i:i+1G

T ;
7) end;
8) \lambda = H1,1;

The key point in this theorem is of course that we need an approximate eigenvector
x with a sufficiently small residual, especially in the components where each trailing
subvector xi has small norm \nu i. We explain in the next section how to compute such
an approximation.

5. Computing an eigenvector by scaled inverse iteration. In this section
we show how to compute an approximate eigenvector x of an unreduced Hessenberg
matrix such that its residual r satisfies the conditions (4.7) requested by Theorem 4.2.

The basic idea here is to apply a diagonal scaling (with d \geq 1)

(5.1) D := diag(1, d, d2, . . . , dn - 1)

that ``balances"" the entries of x without affecting too much the norm of H.

Theorem 5.1. Let H be an unreduced Hessenberg matrix, and let (\lambda 0,x) be an
approximate eigenvalue/eigenvector pair. Then there always exists a scaling D of the
form (5.1) such that the transformed pair (HD,xD) := (DHD - 1, Dx) satisfies the
constraints

\| HD\| F \leq d\| H\| F , d := max
\Bigl( 
min[ max

i\leq n - 2
\{ | xi/xn - 1| 1/n - i - 1\} , max

i\leq n - 2
\{ | xi/xn| 1/n - i\} ], 1

\Bigr) 
and such that the largest component of xD is one of its last two components.

Proof. The elements of the scaled vector xD are all nonzero and are given by

xD =
\bigl[ 
x1 dx2 . . . dn - 2xn - 1 dn - 1xn

\bigr] 
.

The element dn - 2| xn - 1| will be larger than all di - 1| xi| for i \leq n - 2 if and only if

dn - 2| xn - 1| \geq di - 1| xi| \Rightarrow dn - i - 1 \geq | xi/xn - 1| \Rightarrow d \geq | xi/xn - 1| 1/n - i - 1.

If xn - 1 = 0, this quantity is clearly infinite and must be dismissed. We also compare
the element dn - 1| xn| to all di - 1| xi| for i \leq n - 2, implying

dn - 1| xn| \geq di - 1| xi| \Rightarrow dn - i \geq | xi/xn| \Rightarrow d \geq | xi/xn| 1/n - i.

Since xn \not = 0 this value for d is finite. If one of these two values for d turns out smaller
than 1, then the largest element of x was already in position n - 1 or n, and we should
then choose d = 1 (i.e., no scaling). If both values are larger than 1, we choose the
best conditioned transformation, i.e., the smallest of both values for d. This explains
the value for d. For the bound on \| HD\| F it suffices to point out that all nonzero
elements of H are scaled by a number smaller than or equal to d.

Remark 5.1. The bound \| HD\| 2 \leq d/(1 - d - 2)\| H\| 2 for the 2-norm follows from
[9, section 5.5.18]. For d \geq 2 this can also be bounded by \| HD\| 2 \leq 4d

3 \| H\| 2. More-
over, in practice we typically have \| HD\| 2 \approx \| H\| 2 and \| HD\| F \approx \| H\| F since only
n  - 1 elements of H are scaled with d, while most of the other elements decrease.
The same obviously holds for the shifted matrices HD  - \lambda 0I and H  - \lambda 0I. Finally,
for matrices of dimension n \geq 10 the values for d are often smaller than 10 since the
scaling on the last two elements of x are of the order of dn - 2.
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Remark 5.2. In order to make sure that the scaling process with the diagonal
transformation D does not introduce too much roundoff noise, we can approximate
d by the nearest power of 2. In that way, the transformation to the scaled system
(HD,xD) := (DHD - 1, Dx), as well as its inverse transformation, can be implemented
without any roundoff.

Lemma 5.2. Let xD be an approximate normalized eigenvector of HD correspond-
ing to eigenvalue \lambda 0, and let the residual rD := (HD  - \lambda 0I)xD be computed with
accuracy \| rD\| 2 \leq \epsilon \| HD  - \lambda 0I\| 2. Then

(5.2) r
(D)
i \leq \| rD\| 2 \leq \epsilon 

\surd 
n\| HD  - \lambda 0I\| 2\nu (D)

i ,

and the rescaled residual r := D - 1rD satisfies the bound

(5.3) ri \leq \epsilon 
\surd 
n\| HD  - \lambda 0I\| 2\nu (D)

i /di - 1.

If we assume d \geq 2 and use the bound

(5.4) \nu 
(D)
i /di - 2 \leq c\nu \nu i,

we obtain the simplified inequality

(5.5) ri \leq (4c\nu 
\surd 
n/3)\epsilon \| H  - \lambda 0I\| 2\nu i

in terms of the rescaled vector x := D - 1xD and its subnorms \nu i.

Proof. We have the result \| rD\| 2 = \| (HD  - \lambda 0I)xD\| 2, for which we have reached
a bound \epsilon \| HD - \lambda 0I\| 2. Because of the scaling technique and the construction of d we
know that there are two ``largest"" elements of xD of equal magnitude. One of them
is in the last two components, and the other one is in the first n - 2 components. As

a consequence of this, we know that the norms \nu 
(D)
i of the subvectors of xD satisfy

1/
\surd 
n \leq \nu 

(D)
i \leq 1,

and hence are approximately of the same size. This then yields the desired bound

(5.2). Since ri = r
(D)
i /di - 1 we also have the bound (5.3). Finally, using the bound

(5.4) and Remark 5.1 yields the inequality (5.5).

Remark 5.3. In the above lemma, we would have hoped for the stronger bound

ri \leq \epsilon \| H  - \lambda 0I\| 2\nu i.

The following remarks encourage us to believe that such a result is often true. One
can expect that xD and rD are both ``balanced"" in some sense, because they result
from a minimization problem with a well-distributed eigenvector and residual:

r
(D)
i \approx \| rD\| 2/

\surd 
n \leq \epsilon \| HD  - \lambda 0I\| 2\nu (D)

i .

This type of inequality is preserved when transforming back ri = r
(D)
i /di - 1 and

\nu i \approx \nu 
(D)
i /di - 2, provided the elements of xD are randomly distributed. Under these

assumptions, one can expect that c\nu \approx 1 and that the factor
\surd 
n in (5.2)--(5.5) can be

dismissed.
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The described algorithm is summarized in the following pseudocode, which uses
the function eigenvector method described earlier.

Proposed algorithm

Input: H, Hessenberg matrix;
(\lambda 0,x), approximation of an eigenpair of H;
\epsilon , the tolerance

Output: \^H, (\^\lambda , \^x), the deflated Hessenberg matrix and the computed eigenpair

1) compute r(H,\lambda 0,x) = (H  - \lambda 0I)x;
2) compute \nu i := \| xi - 1:n\| 2, i = 2, . . . , n, \nu 1 := 1; and \^\epsilon i := ri/\nu i, i = 1, . . . , n,
3) if \| [\^\epsilon 1, \^\epsilon 2, . . . , \^\epsilon n\| 2 \leq \epsilon \| H\| F ,
4) [ \^H, \^\lambda , \^x] = eigenvector method(H,x);
5) else

6) compute d as in \S 4
7) HD = DHD - 1;
8) xD = Dx; xD = xD/\| xD\| 2;
9) \% apply one step of inverse iteration
10) xD = (HD  - \lambda 0I)xD; xD = xD/\| xD\| 2;
11) \^\lambda = xT

DHDxD;
12) \% back to the initial coordinate system
13) xb = D - 1xD; xb = xb/\| xb\| 2;
14) [ \^H, \^\lambda , \^x] = eigenvector method(H,xb);
15) end

6. Complex conjugate roots and the perfect double shift. If a matrix H
has a pair of complex conjugate eigenvalues \lambda 0 = \alpha + \jmath \beta and \=\lambda 0 = \alpha + \jmath \beta , then it still
has a real invariant subspace \scrV of dimension 2, corresponding to the eigenvectors

(6.1) H(v+ \jmath w) = (\alpha + \jmath \beta )(v+ \jmath w), H(v - \jmath w) = (\alpha  - \jmath \beta )(v - \jmath w).

This can indeed be rewritten as a real matrix equation,

(6.2) HV = V \Lambda 0, where V :=
\bigl[ 
v w

\bigr] 
, \Lambda 0 :=

\biggl[ 
\alpha \beta 
 - \beta \alpha 

\biggr] 
,

which defines the invariant subspace \scrV of H spanned by the columns of V , and with
constrained spectrum sp(\Lambda 0) = \{ \lambda 0, \=\lambda 0\} . When choosing a different basis for the same
space, such as an orthonormal basis \^V obtained from the QR decomposition of V ,
one obtains a similar equation with the same constrained spectrum,

(6.3) H \^V = \^V \^\Lambda 0, where \^V := V R - 1, \^\Lambda 0 := R\Lambda 0R
 - 1, sp(\^\Lambda 0) = sp(\Lambda 0).

Finally, \scrV is also in the kernel of the real matrix

H\Lambda 0 := H2  - (\lambda 0 + \=\lambda 0)H + (\lambda 0
\=\lambda 0)In = H2  - 2\alpha H + (\alpha 2 + \beta 2)In

since both eigenvectors v\pm \jmath w are in its kernel and span the real subspace \scrV . Moreover,
if H is an unreduced Hessenberg matrix, H\Lambda 0

has a nonzero second subdiagonal, and
its nullity is at most 2. Therefore its kernel is exactly \scrV . For the same reason, the
bottom 2\times 2 submatrix of \^V is invertible, since otherwise the basis \^V would be rank
deficient.
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We now give different alternative constructions of the double real QR step for
pairs of complex conjugate eigenvalues of a real Hessenberg matrix (see also [5, sec-
tion 7.4.5] for further details). For this purpose, we make the orthonormal basis of \scrV 
essentially unique by applying an additional orthogonal column transformation U to
the orthonormal basis \^V to annihilate the (n, 1)-element in the product \^V U . In other
words, U triangularizes the bottom 2\times 2 submatrix of \^V . Let us denote this product
as X and its columns as x and y:

X := \^V U =
\bigl[ 
x y

\bigr] 
, where xn = 0, xn - 1 \not = 0, yn \not = 0.

It then follows that all such orthonormal bases are unique up to a diagonal sign scaling.
In the subsequent lemma, we again make the Givens rotations unique by choosing the
sign of s always positive when s \not = 0, and c = 1 when s = 0.

Lemma 6.1. Let H \in \BbbR n\times n be an unreduced Hessenberg matrix with complex
conjugate eigenvalues \lambda 0 and \=\lambda 0. Then the following hold:

1. H has an invariant subspace corresponding to the spectrum \lambda 0, \=\lambda 0 with or-
thonormal basis X,

HX = X\Lambda 0, sp(\Lambda 0) = \{ \lambda 0, \=\lambda 0\} , XTX = I2,

which is unique up to a sign scaling S :=
\bigl[ \pm 1 0

0 \pm 1

\bigr] 
and has xn = 0 and nonzero

xn - 1 and yn,

2. There are ``essentially unique"" sequences of Givens rotations G
(x)
n - 2, . . . , G

(x)
1

and G
(y)
n - 1, . . . , G

(y)
2 whose product

(6.4) Q := (G
(y)
2 G

(y)
3 \cdot \cdot \cdot G(y)

n - 1)(G
(x)
1 G

(x)
2 \cdot \cdot \cdot G(x)

n - 2)

transforms the pair (H,X) into a similar one,

( \~H, \~X) := (QHQT , QX),

where

\~X = E1.S :=
\bigl[ 
e1 e2

\bigr] 
.S, \~H \~X = \~X\Lambda 0, \~H is in Hessenberg form.

3. The matrix (H  - \lambda 0I)(H  - \=\lambda 0I) is reduced to upper-triangular form R, with
leading 2 \times 2 block R1,1 = 0, by the ``essentially unique"" column orthogonal
transformation QT , yielding the factorization

H\Lambda 0
= H2  - (\lambda 0 + \=\lambda 0)H + (\lambda 0

\=\lambda 0)In = RQ.

Proof. The fact that the normalized basis X is unique (up to a diagonal sign
scaling factor S) follows from the equation

H\Lambda 0X = 0, XTX = In,

where H\Lambda 0 has rank n - 2 since it has a nonzero second subdiagonal. The only degree
of freedom is a 2\times 2 orthogonal transformation acting on the columns of X, but since
the bottom 2 \times 2 block of X is

\bigl[ xn - 1 yn - 1

0 yn

\bigr] 
with nonzero diagonal, that degree of

freedom reduces to a diagonal sign scaling S.
The reduction of X to \~X = QX = E1S requires a first sequence of Givens

rotations,

(6.5) G
(x)
i - 1 \in \BbbR n\times n, i = n - 1, . . . , 2,
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in order to eliminate the entries xi, i = n - 1, . . . , 2, of the vector x. Then it requires
a second sequence of Givens rotations,

(6.6) G
(y)
i - 1 \in \BbbR n\times n, i = n, . . . , 3,

in order to eliminate the entries yi, i = n, . . . , 3, of the vector y. The only degrees
of freedom for these Givens rotations lie in a left and right diagonal scaling with
elements of modulus 1. After these rotations have been applied, \~X :=

\bigl[ 
\~x \~y

\bigr] 
still

has orthonormal columns, which implies that \~x = \pm e1 and \~y = \pm e2, and hence proves
point 1.

These Givens rotations are the same ones that reduce

H\Lambda 0
QT = = R

to upper-triangular form. To see this, we note that most of the Givens rotations in Q
commute with each other, which implies that we can also write

(6.7) Q := (G
(y)
2 G

(x)
1 )(G

(y)
3 G

(x)
2 ) \cdot \cdot \cdot (G(y)

n - 1G
(x)
n - 2).

After applying the first pair of rotations Q1 := (G
(y)
n - 1G

(x)
n - 2) to X and their transpose

to H\Lambda 0
, we clearly have the pattern

(H\Lambda 0
QT

1 )(Q1X) =

\left[         

\times \times \times . . . \times \times 
\times \times \times . . . \times \times 
\times \times \times . . . \times \times 

. . .
. . .

. . .
...

...
\times \times \times \times 

\^0 \^0 \^\times 

\right]         

\left[         

\times \times 
...

...
\times \times 
\^\times \^\times 
\^0 \^\times 
\^0 \^0

\right]         
= 0

since the bottom row of (H\Lambda 0
QT

1 ) must be orthogonal to (Q1X) (the relevant elements
are indicated with a \^. ). Repeating this recursively toQi - 1 \cdot \cdot \cdot Q1X with two rotations

Qi := (G
(y)
n - iG

(x)
n - i - 1) for i = 2, . . . , n - 2 shows indeed thatH\Lambda 0

QT = R must be upper
triangular, except for the first two columns of R. These must be zero because of the
orthogonality constraint with \~X, which completes the proof of point 3.

Finally, let us apply Q1 as a similarity to the Hessenberg matrix H. Then we
have the following pattern of nonzero elements:

Q1HQT
1 =

\left[             

\times \times . . . \times \times \times \times \times 
\times \times . . . \times \times \times \times \times 

. . .
. . .

...
...

...
...

...
\times \times \times \times \times \times 

\times \times \times \times \times 
\times \times \times \times 
\times \times \times \times 
\^h \^h \^h \times 

\right]             
, Q1X =

\left[             

\times \times 
\times \times 
...

...
\times \times 
\^\times \^\times 
\^\times \^\times 
\^0 \^\times 
0 0

\right]             
= 0,

which shows a 4 \times 4 bulge at the bottom of the (transformed) Hessenberg matrix
Q1HQT

1 . But because of the equality

(Q1HQT
1 )(Q1X) = (Q1X)\Lambda 0,
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it follows that the submatrices marked with a \^. are orthogonal:

\bigl[ 
\^h \^h \^h

\bigr] \left[  \^\times \^\times 
\^\times \^\times 
\^0 \^\times 

\right]  = 0.

Therefore, the next matrix Q2 = G
(y)
n - 2G

(x)
n - 3, which acts on the right factor, automat-

ically annihilates the first two elements of the left factor as well:

(6.8) (
\bigl[ 
\^h \^h \^h

\bigr] 
QT

2 )

\left(  Q2

\left[  \^\times \^\times 
\^\times \^\times 
\^0 \^\times 

\right]  \right)  =
\bigl[ 
0 0 \^h

\bigr] \left[  \^\times \^\times 
0 \^\times 
0 0

\right]  = 0.

It then follows that in Q2Q1HQT
1 Q

T
2 the bulge has moved up one row and column.

Repeating this argument for all transformations Qi = G
(y)
n - iG

(x)
n - i - 1 then completes

the proof.

The equivalence of points 1 and 2 is well known in the literature, but since we will
now analyze backward error bounds in these transformations, it was important to give
these relations in more detail. The transformation described in (6.8) will especially
play an important role in this analysis.

6.1. Backward errors in the double \bfitQ \bfitR step. In this subsection, we give
the double shift analogue of the discussion given in section 3.

Theorem 6.2. Let H be an unreduced Hessenberg matrix, and let \lambda 0 and \=\lambda 0 be a

pair of complex conjugate shifts. Let the sequence of Givens transformations G
(x)
i and

G
(y)
i be constructed from the implicit double QR step, and let Q be the accumulated

product of the corresponding exactly orthogonal transformations \~G
(x)
i and \~G

(y)
i . Then

in inexact arithmetic, the computed Hessenberg matrix \~H satisfies

Q(H +\Delta H)QT = \~H,

with
\| \Delta H\| F \leq 4\gamma cn\| H\| F ,

where c is a moderate constant of the order of 1, provided the rotation parameters are
computed via the standard construction.

We will then say that the double QR step with shifts sp(\Lambda 0) = \{ \lambda 0, \=\lambda 0\} is ``per-
fect,"" provided \~H is Hessenberg, and moreover the leading two columns of \~H satisfy,
up to machine accuracy, \left[  \~h1,1

\~h1,2

\~h2,1
\~h2,2

0 \~h3,2

\right]  \approx 
\biggl[ 

S\Lambda 0S
0 0

\biggr] 
,

which we can ``absorb"" in a forward error \Delta \~H . This would imply that E1 spans an
invariant subspace of

(6.9) \~H +\Delta \~H = Q(H +\Delta H)QT

corresponding to the spectrum of \Lambda 0 and that the span of X := QTE1 is the exact
invariant subspace of a perturbed Hessenberg matrix H + \Delta H corresponding to the
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spectrum of \Lambda 0. Notice that the use of the forward error \Delta \~H is needed for this
interpretation. Usually, a tolerance \tau is specified for the errors \Delta H and \Delta \~H that is of
the order of \epsilon M\| H\| F and compatible with the bound of Theorem 6.2.

This is again a backward error analysis, and it does not say anything about the
forward errors, but it implies the following, where E1 :=

\bigl[ 
e1 e2

\bigr] 
.

Definition 6.3. A double (backward) QR step with shifts \lambda 0 and \=\lambda 0 is ``perfect""
if it corresponds to a perturbed Hessenberg matrix H+\Delta H with \| \Delta H\| F \leq \tau for which
the (backward) QR step satisfies (6.9) exactly and for which (\Lambda 0, QE1) is an exact
``spectral pair."" Moreover, the property that \lambda 0 and \=\lambda 0 are an exact eigenvalue pair
of the transformed matrix \~H is enforced if we set the leading 2 \times 2 block and \~h3,2 to
the nearby values S\Lambda 0S and 0, respectively.

Notice that here again we constrain ourselves to a Hessenberg backward error
\Delta H , because we show how to construct such a perturbation.

6.2. Structured backward errors in the double \bfitQ \bfitR step. We now derive
bounds for the structured backward errors. For this, we assume that we have com-
puted an approximate basisX for an invariant subspace ofH with presumed spectrum
(\lambda 0, \=\lambda 0):

HX  - X\Lambda 0 = U, XTX = I2, \| U\| F \ll 1.

Lemma 6.4. The minimum Frobenius norm solution \Delta H of Hessenberg form

\Delta H =

\left[     
\delta h1,1 \delta h2,1 \cdot \cdot \cdot \delta h1,n

\delta h2,1 \delta h2,2 \cdot \cdot \cdot \delta h2,n

. . . \cdot \cdot \cdot 
...

\delta hn,n - 1 \delta hn,n

\right]     
to the system

(6.10) (H +\Delta H)X  - X\Lambda 0 = 0, HX  - X\Lambda 0 = U,

where XTX = I2, has Frobenius norm bounded by

\| diag(\nu 1, \nu 2, . . . , \nu n) - 1U\| F ,

where
\nu 1 = 1, \nu i = \sigma minX(i - 1 : n, :), i = 2, . . . , n.

Proof. It follows from (6.10) that

\Delta HX =  - U,

which is a linear set of equations. It has a minimum Frobenius norm solution which
we can solve row by row. Let row i of this equation be

(6.11)

\left[   0, . . . , 0, \bfitdelta \bfith T
i\underbrace{}  \underbrace{}  

min(n,n - i+2)

\right]   X =  - uT
i ,

where uT
i denotes the ith row of U , and

\bfitdelta \bfith T
i = [\delta hi,i - 1, \delta hi,i, . . . , \delta hi,n].
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Since \nu i is defined as the smallest singular value of the submatrix X(i  - 1 : n, :)
involved in (6.11), clearly the minimum norm solution for this row satisfies

\bfitdelta \bfith T
i =  - uT

i X(i - 1 : n, :)+, \| \bfitdelta \bfith i\| 2 \leq \| ui\| 2/\sigma minX(i - 1 : n, :),

where X(i  - 1 : n, :)+ denotes the pseudoinverse of that matrix and has 2-norm
bounded by the inverse of its smallest singular value. Notice that for rows 1 and 2 the
matrix X is complete and its smallest singular value is 1. Going over to the Frobenius
norm of \Delta H then completes the proof.

As was also shown in the single real shift case, we now give sufficient conditions
for attaining a satisfactory result for the backward structured error.

Theorem 6.5. Let H be an unreduced Hessenberg matrix, and let us have an
estimate of an invariant subspace X with constrained spectrum (\lambda 0, \=\lambda 0) satisfying

U := (H  - \lambda 0I)X  - X\Lambda 0, XTX = I2,

where

\| diag(\nu 1, \nu 2, . . . , \nu n) - 1U\| F \leq \epsilon \| H\| F ,(6.12)

\nu 1 = 1, \nu i = \sigma minX(i - 1 : n, :), i = 2, . . . , n,

and let the Givens rotations G
(x)
i and G

(y)
i be computed to annihilate the successive

entries of xi+1 for i = n  - 2, . . . , 1 and yi+1 for i = n  - 1, . . . , 2 of the approximate
invariant subspace basis vectors x and y, and transforming them into e1 and e2. Then
the product

Q := ( \~G
(y)
1 \cdot \cdot \cdot \~G(y)

n - 1)(
\~G
(x)
1 \cdot \cdot \cdot \~G(x)

n - 2)

of the corresponding exactly orthogonal Givens rotations yields a perfect shift imple-
mentation of the double QR step applied to H, in the sense that there exist backward
perturbations \Delta H and \Delta X such that

Q(H+\Delta H)QT = \~H, Q(X+\Delta X)=
\bigl[ 
\pm e1 \pm e2

\bigr] 
, \| \Delta H\| F \leq c\epsilon M\| H\| F , \| \Delta X\| F \leq c\epsilon M ,

where c is a constant of the order of 1.

Proof. The proof is completely analogous to that for the single real shift case but
relies this time on Lemma A.3.

The key point in this theorem is again that we need an approximate basis X for
an invariant subspace, with a sufficiently small residual, especially in the components
where each trailing submatrix of X has small values \nu i. Such a basis can again
be obtained using a diagonal scaling technique very similar to the one explained in
section 5, except that now we apply a diagonal scaling,

(6.13) D := diag(1, d, d2, . . . , dn - 2, dn - 2),

where d \geq 1, that ``balances"" the row vectors of X without affecting too much the
norm of H.

Theorem 6.6. Let H be an unreduced Hessenberg matrix, and let X be a basis of
an approximate invariant subspace with constrained spectrum \Lambda 0. Then there always
exists a scaling D of the form (6.13) such that the transformed pair (HD, XD) :=
(DHD - 1, DX) satisfies the constraints

\| HD\| F \leq d\| H\| F , d := max( max
i\leq n - 2

\{ (ni/\sigma )
1/n - i - 1\} , 1),
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where ni := \| [xi, yi]\| 2 and \sigma := \sigma min

\bigl[ xn - 1 yn - 1

0 yn

\bigr] 
and such that the transformed

matrix XD has a bottom 2\times 2 block with \sigma min larger than or equal to the row norms
from 1 to n - 2.

Proof. The proof is very similar to that in section 5 by reasoning on the vector\bigl[ 
n1 dn2 . . . dn - 3nn - 2 dn - 2\sigma 

\bigr] 
and using \sigma \not = 0. The fact that the last two rows are lumped together in a 2\times 2 block
explains why the diagonal scaling D has its last two powers of d equal.

It then follows from this scaling that the smallest singular value \sigma 
(i)
min of the

submatrices DX[i : n, :] are all bounded as follows:

\sigma 
(n - 1)
min \leq \sigma 

(i)
min \leq 

\surd 
n\sigma 

(n - 1)
min , where \sigma 

(n - 1)
min = dn - 2\sigma .

The proof of this relies on the fact that the scaled vector norms dini are all smaller than

or equal to \sigma 
(n - 1)
min and that when appending rows DX[i : n - 2, :] to DX[n - 1 : n, :] to

form DX[i : n, :], the squared singular values all grow, but not more than the squared
Frobenius norm of the added rows:

\sigma 2
minDX[n - 1 : n, :] \leq \sigma 2

minDX[i : n, :] \leq \| DX[i : n - 2, :]\| 2F + \sigma 2
minDX[n - 1 : n, :].

As a result we can hope again (as in Lemma 5.2) that computing the invariant sub-
space for this scaled matrix will go well and that transforming it back by inverting
the scaling again will yield an invariant subspace for which the residual satisfies the
desired bound

\| diag(\nu 1, \nu 2, . . . , \nu n) - 1U\| F \leq \epsilon .

Guaranteeing such a result is now much harder, even under mild conditions. Therefore
we will illustrate this scaling technique in the numerical section.

7. Numerical examples. In this section we illustrate our new perfect shift
QR step implementation using the preliminary computation of an eigenvector or
eigenspace of the eigenvalue(s) that need to be deflated. All computations were
done in MATLAB (version 2014b) in double precision with a machine epsilon of
\epsilon M \approx 2.22e-16. In all the examples, we used the normalized eigenvector x or the nor-
malized eigenspace basis X to construct the Givens rotations. As a consequence, the
deflation of the eigenvalues is ensured. What is not automatically guaranteed is that
the transformed matrixH is again Hessenberg, and this is verified by looking at the rel-

ative norm \| tril(H, - 2)\| F

\| H\| F
. To this end we define the functions r(H,\mu ,x) = (H - \mu I)x

and b(H) = \| tril(H, - 2)\| F , i.e., the residual and the Frobenius norm of the part of
the matrix H below the first subdiagonal.

We first show an example from a test case described in [6, Appendix B] arising in
a problem of surface subdivision. The aim in this problem is to compute the Jordan
chains at the eigenvalue \lambda 0 = 0 of a given matrix A.

Example 7.1. Let A \in \BbbR 18\times 18 be the second of the two matrices considered in
[6, Appendix B]. The 2-norm of A is about 2, and its two smallest singular values,
computed by MATLAB, are \sigma 17 = 9.16 \times 10 - 11 and \sigma 18 = 2.57 \times 10 - 16, while
the smallest eigenvalue \lambda 18 computed by eig of MATLAB has modulus equal to
3.3473\times 10 - 5. This is to be expected since the condition number of that eigenvalue
is \kappa (\lambda 18) = 1.8088 \times 1011. Let H be the similar Hessenberg matrix computed via



THE QR STEPS WITH PERFECT SHIFTS 1611

Table 7.1
Results obtained by applying to H the eigenvector method and the balanced eigenvector method.

\| r(H, \~\lambda , \~x)\| 2 b( \~H) | \~h21| \| r(H, \^\lambda , \^x)\| 2 b( \^H) | \^h21| 
3.5335e-15 1.3459e-04 5.6362e-16 4.7075e-16 1.2739e-16 4.6847e-16

orthogonal transformation [5, pp. 378--379]. Let \~x \in \BbbR 18 be a normalized vector
obtained by applying one step of inverse iteration with zero shift to H with a random
initial guess, \~\lambda = \~xTH\~x, and let \^H, \^\lambda , \^x be, respectively, the matrix and the estimated
eigenvalue and eigenvector obtained by applying the balancing eigenvector method.

The results are displayed in Table 7.1.
For this example, the value of d, the coefficient computed to construct D as in

(5.1), is 16. Notice that the matrix computed by the eigenvector method is far from a
Hessenberg matrix, while the part below the first subdiagonal of the matrix computed
by the balanced eigenvector method is negligible and the entries (1, 1) and (2, 1) are
of the order of the machine precision.

For the second example, we refer back to Example 2.2, and more precisely to the
use of balancing in this example. It can be seen from this example that the eigenvector
method (Eigv) did perform quite well, but that when applying balancing (Eigv B) we
managed to reduce the errors by an additional 9 to 10 digits!

We now give a set of examples with both real and complex conjugate eigenvalues.

Example 7.2. In this example, unsymmetric matrices from the University of
Florida Sparse Matrix Collection [2] of order between 50 and 150 are considered. In
particular, each considered matrix is first transformed into Hessenberg form H. Then
its real Schur form is computed by the proposed procedure, H = UEREU

T
E , starting

from the eigenvalue decomposition computed by eig of MATLAB. The results are
reported in Table 7.2. The name of the matrix, its dimension, and its Frobenius norm
are displayed in columns 1, 2, and 3, respectively, while columns 4 and 5 show the
norm of the part of the matrix below the first subdiagonal and the relative error of
the Schur form computed by the proposed method.

We point out that only for the matrix gent113 have we used the balancing eigen-
vector method, and d was chosen equal to 1.4, in order to avoid cancellation errors.

In the third example, we consider test matrices H from [7] and included in MAT-
LAB, whose eigenvalues are explicitly known.

Example 7.3. In this example, we consider two matrices whose eigenvalues are
explicitly known. In particular, the clement matrix of order n has eigenvalues \lambda i =
 - n + i, i = 1, 3, 5, . . . , 2n  - 3, 2n  - 1, while the chow(1,0) matrix has p = \lfloor n/2\rfloor 
eigenvalues equal to zero, and the rest of the eigenvalues are equal to 4 cos( k\pi 

n+2 )
2, k =

1, 2, . . . , n - p - 1, n - p.
The eigenvector method, and the balancing eigenvector method when needed, was

applied to each matrix, for each eigenvalue \lambda i, i = 1, . . . , n, obtaining the matrices
\~Hi.

The results are reported in Table 7.3. The size and the average of the relative
norm of the part below the first subdiagonal of \~Hi are displayed in columns 2 and
3, respectively. The average of the entries in position (2, 1) and differences of the
entries in position (1, 1) of the computed matrices and the eigenvalues, are reported
in columns 4 and 5, respectively. Finally, the average of the differences between the
eigenvalues and the eigenvalues computed by using the function eig of MATLAB are
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Table 7.2
Real Schur form computation with Schur of MATLAB and with the proposed procedure.

Matrix n \| H\| F b(RE)
\| HUE - UERE\| F

\| H\| F

ww 36 pmec 36 66 4.0892e+03 2.1775e-16 1.0458e-15

west0067 67 1.3122e+01 5.1330e-16 1.4205e-15

lesmis 77 1.0923e+02 1.4534e-16 1.7730e-15

steam3 80 1.0633e+00 2.0434e-16 1.3713e-15

cat ears 2 1 85 1.5937e+01 5.1767e-16 1.6393e-15

d dyn 87 1.2456e+02 4.6675e-16 1.3426e-15

dwt 87 87 2.3259e+01 1.4021e-16 1.1961e-15

cage6 93 6.2516e+00 3.6287e-16 1.7929e-15

tub100 100 1.1856e+04 6.2818e-16 2.1834e-15

olm100 100 4.1167e+03 1.1197e-16 1.5951e-15

rotor1 100 9.1659e+04 3.1043e-15 1.9861e-15

pivtol 102 1.4867e+00 1.1929e-16 2.7175e-15

ck104 104 1.1068e+01 3.1347e-16 1.9016e-15

gent113 113 2.5593e+01 3.6680e-15 1.2587e-15

gre 115 115 7.2468e+00 4.9680e-16 1.9885e-15

rajat11 135 2.3711e+01 1.4639e-16 1.9667e-15

rw136 136 7.2356e+00 5.2296e-16 2.2214e-15

impcol c 137 1.4521e+02 3.3655e-16 1.9118e-15

lop163 163 8.7365e+00 5.3851e-16 2.5749e-15

rajat14 180 1.0789e+00 9.7592e-17 2.4943e-16

Table 7.3
Results obtained by applying one step of deflation to matrices from the ""MATLAB gallery.""

Matrix n
\sum n

i=1 b( \~Hi)

n\| H\| 2

\sum n
i=1 | \=h21| 
n\| H\| 2

\sum n
i=1| \=h11 - \lambda i| 
n\| H\| 2

\sum n
i=1| \lambda M

i  - \lambda i| 
n\| H\| 2

clement 100 2.7363e-16 1.5060e-18 3.3710e-16 4.2813e-06

chow(1,0) 100 7.0223e-18 1.7738e-17 6.8588e-17 4.5622e-03

displayed in column 6. We observe that eig computes the small eigenvalues in an
inaccurate way. In particular, the eigenvalues corresponding to the zero eigenvalues
of chow(1,0) are all complex.

Remark 7.1. In all of the examples, the final results obtained by our new method
were computed with a satisfactory error. Moreover, the balancing techniques were
almost never needed. One drawback is of course that we need to have a good starting
value for the ``perfect shift."" We can also expect difficulties when the approximate
eigenvector has small elements in the last two entries, xn - 1 and xn, while the previous
entry, xn - 2, is very large. The scaling technique will then produce a very large value
d, which may cause underflows in the computations.

8. Conclusions. In this paper we revisited the problem of performing a QR step
with a so-called perfect shift, which is the eigenvalue \lambda 0 that we want to deflate. We
gave a new procedure that is based on the preliminary computation of the eigenvector
x corresponding to that shift, but with the requirement that it be computed to a
certain relative precision. This condition involves the residual r = (H  - \lambda 0I)x and
the norms of the trailing subvectors of x. We also gave a scaling technique that yields,
under some mild assumptions, an eigenvalue/eigenvector pair (\lambda 0,x) with a relative
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precision that meets this perfect shift condition. We also showed how to extend these
ideas to a real double shift corresponding to a pair of complex conjugate eigenvalues.
For this case it is less obvious how to perform a scaling that will allow us to get an
eigenspace X with an appropriate residual that achieves a relatively small backward
error. The numerical experiments indicate that the perfect shift technique works very
well.

We did not cover in this paper the corresponding problem of computing a per-
fect QZ step of a (regular) generalized eigenvalue problem A  - \lambda B in an unreduced
Hessenberg--Schur form, but we conjecture that results along the same lines should
be possible, provided one computes the eigenvector corresponding to that shift, with
a suitable precision. But this is left for future research.

Appendix A.

Proof of Theorem 3.1. We first recall the analysis of the QR decomposition
given in [8, Theorem 18.9]. We modified it here to apply it to an RQ decomposition
of an n \times n Hessenberg matrix, rather than a QR decomposition of a dense m \times n
matrix.

Lemma A.1. Consider the sequence of transformations Hk+1 = HkG
T
n - k for k =

1 . . . , n - 1, where H1 = H \in \BbbR n\times n, and where each Givens rotation Gi is computed
to annihilate the (i + 1, i) element of an unreduced Hessenberg matrix H. Then the
computed (triangular) matrix \^Hn satisfies

(A.1) \^Hn = (H +\Delta H)QT , Q = \~G1
\~G2 \cdot \cdot \cdot \~Gn - 1,

where each \~Gi is the exactly orthogonal Givens rotation that annihilates exactly the
position (i + 1, i) in the current matrix of the computed sequence \~H1, . . . , \~Hn, where
\Delta H satisfies the normwise bound

(A.2) \| \Delta H\| F \leq \gamma cn\| H\| F , \gamma cn :=
cnu

1 - cnu
,

and where c is a moderate number of order 1.

If we apply this to H1 = H  - \lambda 0In and multiply (A.1) with Q, we obtain

H  - \lambda 0In +\Delta H = \^RQ, \| \Delta H\| F \leq \gamma cn\| H  - \lambda 0In\| F ,

where \^R is the computed upper triangular matrix. Since (H  - \lambda 0In) and ( \^RQ) are
Hessenberg, it then follows that \Delta H is Hessenberg as well.

Let us now consider the second part of the (backward) explicit QR step, which
consists of the multiplication Q \^R. There also we can apply the results of Lemma A.1
since we just multiply a matrix with a sequence of (n  - 1) Givens rotations. We do
not use these Givens transformations to assign a zero, but the bounds still apply. The
starting matrix is now \^R and one computes Q \^R. Thus, in inexact arithmetic this
yields Q( \^R+\Delta R), which is equal to \~H  - \lambda 0In since by shifting this product back by
\lambda 0In, one gets \~H. We thus have

\~H  - \lambda 0In = Q( \^R+\Delta R).

If we now define \Delta \~H :=  - Q\Delta R, we finally have

\~H  - \lambda 0In +\Delta \~H = Q \^R,

which implies that \Delta \~H must also be Hessenberg.
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Proof of Remark 3.1. For the implicit QR step we note that the Givens
rotations are always performed either on the rows or on the columns of a matrix
H\ell r := Q\ell HQT

r that is related to the original Hessenberg matrix H via orthogonal
left and right transformations Q\ell and Qr. Each Givens rotation results in an additive
error that is bounded by \gamma c\| H\ell r\| F = \gamma c\| H\| F that can be mapped to the original
matrix H without changing its norm since Q\ell and Qr are orthogonal. The results
then easily follow.

Proof of Theorem 6.2. For the double implicit QR step the proof is completely
analogous to that of the single implicit QR step. The only difference is that the
number of Givens rotations is essentially doubled, and so is the bound on the backward
error.

Lemma A.2. Let h,v \in \BbbR 2 be two vectors that are nearly orthogonal, i.e.,

hTv = \eta , | \eta | \ll max(\| h\| 2, \| v\| 2).

Then the smallest perturbation \delta h measured in the 2-norm to make them orthogonal
is given by

\delta h =  - \eta v/\| v\| 22
and has 2-norm | \eta | /\| v\| 2. Moreover, if \eta \leq \^\epsilon \| v\| 2 and we construct a Givens trans-
formation G such that

(A.3) Gv =

\biggl[ 
\| v\| 2
0

\biggr] 
= \| v\| 2e1,

it also follows that the first element of the transformed vector Gh is \^\epsilon -small and can
be neglected if this is below the tolerance level.

Proof. Let vT = [v1, v2]. Then the construction of the Givens rotation in (A.3)
just uses d =

\sqrt{} 
v21 + v22 , c = v1/d, s =  - v2/d. Moreover, the first element of Gh is

eT1 Gh =
\bigl[ 
c  - s

\bigr] 
h = \eta /\| v\| 2 and that is precisely supposed to be \^\epsilon -small. The

stability of the Givens rotation implementation then guarantees that in inexact arith-
metic, this is also negligible with respect to \| h\| 2.

Lemma A.3. Let

h :=

\left[  h1

h2

h3

\right]  \in \BbbR 3 and V :=

\left[  x1 y1
x2 y2
0 y3

\right]  \in \BbbR 3\times 2

be nearly orthogonal, i.e.,

hTV = \eta := [\eta 1, \eta 2], \| \eta \| 2 \ll max(\| h\| 2, \| V \| 2).

Then the smallest perturbation \delta h measured in the 2-norm to make them orthogonal
is given by

\delta h =  - \eta V +, V + := (V TV ) - 1V T

and has 2-norm smaller than \| \eta \| 2\| V +\| 2, where V + is the pseudoinverse of V . More-

over, if \| \eta \| 2 \leq \^\epsilon /\| V +\| 2 and we construct two Givens transformations G
(x)
1 and G

(y)
2

such that

(A.4) G
(y)
2 G

(x)
1 V =

\left[  \^x1 \^y1
0 \^y2
0 0

\right]  ,
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it also follows that the first two elements of the transformed vector \^h := G
(y)
2 G

(x)
1 h

are \^\epsilon small and can be neglected if this is below the tolerance level.

Proof. The subvectors
\bigl[ 
h1

h2

\bigr] 
and [ x1

x2
] are obviously nearly orthogonal, and we can

apply the previous lemma to show that the first element of the transformed vector \^h
is \^\epsilon small. After that, we repeat the same argument on the (transformed) subvectors\bigl[ \^h2

h3

\bigr] 
and

\bigl[ 
\^y2
y3

\bigr] 
. Again we rely on the stability of Givens rotation implementations to

guarantee that in inexact arithmetic, these elements also are negligible with respect
to \| h\| 2.
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