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We consider the problem of finding a square low rank correction (λC − B)F to a given square pencil
(λE−A) such that the new pencil λ(E−CF )−(A−BF ) has all its generalized eigenvalues at the origin.
We give necessary and sufficient conditions for this problem to have a solution and we also provide a
constructive algorithm to compute F when such a solution exists. We show that this problem is related to
the deadbeat control problem of a discrete-time linear system and that an (almost) equivalent formulation
is to find a square embedding that has all its finite generalized eigenvalues at the origin.
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1. Introduction

In this paper we look at the set of implicit difference equations

Exi+1 = Axi +Bui − Cui+1 (1)

where xi ∈ Rn is the state vector and ui ∈ Rm is the input vector. We will assume m � n and
consider an affine transformation of the state to the input :

ui = vi − Fxi (2)

which yields the modified system

(E − CF )xi+1 = (A−BF )xi +Bvi − Cvi+1.

We are particularly interested in the homogeneous case where vi = 0, which yields the set of
difference equations of the closed-loop system

(E − CF )xi+1 = (A−BF )xi. (3)

We want to choose the feedback matrix F such that the state xi goes to zero as fast as possible (i.e.
in a minimum number of steps) for any initial condition x0. In order to have a unique solution to
(3) the matrix (E − CF ) must be invertible and

xi+1 = (E − CF )−1(A−BF )xi. (4)
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then converges to zero provided the following spectral radius condition is satisfied

ρF := ρ[(E − CF )−1(A−BF )] < 1, (5)

where ρ[M ] := maxi |λi[M ]|. Moreover, if we can make ρF equal to zero, then xk will be zero for
some finite value k since the matrix (E − CF )−1(A − BF ) will be nilpotent. In control theory,
this is known as the deadbeat control problem for discrete linear time invariant systems, but it is
obviously also relevant to the literature of iterative solvers if we interpret xi as the approximation
error of an iterative solver such as the Jacobi or Gauss-Seidel iteration, see Gander et al. (2012).

A simpler version of this problem was analyzed from a numerical point of view in Van Dooren
(1984) for the standard eigenvalue problem (where E = In and C = 0) and in Beelen et al.
(1988) for the generalized eigenvalue problem (where E is invertible and C = 0). A description of
the solution of these restricted problems and a numerical procedure were given in these papers,
but based on the assumption that the system was reachable. In the present paper, we relax this
assumption and only require the system to be controllable. We then show that the problem is also
linked to the embedding problem of a rectangular pencil [λE −A|λC −B] into the square pencil[

λE −A λC −B
F I

]
with given eigenstructure, which was considered in Boley et al. (1994). The spectral radius ρF will
be exactly zero if and only if all the generalized eigenvalue of the closed loop pencil

λ(E − CF )− (A−BF ) (6)

are all zero. In Section 2 we first describe the solution for E = In and C = 0 and show this amounts
to the deadbeat control problem. In Section 3 we then extend this to the so-called generalized
deadbeat problem where E is invertible and C = 0. In Section 4 we further extend this to the case
where [E|C] is of full row rank, which can be reduced to an embedding problem. Finally, we show
in Section 5 that the embedding problem can generically be solved, provided the spectral radius is
set equal to an arbitrarily small number |α|, rather than equal to 0.

2. The deadbeat problem

The problem of deadbeat control of a standard state-space system was considered from a numerical
point of view in Van Dooren (1984). We re-derive some of the results of this papers in a more general
setting since we do not require the system to be reachable. For this purpose, it is also appropriate
to recall the language of the geometric theory of Wonham (1985).

Definition 1: The image B of an arbitrary n×m matrix B is defined as the linear space

B := {y | y = Bx, x ∈ Rm} ⊂ Rn.

The pre-image V of a linear space S ⊂ Rn with respect to an arbitrary n × n matrix A is defined
as the linear space

V = A−1S := {v | x = Av, x ∈ S} ⊂ Rn.

This is therefore the largest space V such that AV ⊂ S.
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Lemma 1: Let A and B be arbitrary n× n and n×m matrices and let U ∈ Rn×n and V ∈ Rn×n

be orthogonal matrices such that

UTAV =

[
X Y
0 C

]
, UTB =

[
R
0

]
, (7)

where R has full row rank r and C has full column rank c. If we partition

U =
[
U1 U2

]
, V =

[
V1 V2

]
, (8)

where U1 has r columns and V2 has c columns then

B = Im U1 ⊂ Rn, A−1B = Im V1 ⊂ Rn.

These linear spaces have dimensions r and n1 := n− c, respectively.

The orthogonal transformations U and V of the above Lemma are easily constructed as follows.
A QR factorization of B yields an orthogonal factor U that “compresses” the rows of B to UTB =[
R
0

]
as in (7). If we then partition U as above, we can construct the matrix Z := UT

2 A. The

QR factorization of ZT then yields an orthogonal transformation V T that compresses the columns
of Z to ZV =

[
0 C

]
as in (7). The dimensions of the two spaces trivially follow from this

construction. Moreover, if B is not identically zero, it easily follows that n1 ≥ r > 0.

Notice that meanwhile we have shown that

n1 = max
F

dim ker(A−BF ).

This follows from the coordinate transformation

UT (A−BF )V =

[
X Y
0 C

]
−
[
R
0

] [
F1 F2

]
where C has full column rank c. Clearly the rank of this transformed matrix is minimized to c
by choosing F1 as any solution of the compatible system RF1 = X. The minimum norm solution
for F is therefore given by F̂ :=

[
F1 0

]
V T = F1V

T
1 , where F1 is the minimum norm solution

of RF1 = X (we use the Frobenius norm to make the solution unique). Moreover, the first n − c
columns of (A − BF̂ )V are zero and the last c columns form a matrix of rank c. Therefore, the
orthogonal similarity transformation V yields a transformed system

V T (A−BF̂ )V =

[
0n1

A12

0 A22

]
, V TB =

[
B1

B2

]

where n1 := n− c and rank

[
A12

A22

]
= c. This shows the following result.

Theorem 1: The space S1 := A−1B is the kernel of largest dimension of A−BF and an orthogonal
state space transformation V with first n1 := n − c columns spanning S1 yields the transformed
system

V T (A−BF̂ )V =

[
0n1

A12

0 A22

]
, rank

[
A12

A22

]
= c.

3
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Let us extend this to spaces defined via the recurrence relation

S0 := {0} , Si+1 := A−1(Si + B). (9)

The following lemmas – inspired from Wonham (1985) – are crucial for understanding these recur-
rences and their properties.

Lemma 2: The spaces defined by (9) are nested :

{0} = S0 ⊂ S1 ⊂ . . . ⊂ Sk = Sn

and have a supremal element that is reached in k ≤ n steps.

Proof. Clearly S0 ⊂ S1 since S0 = {0}. It then easily follows that

Si = A−1(Si−1 + B) ⊂ A−1(Si + B) = Si+1

which shows by induction that all spaces are nested. The fact that the sequence converges in k ≤ n
steps, follows from the fact that as soon as Sk+1 = Sk, then also Sk+2 = Sk+1, and therefore the
same holds for all subsequent spaces Sj ,∀j ≥ k. Hence the number of steps k needed to reach the
supremal element must be bounded by the matrix dimension n.

Definition 2: The discrete-time system xk+1 = Axk + Buk is said to be controllable, if for any
initial state x0 there exists a sequence of inputs ui, i = 0, . . . , k that can drive x0 to the zero state in
finite time k. This is the case if and only if Sk = Rn, where the spaces Si are defined by S0 := {0},
and the recurrence Si := A−1(Si−1 + B), i = 1, . . . , k.

Lemma 3: Let V̂ be defined as

V̂ := A−1(S + B).

Then V̂ is the space of largest dimension that satisfies

(A−BF )V ⊂ S, for any matrix F.

It is also the sum of all spaces V satisfying the above inclusion.

Proof. Let V and S be orthonormal bases for the spaces V and S, respectively, satisfying (A −
BF )V ⊂ S. Then there exists a matrix X ∈ Rs×v such that (A−BF )V = SX which implies

AV =
[
S B

] [ X
Y

]
, for FV = Y (10)

and therefore also

V ⊂ A−1(S + B).

Moreover, the matrix F := Y V † solves the compatible system FV = Y in a least Frobenius norm
sense. If there are two such spaces V1 and V2 then it follows that V := V1 + V2 ⊂ A−1(S + B) and

A
[
V1 V2

]
=
[
S B

] [ X1 X2

Y1 Y2

]
, for FVi = Yi, i = 1, 2.

4
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An orthogonal basis for the sum V = V1 + V2 is moreover obtained from

V =
[
V1 V2

] [ Z1

Z2

]
implying also

AV =
[
S B

] [ X1Z1 +X2Z2

Y1Z1 + Y2Z2

]
, for FV = (Y1Z1 + Y2Z2).

This is an alternate proof that the set of such spaces have a supremal element V̂ under space
addition, which also must be given by

V̂ = A−1(S + B) = arg sup
F
{V : (A−BF )V ⊂ S} .

Using these two Lemmas, we finally obtain the following Theorem, for which a proof can also be
found in Wonham (1985).

Theorem 2: The largest null space of the matrix (A − BF )i for any feedback matrix F is given
by Si of the recurrence (9) and there exists a feedback F such that (A − BF )k = 0 if and only if
Sk = Rn.

Proof. It follows from the above Lemmas that (A − BF )iSi = {0} if and only if there exists a
decreasing sequence of spaces Sj , j = i, . . . , 0 satisfying

(A−BF )Sj = Sj−1, j = i, . . . , 1 S0 = {0} .

This corresponds exactly to the sequence (9). Moreover, the kernel is the whole space Rn if and
only if (A − BF )k = 0 and the smallest index k for which this happens is the smallest index for
which Sk = Rn.

The following equivalent statements for the existence of a deadbeat control of a given pair (A,B)
are recalled from Wonham (1985) and Boley et al. (1994).

Corollary 1: There exists a deadbeat feedback F for (A,B) such that (A−BF )k = 0 if and only
if one the following equivalent conditions hold :
i) the (A,B) pair is controllable, i.e. ∃k : Sk = Rn

ii) the pencil [λIn −A|B] has full rank n for all λ 6= 0.

Let us now assume that we can construct an orthogonal coordinate transformation V such that
its first j subblocks span the space Sj :

V :=
[
V1 V2 . . . Vk

]
, Sj = span

[
V1 . . . Vj

]
, j = 1, ..., k.

5
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Then the matrix V T (A−BF )V must have the following form :

V T (A−BF )V :=


0n1

A1,2 A1,3 . . . A1,k

0n2
A2,3 . . . A2,k

0n3

. . .
...

. . . Ak−1,k
0nk

 , (11)

with dimSi =
∑i

j=1 nj , i = 1, ..., k and rankAi−1,i = ni, i = 2, ..., k. Notice that this rank condition
also implies that the null space dimensions ni are non-increasing :

n1 ≥ n2 ≥ . . . ≥ nk.

Let us also partition the matrix Fv := FV conformably :

Fv :=
[
F1 F2 . . . Fk

]
,

then the following algorithm constructs the matrix Fv recursively such that V T (A−BF )V has the
above form (11). The construction of the transformation matrix V uses the basic ideas explained
in Theorem 1 in a recursive fashion. Let us assume that the first transformation V1 implementing
the basic step for computing S1 := A−1(S0 + B) has been performed as described in Theorem 1.
We then have

[
V T
1 (A−BF1)V1 V T

1 B
F1V1

]
=

 0n1
A12 B11

0 A22 B12

F11 0

 .
We then proceed in a similar fashion for the subsystem (A22, B12). Let V2 be constructed such that

[
V T
2 (A22 −B12F2)V2 V T

2 B12

F2V2

]
=

 0n2
A23 B22

0 A33 B23

F22 0

 ,
then embedding this decomposition into the previous step and defining

V̂2 := V1 ·
[
In1

V2

]
yields

[
V̂ T
2 (A−BF )V̂2 V̂ T

2 B

FV̂2

]
=


0n1

A12 A13 B11

0n2
A23 B22

A33 B23

F11 F22 0

 .
and this continues in this fashion until all diagonal blocks are 0 (i.e. at step k).

6
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3. The generalized deadbeat problem

Since we want all the generalized eigenvalues of the closed loop pencil

λE − (A−BF ) (12)

to lie at 0, we have to assume here that E is invertible since otherwise there is no solution. Let us
then define the matrices

Ã := E−1A, B̃ := E−1B,

and look at the equivalent pencil

λE − (A−BF ) = E[λIn − (Ã− B̃F )]

which is now in the standard form considered in the previous section. This reduction was already
proposed in Beelen et al. (1988) but again it was assumed that the generalized state-space model
was reachable. We consider the problem in a more general geometric setting and show that this
problem has a solution if and only if the matrix pair (Ã, B̃) is controllable and that it does not
require to be reachable.

It follows from the invertibility of the matrix E that the recurrence relation defined earlier for a
standard pair (Ã, B̃) :

S0 := {0} , Si+1 := Ã−1(Si + ImB̃) (13)

is equivalent to the definition

S0 := {0} , Si+1 := A−1(ESi + B) (14)

Using these connections, we trivially extend the results of the previous section to a triple (E,A,B).

Lemma 4: Let E be invertible and V̂ be defined as

V̂ := A−1(ES + B).

Then V̂ is the space of largest dimension that satisfies

(A−BF )V ⊂ ES, for any matrix F.

It is also the sum of all spaces V satisfying the above inclusion.

Corollary 2: The spaces defined by (14) are nested :

{0} = S0 ⊂ S1 ⊂ . . . ⊂ Sk = Sn

and have a supremal element that is reached in k ≤ n steps.

Definition 3: The discrete-time system Exk+1 = Axk +Buk is said to be controllable, if for any
initial state x0 there exists a sequence of inputs ui, i = 0, . . . , k that can drive x0 to the zero state in
finite time k. This is the case if and only if Sk = Rn, where the spaces Si are defined by S0 := {0},
and the recurrence Si := A−1(ESi−1 + B), i = 1, . . . , k.

7
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Theorem 3: Let E be an invertible matrix, then the space S1 := A−1B is the kernel of largest
dimension of A−BF and the orthogonal transformations V and W whose first n1 := n−c columns
span respectively S1 and ES1 yield the transformed system

W T (λE − (A−BF̂ ))V =

[
λE11 λE12 −A12

0 λE22 −A22

]
, rank

[
A12

A22

]
= c.

Corollary 3: Let E be invertible, then there exists a feedback F such that λE− (A−BF ) = 0 has
all its eigenvalues at 0 if and only if one the following equivalent conditions hold :
i) the (E,A,B) triple is controllable, i.e. ∃k : Sk = Rn

ii) the pencil [λE −A|B] has full rank n for all λ 6= 0.
The smallest index k for which this is the case is the smallest index for which Sk = Rn.

Assume again that we can construct an orthogonal coordinate transformation V such that its
first j subblocks span the space Sj :

V :=
[
V1 V2 . . . Vk

]
, Sj = span

[
V1 . . . Vj

]
, j = 1, ..., k.

Then the pencil W T [λE − (A−BF )]V must have the following form :
λE1,1 λE1,2−A1,2 λE1,3−A1,3 . . . λE1,k−A1,k

λE2,2 λE2,3−A2,3 . . . λE2,k−A2,k

λE3,3
. . .

...
. . . λEk−1,k−Ak−1,k

λEk,k

 , (15)

with Ei,i ∈ Rni×ni and of full rank ni, dimSi =
∑i

j=1 nj , i = 1, ..., k and rankAi−1,i = ni, i =
2, ..., k. Notice that the rank conditions on A again imply that the null space dimensions ni are
non-increasing :

n1 ≥ n2 ≥ . . . ≥ nk.

The recursive construction to obtain this form is completely analogous to the problem described
in Section 2.

4. The general embedding problem

The generalized deadbeat problem consists of finding a feedback matrix F such that the pencil

(λE −A)− (λC −B)F (16)

has all its n generalized eigenvalues at 0. An equivalent way to state this is to say that we look for
a matrix F such that the pencil [

λE −A λC −B
F Im

]
(17)

has n generalized eigenvalues at 0 since by the Schur complement lemma we have that the above
two pencils have the same determinant and hence finite generalized eigenvalues. Clearly the pencil

8
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(17) can only have n finite eigenvalues if rank
[
E C

]
= n since the pencil obviously has m

infinite eigenvalues.
If we relax the problem now to finding a rank m matrix

[
F G

]
such that the pencil[

λE −A λC −B
F G

]
has n infinite eigenvalues, we can reduce this to the previous problem with C = 0. Indeed, let us
find a transformation Q (which we can choose orthogonal) such that[

λE −A λC −B
F G

]
Q =

[
λÊ − Â −B̂
F̂ Ĝ

]
. (18)

Since Ê will be invertible, we can now choose the construction of the previous Section to find a
feedback F̂ and choose Ĝ = Im, to make sure that this pencil has n generalized eigenvalues at 0,
and m ones at ∞. Notice that if we perform the back-transformation to the original pencil, then
G may no longer be invertible and hence the solution may not be acceptable.

Corollary 4: There exists a bordering (F,G) for a quadruple (E,A,B,C) such that the embedded
pencil [

λE −A λC −B
F G

]
is regular and has all its finite generalized eigenvalues at λ = 0, if and only if the rectangular pencil[

λE −A λC −B
]

has full rank n for all finite λ 6= 0.

Proof. This follows easily from the transformation (18) since this reduces the problem to a gener-
alized deadbeat problem, and the rank condition is clearly not affected by the constant invertible
column transformation.

The following example shows that the embedding problem is more general and may have a
solution, while the pencil λ(E − CF )− (A−BF ) can not be made nilpotent. Let

λE −A =

[
−1 λ
0 −1

]
, λC −B =

[
0
λ

]
.

Then for any feedback matrix F we have that A−BF = I2 and hence λ(E−CF )− (A−BF ) can
not be nilpotent. Nevertheless, the embedding

[
λE −A λC −B
F G

]
=

 −1 λ 0
0 −1 λ
1 0 0

 ,
has clearly 2 generalized eigenvalues at 0 and one at ∞.

9
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5. Placing other poles

In the previous section it was shown that the row rank of the compound matrix
[
E C

]
has

to be full (i.e. n) in order to be able to assign n finite generalized eigenvalues for the embedding
pencil and therefore also for the generalized deadbeat control problem. But the smallest index k
at which the controllable space Sk reaches the full state dimension n, can still be quite high : it is
n− 1 at worst if the dimensions of the spaces Si, i = 1 . . . , n− 1 increase by one at each step.

An alternative solution is to make a random shift to a point α of small magnitude |α| and to
consider the deadbeat control problem for the modified embedding problem[

λ̃E − Ã λ̃C − B̃
F̃ G̃

]
, Ã := A− αE, B̃ := B − αC. (19)

If α is a random shift, the rank increases of the modified spaces will be generically equal to m and
k will then be equal to n/m, or the smallest integer larger or equal to this. Moreover, the matrix
G̃ is then likely to be invertible and the embedding problem is then equivalent to a generalized
deadbeat control problem. On the other hand, the state xn is not really beaten to death in n steps,
but is is reduced in norm to about a factor |α|k after k steps. For the convergence of iterative
schemes, this is certainly an acceptable alternative.

If in the example given in the previous section we replace λ by λ̃−α, then we obtain the shifted
pencil

λ̃E − Ã =

[
−1 λ̃− α
0 −1

]
, λ̃C − B̃ =

[
0

λ̃− α

]
for which there is an embedding

[
λ̃E − Ã λ̃C − B̃
F̃ G̃

]
=

 −1 λ̃− α 0

0 −1 λ̃− α
1 2α α2

 ,
which clearly has 2 generalized eigenvalues at α and one at ∞. Moreover, G̃ is now invertible.

A related problem is obtained when swapping the role of
[
E C

]
and

[
A B

]
and hence

considering the so-called reversed pencil[
E − µA C − µB
F G

]
=

[
µIn

Im

] [
1/µE −A 1/µC −B

F G

]
. (20)

The following result is then a consequence of our earlier discussions.

Corollary 5: There exists a bordering (F,G) for a quadruple (E,A,B,C) such that the embedded
pencil (20) is unimodular, if and only if the embedding of the pencil[

λE −A λC −B
F G

]
is regular and has all its finite generalized eigenvalues at λ = 0.

Proof. This follows easily from the transformation µ = 1/λ and the identity (20). The finite roots of

the pencil

[
E − µA C − µB
F G

]
are indeed the nonzero roots of the pencil

[
λE −A λC −B
F G

]
.

10
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But since λ = 0 is the only root of the second pencil, then µ = ∞ is the only root of the first
pencil, and hence it is unimodular.

6. Numerical experiments

We used the DeadBeat algorithm described in the appendix on the following random matrices
(only 4 digits are given)

A =



0.538 0.343 0.715 −1.208 0.294 1.438 0.319
1.834 3.578 −0.205 0.717 −0.787 0.325 0.313
−2.259 2.769 −0.124 1.630 0.888 −0.755 −0.865

0.862 −1.350 1.490 0.489 −1.147 1.370 −0.030
0.319 3.035 1.409 1.035 −1.069 −1.711 −0.165
−1.308 0.725 1.417 0.727 −0.809 −0.102 0.628
−0.434 −0.063 0.671 −0.303 −2.944 −0.241 1.093


, B =



1.109 −0.770
−0.864 0.371

0.077 −0.226
−1.214 1.117
−1.113 −1.089
−0.007 0.033

1.533 0.552


,

of dimension 7× 7 and 7× 2. The Matlab call

[Av,Bv,Fv,V,nk]=DeadBeat(A,B,tol)

returned the k = 4 indices

n1 = 2, n2 = 2, n3 = 2, n4 = 1

and the closed loop matrix

Av −BvFv =



0.000 0.000 −1.615 −1.035 −1.656 −0.605 7.146
0.000 0.000 −3.298 −0.270 −1.512 −0.863 3.878
0.000 0.000 0.000 0.000 −0.4820 −3.849 0.064
0.000 0.000 0.000 0.000 3.5724 −1.728 0.188
0.000 0.000 0.000 0.000 0.000 0.000 −6.181
0.000 0.000 0.000 0.000 0.000 0.000 5.040
0.000 0.000 0.000 0.000 0.000 0.000 0.000


,

and the norms of the successive powers (Av −BvFv), i = 1, . . . , k gave

11.7737, 36.0680, 85.5020, 7.8802e− 013,

indicating that the matrix Av −BvFv is essentially nilpotent. The Matlab code implementing this
method is described in the Appendix. Notice that this code is not optimized for speed, since it uses
the singular value decomposition for the rank tests while an efficient implementation should use
rank revealing QR factorizations as well as low rank updating techniques for such decompositions.
We also did not give codes for the generalized deadbeat problem or the pencil embedding problem,
since these are just variations on the same theme.

7. Concluding remarks

We considered the problem of finding a square low rank correction (λC − B)F to a given square
pencil (λE−A) such that the new pencil λ(E−CF )− (A−BF ) has all its generalized eigenvalues

11
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at the origin, or more generally such that the bordered pencil[
λE −A λC −B
F G

]
has a determinant equal to λn (i.e. has n generalized eigenvalues at the origin). This problem was
shown to be closely related to the (generalized) deadbeat control problem and to the eigenvalue
assignment problem for embedded pencils. For both these problems we have derived necessary and
sufficient conditions for the existence of a solution and we have presented numerical algorithms to
solve them. These results in fact extend earlier results of the first author (see Van Dooren (1984),
Boley et al. (1994), Beelen et al. (1988)) to the more general setting of controllable – but not
necessarily reachable – systems.

The motivation for revisiting this problem, came from a paper of Gander et al. (see Gander
et al. (2012)), showing that the convergence speed of block-iterative methods for PDEs can be
significantly accelerated by using preconditioners based on this nilpotent pencil correction problem.
These techniques should be useful as well for these kind of problems. A second application is
the unimodular embedding problem described at the end of Section 5. If the rows of a pencil[
E − µA C − µB

]
have full row rank for all finite µ then there exists a unimodular embedding

of this pencil, as shown in that section. Finding the embedding with Jordan chains at µ = ∞ of
minimal degree k, will yield a unimodular embedding whose unimodular inverse has an as small as
possible degree k. Both these problems clearly are of interest, both from a theoretical and numerical
point of view.
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8. Appendix

function [Av,Bv,Fv,V,nk] = DeadBeat(A,B,tol)
%
% Function [Av,Bv,Fv,V,nk]=DeadBeat(A,B,tol)
% computes the largest kernel of (A-B*F)^k for a pair (A,B).
% That kernel is returned as the first sum(nk) columns of
% the orthogonal matrix V.
% The transformed matrices Av=V’*A*V, Bv=V’*B and
% Fv=F*V are returned as well as the Weyr characteristic
% of the closed loop system (A+BF) via the integer vector nk.
% The rank decisions are using the given tolerance tol.
%
[n1,n2]=size(A);[n,m]=size(B);
if n~=n1, disp(’Incorrect dimensions’),return; end
if n~=n2, disp(’Incorrect dimensions’),return; end
% Initialize Av, Bv, Fv, V and nk
Av=A;Bv=B;Fv=zeros(m,n);V=eye(n,n);nk=[];one=1;
while n >= one,

ncur=n-one+1;
% Compress rows of B
[U,S,W]=svd(B);r=rank(S,tol);
% Treat the extreme cases for r (0 and n) separately
if r==ncur, % This is a controllable case

Fv(:,one:n)=pinv(B)*A; nk=[nk,ncur]; break;
end
if r==0,

[U,S,Vup]=svd(Av);c=rank(S,tol);
if c==n, disp(’Uncontrollable’); break; end
if c==0, % This is also a controllable case

nk=[nk,ncur]; break;
end
% Here we found a nontrivial Weyr index
Vup=Vup(:,[c+1:ncur,1:c]);
V(:,one:n)=V(:,one:n)*Vup;
Av(:,one:n)=Av(:,one:n)*Vup;
Av(one:n,:)=Vup’*Av(one:n,:);
Bv(one:n,:)=Vup’*Bv(one:n,:);
one=one+ncur-c; nk=[nk,ncur-c]; ncur=c;
break;

end
% Now treat the general case 0<r<n
U1=U(:,1:r);B1=U1’*B;
UA=U’*A;UA1=UA(1:r,:);UA2=UA(r+1:ncur,:);
[U,S,Vup]=svd(UA2);c=rank(S,tol);
Fv(:,one:one-1+ncur-c)=pinv(B1)*UA1*Vup(:,c+1:ncur);
Vup=Vup(:,[c+1:ncur,1:c]);
V(:,one:n)=V(:,one:n)*Vup;
Av(:,one:n)=Av(:,one:n)*Vup;
Av(one:n,:)=Vup’*Av(one:n,:);
Bv(one:n,:)=Vup’*Bv(one:n,:);
% Now define the subsystem (A,B) to continue on
one=one+ncur-c; nk=[nk,ncur-c]; ncur=c;
A=Av(one:n,one:n)
B=Bv(one:n,:)

end
return
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