On the Stability of the Generalized Schur
Algorithm *

Nicola Mastronardi'-2, Paul Van Dooren?, and Sabine Van Huffel!

! Department of Electrical Engineering, ESAT-SISTA /COSIC, Katholieke
Universiteit Leuven, Kardinaal Mercierlaan 94, 3001 Leuven, Belgium
? Dipartimento di Matematica, Universita della Basilicata, via N. Sauro 85, 85100
Potenza, Italy
3 Department of Mathematical Engineering, Université Catholique de Louvain,
Avenue Georges Lemaitre 4 B-1348 Louvain-la-Neuve, Belgium

Abstract. The generalized Schur algorithm (GSA) is a fast method to
compute the Cholesky factorization of a wide variety of structured ma-
trices. The stability property of the GSA depends on the way it is imple-
mented. In [15] GSA was shown to be as stable as the Schur algorithm,
provided one hyperbolic rotation in factored form [3] is performed at
each iteration. Fast and efficient algorithms for solving Structured Total
Least Squares problems [14,13] are based on a particular implementa-
tion of GSA requiring two hyperbolic transformations at each iteration.
In this paper the authors prove the stability property of such implemen-
tation provided the hyperbolic transformation are performed in factored
form [3].

1 Introduction

The generalized Schur algorithm (GSA) is a fast method to compute the Cholesky
decomposition of a wide variety of symmetric positive definite structured matri-
ces, i.e., block-Toeplitz and Toeplitz—block matrices, matrices of the form T7 T,
where T is a rectangular Toeplitz matrix [9, 7] and to compute the LDLT factor-
ization of strongly regular [1] structured matrices, where L is a triangular matrix
and D = diag(+1,...,%1). The stability property of the GSA depends on the
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way it is implemented [11,5]. In [15] GSA was shown to be stable, provided one
hyperbolic rotation in factored form [3] is performed at each iteration. Similar
results were obtained in [5], using the OD procedure or the H procedure instead
of using the hyperbolic rotations in factored form. The computational complex-
ity of GSA is O(aN?), where N is the order of the involved matrix and « is its
displacement rank (see §2).

The Structured Total Least Squares problem described in [14], can be for-
mulated in this way,

: 2
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such that (A+ AAd)z =b+ Ab, A,AA € R”™*" m > n,

with A, AA Toeplitz matrices. The kernel of the algorithm proposed in [14],
is the solution of a least squares problem, where the coefficient matrix is a
rectangular Toeplitz—block matrix, with dimensions (2m+n—1) x (m+2n—1).
Taking the structure of the generators into account, the complexity of GSA
can be reduced to O(amn), if two hyperbolic transformations are performed
at each iteration. Allowing only one hyperbolic rotation in each iteration, the
computational complexity is O(a(m+mn)?). Hence is worth studying the stability
of such an implementation of GSA. In this paper the stability properties of such
an implementation are investigated. The paper is organized as follows. In §2
an implementation of GSA requiring two hyperbolic rotations per iteration is
described. The stability property of this implementation is analyzed in §3 and
in §4 are the conclusions.

2 The Generalized Schur Algorithm

In this section we introduce GSA to compute the RT R factorization of a sym-
metric positive definite matrix A, where R is an upper triangular matrix, when
two hyperbolic rotations are performed at each iteration.

Given an n xn symmetric positive definite matrix A, define Dy = A—ZAZT.
We say that the displacement rank of A with respect to Z is « if rank(D4) = a,
where Z is the lower triangular (block) shift matrix of order n (for a more general
choice of the matrix Z, see [9,6]). Clearly D4 will have a decomposition of the
form D4 = GTJ4G, where
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where uﬁ,vﬁ,zﬁ) € R, u?%,v%lg,zg € R 1, uélg € Re1, véll) € RiI—2,

Us € Re=0x(n=1) () ¢ Re=2)x(n=1) anq Iy is the identity matrix of order



k. The pair (G, J4),G € R**™ is said to be a generator pair for A [12]. A matrix
O is said J4-orthogonal if T J,0 = J4.

The GSA requires n iterations to compute the factor R. Let Gg z = G. At
the ith iteration, i = 1,...,n, a Jy—orthogonal matrix @; is chosen such that
the ith column of G; = ©@;G;_1,z has all the elements equal to zero with the
exception of a single pivot element in the first row (the first i — 1 columns of
G; are zero). The generator matrix G is said to be in a proper form. Then the
first row of G; becomes the ith row of R. The generator matrix G; 7z at the next
iteration is given by

Giz(1,))=Gi(1,)Z7, Giz([2:a],:) =Gi([2: al,:)-

Without loss of generality, the matrices @;, i = 1,...,n, can be factored as the
product of two hyperbolic rotations and an orthogonal one, i.e.,

©;=H;1H;>Q;, where Q;= [ Qia ] ’
Qi
with ;.1 and @Q; » orthogonal matrices of order p and ¢, such that
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where 0, s denotes the rectangular null matrix wit 7 rows and s columns. As
mentioned in §1, the computation of the hyperbolic rotation in a stable way is
crucial for the stability of the algorithm. For implementation details of hyperbolic
rotations in factored form see [3,15]. In the next section we will show that GSA
is stable, provided in each iteration the Js—orthogonal matrix is computed as
previously described, and the hyperbolic rotations are implemented in factored
form. Similar stability results hold considering either the H—procedure or the
OD-procedure to implement the hyperbolic rotations [5,12].

3 Stability Analysis

A stability analysis of the GSA with a single hyperbolic rotation in factored
form per iteration is presented in [15]. The stability analysis for the algorithm
described in the previous section can be done in a similar way. It is split up into
two parts: one which shows how local error propagates through the algorithm and
one which bounds the local error. We consider the same notation as introduced
in §2 but denote by the superscript the corresponding quantities as stored in the

computer. Hence G; = [ 4; UF o 2I Vi ]
The local errors, generated by computing G;,1 by means of orthogonal and

hyperbolic transformations, are given by
€F; =Gl JaGiy1 — GT,JuGiz + O(%), i=1,...,n, (2)

where € is the machine precision. In [15] is proved that
n—1

A-R'R=YZj(G"JsG - G"JsG)Z

j=0
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where Z; = Z and R is the computed Cholesky factor. This means that if the
error in the computation of the initial generator matrix and the local errors are
bounded, the algorithm is stable. The error in the initial generator matrix is not
a problem, since often it is explicitly known or can be computed in a backward
stable way [8]. In the following, we assume that the initial generator matrix is
computed exactly and restrict ourselves to the effects of local errors due to the
orthogonal and hyperbolic transformations.

Because any bounds on the errors produced by the transformations will de-
pend on the norm of the generators, it is essential to bound the generators.

Theorem 1. When the generators are computed by applying a block diagonal
orthogonal matriz and two hyperbolic transformations, they satisfy

1Gillr < 2vi—= 1| AllF + IGll7 (4)



Proof. Let 4;,0; and 2; be the generator vectors in (1) that will be modified by
the two hyperbolic rotations H; » and H; 1,

ul L0 pip L pin O af
’Uiz = m 0 (5,"2 0 Pi1 1 0 12;
Z; Pi,2 0 1 0 0 (51"1 Z;
1 pin Pi2di1 al
= —,51.‘11,51.‘2 piilia  0i2 0 1:;ZT ;
pi2  PiaPi2 i1 sT
where 8;, = /1 —p?,, k=1,2. Then we have
ul 1 1 Pi pi20i1 af
vf = 53 pi1dia  pii0i2  pi, 1pz 251 105,2 oF
2 SR pia piapia Pz 2051 2
1 0 0 af
+ 0 6 6 —Pi, lpz 261 1612 'lA),T
0i104,2 5T
’ 0 0 i 161 9 Z;
[ 1o ]
= pi10iou] 0 di1 /Jz 1Pi,2 o]
ot ] [o b | Lo ]
Consider the Givens rotations
100 a = pip/\/1- 07107,
U= 0 c, —95 s > o
0 s; ¢ 81 = pindi2/y/1— 5i,15i,2
100 Cr = pindin/\[1— 067,07,
V= 0 ¢ =—sp 1,
[ 0 s ¢ | sp=pi1/y/1— 512,152‘2,2
Then
ul ul 0 0 0 al
Ul ol | = U\ pirbigul | +U | 0 &1 —piapio | VIV | oF
& pizul 0 0  diy 5T
r T
u; [ 00 0 ] [ al ]
= 0 +101 0 o7
i 1-— (51-27161-27211? [ 0 0 (51'7151"2 J [ EZT J
- uT
_ i
].—(‘52 (SQQU +6z 162 22




where
~ N
EAE
v, =V .
=T 2T
Then
2 2 T 2
ul uf et
Ul o = vl = v; ,
T T / 2 52 T s 5T
2; r 2; r 1_61',161',2ui +0;10i2Z;

Applying the inequality
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Since the orthogonal transformations don’t affect the norm of the generators and
IZ]l2 = 1, then ||Gi||% < 2||wi]|* + ||Gi-1]|%, and recursively we have

4
Gl <2 lluyllz +IGIE = 211R(1 - &, )iE +1IGIZ-

j=1

Then (4) follows since, for an arbitrary positive semi—definite, rank 7 — 1 matrix
with a factorization A = RTR, (see [15]), || R||% < Vil|A|% O

To complete the stability analysis we need to show that the orthogonal and
hyperbolic transformations, applied in factored form, produce a local error, eF;,

which is proportional to the norm of the generator matrix. An error analysis of
hyperbolic transformations applied in factored form is given in [3]. Denoted by

1
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the hyperbolic transformations applied in factored form, then
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The mixed error vectors Ej, Av and Az satisfy

%\UT U3 41
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where € is the roundoff unit. Furthermore, concerning the application of the
orthogonal transformations, it can be proved [15,16] that there exist orthogonal
matrices ;1 and(@); » such that

fflTZ + Auf ffsz
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where, for m = max{p,q — 1},
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Letting AG; = [Au; AU Aw, Az1 AV2T]T then ||AG;||r < 6me||Giz|lFr <
6me||G;||F. Analogously, letting AG; = [Au Av AZ]T then the error bounds (5)
and (7) can be used to show that

GTIAG; = (Giz + AGHT Ja(Giz + AG)),
~ —~ T ~ —~ T ~ —~T —~T
(Gi+1 +e1Au )TJA(GH_l +e1Au ) = (GZT + 6p+1A’U + €p+2AZ )TJA
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where e, e,41 and e,4o are standard basis vectors. Then
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corresponding to the bound
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By Theorem 1, [|Gi||%, ||Git1ll% < 2Vil|AllF + ||G||%, the following bound
holds
leFillr < (12m + 100)e (2v] Al + |G ) -

From (3), we have ||A — RTR||r < (6m + 50)(n — L)ne (2y/nl|Al[r + [|G|%) -
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Conclusion

Fast and efficient algorithms for solving Structured Total Least Squares prob-
lems [14,13] are based on a particular implementation of GSA requiring two
hyperbolic transformations at each iteration.

In this paper the stability of such implementation is discussed. It is proved

that if the hyperbolic transformations are performed in factored form, the con-
sidered implementation is as stable as the implementation studied in [15] that
requires only one hyperbolic transformation at each iteration.
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