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OPTIMAL ROBUSTNESS OF PORT-HAMILTONIAN SYSTEMS\ast 

VOLKER MEHRMANN\dagger AND PAUL M. VAN DOOREN\ddagger 

Abstract. We construct optimally robust port-Hamiltonian realizations of a given rational
transfer function that represents a passive system. We show that the realization with a maximal
passivity radius is a normalized port-Hamiltonian one. Its computation is linked to a particular
solution of a linear matrix inequality that defines passivity of the transfer function, and we provide
an algorithm to construct this optimal solution. We also consider the problem of finding the nearest
passive system to a given nonpassive one and provide a simple but suboptimal solution.
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1. Introduction. We consider realizations of linear dynamical systems that are
denoted as positive-real or passive and their associated transfer functions. In particu-
lar, we study positive-real transfer functions which play a fundamental role in systems
and control theory: they represent, e.g., spectral density functions of stochastic pro-
cesses and arise in spectral factorizations. Positive-real transfer functions form a
convex set, and this property has lead to the extensive use of convex optimization
techniques in this area [8]. Passive systems and their relationships with positive-real
transfer functions are well studied, starting with the works [18, 23, 30, 31], and the
topic has recently received considerable attention in the context of port-Hamiltonian
(pH) system models [25, 28].

In this paper we show that in the set of continuous-time pH realizations of positive-
real transfer functions, there is a subset that achieves optimal robustness, in the sense
that their passivity radius is maximal. Considering the Laplace transform of the linear
time-invariant system

(1.1)
\.x = Ax+Bu, x(0) = 0,
y = Cx+Du,

denoted as \scrM := \{ A,B,C,D\} , the transfer function is given by

(1.2) \scrT (s) = D + C(sI  - A) - 1B.

Here u : \BbbR \rightarrow \BbbC m, x : \BbbR \rightarrow \BbbC n, and y : \BbbR \rightarrow \BbbC m are vector-valued functions denoting,
respectively, the input, state, and output of the system. Denoting real and complex
n-vectors (n \times m matrices) by \BbbR n, \BbbC n (\BbbR n\times m, \BbbC n\times m), respectively, the coefficient
matrices satisfy A \in \BbbC n\times n, B \in \BbbC n\times m, C \in \BbbC m\times n, and D \in \BbbC m\times m.
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We restrict ourselves to systems which are minimal, i.e., the pair (A,B) is con-
trollable (for all s \in \BbbC , rank [ sI  - A | B ] = n), and the pair (A,C) is observable (i.e.,
(A\sansH , C\sansH ) is controllable). Here, the Hermitian transpose and the transpose of a vec-
tor or matrix V are denoted by V \sansH and V \sansT , respectively, and the identity matrix
is denoted by In or I if the dimension is clear. Throughout this article we will use
the following notation. We denote the set of Hermitian matrices in \BbbC n\times n by \BbbH n.
Positive definiteness (semidefiniteness) of A \in \BbbH n is denoted by A > 0 (A \geq 0). The
eigenvalues of a matrix A will be denoted by \lambda j(A) and for A \in \BbbH n we denote the
smallest and largest eigenvalues by \lambda min(A) and \lambda max(A), respectively. The real and
imaginary parts of a complex matrix Z are written as \Re (Z) and \Im (Z), respectively,
and \imath is the imaginary unit. We consider functions over \BbbH n, which is a vector space
if considered as a real subspace of \BbbR n\times n + \imath \BbbR n\times n.

The paper is organized as follows. In section 2 we characterize the classes of
passive systems and of pH systems. We then show in section 3 the relevance of pH
systems in estimating the passivity radius of passive systems and construct in section 4
realizations with optimal robustness margin for passivity. In section 5 we describe an
algorithm to compute this optimal robustness margin. In sections 6 and 7 we show
how to use these ideas to estimate the distance to the set of passive systems and to
the set of stable systems.

2. Passive systems and port-Hamiltonian realizations. The concepts of
positive-realness and passivity are well studied. We briefly recall some important
properties following [29] and refer to the literature for a more detailed survey. Consider
a continuous-time system as in (1.1) and its transfer function \scrT (s) as in (1.2). The
transfer function \scrT (s) is called positive-real if the matrix-valued rational function

\Phi (s) := \scrT \sansH ( - s) + \scrT (s)

is positive semidefinite for s on the imaginary axis, i.e., \Phi (\imath \omega ) \geq 0 for all \omega \in \BbbR , and
it is called strictly positive-real if \Phi (\imath \omega ) > 0 for all \omega \in \BbbR .

For X \in \BbbH n and a system \scrM = \{ A,B,C,D\} , we consider the matrix function

(2.1) W (X,\scrM ) :=

\biggl[ 
 - A\sansH X  - X A C\sansH  - X B
C  - B\sansH X D\sansH +D

\biggr] 
,

which we also denote by W (X), when it is clear from the context which model we
refer to. If \scrT (s) is positive-real, then there exists X \in \BbbH n such that the linear matrix
inequality (LMI)

(2.2) W (X) \geq 0

holds. In this context we will make frequent use of the sets

\BbbX >
:= \{ X \in \BbbH n | W (X) \geq 0, X > 0\} ,(2.3a)

\BbbX \gg 
:= \{ X \in \BbbH n | W (X) > 0, X > 0\} .(2.3b)

A system \scrM := \{ A,B,C,D\} is called passive if there exists a state-dependent storage
function, \scrH (x) \geq 0, such that for any t1, t0 \in \BbbR with t1 > t0, the dissipation inequality

(2.4) \scrH (x(t1)) - \scrH (x(t0)) \leq 
\int t1

t0

\Re (y(t)\sansH u(t)) dt
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holds. If for all t1 > t0, the inequality in (2.4) is strict, then the system is called
strictly passive.

If D\sansH +D is invertible, then the minimum rank solutions of (2.2) in \BbbX >
are those

for which rankW (X) = rank(D\sansH +D) = m, which in turn is the case if and only if the
Schur complement of D\sansH +D in W (X) is zero. This Schur complement is associated
with the continuous-time algebraic Riccati equation

(2.5) \sansR \sansi \sansc \sansc (X) :=  - XA - A\sansH X  - (C\sansH  - XB)(D\sansH +D) - 1(C  - B\sansH X) = 0.

Solutions X to (2.5) yield a spectral factorization of \Phi (s), and each solution corre-

sponds to an invariant subspace spanned by the columns of U :=
\bigl[ 
In  - X\sansT 

\bigr] \sansT 
that

remains invariant under multiplication with the Hamiltonian matrix

(2.6) H :=

\biggl[ 
A - B(D\sansH +D) - 1C  - B(D\sansH +D) - 1B\sansH 

C\sansH (D\sansH +D) - 1C  - (A - B(D\sansH +D) - 1C)\sansH 

\biggr] 
,

i.e., U satisfies HU = UAF for a closed loop matrix AF = A  - BF with F :=
(D\sansH +D) - 1(C  - B\sansH X); see, e.g., [11]. It is shown in [29] that for a minimal system
\scrM , the set of solutions X of the Riccati equation (2.5) has two extremal solutions
X - and X+ such that all other solutions X satisfy X - \leq X \leq X+.

We can also associate with \Phi a system pencil

(2.7) S(s) :=

\left[  0 A - sIn B
A\sansH + sIn 0 C\sansH 

B\sansH C D\sansH +D

\right]  .

Then the Schur complement of S(s) is the transfer function \Phi (s) and the generalized
eigenvalues of S(s) are the zeros of \Phi (s). The properties of the system can, however,
be checked in a much more numerically robust way using the pencil S(s) rather than
the matrix H. This is, in particular, true if D\sansH +D is singular or ill-conditioned; see
[6] for a detailed analysis and appropriate algorithms.

A special class of realizations of passive systems is that of pH systems.

Definition 2.1. A linear time-invariant pH system has the state-space form

(2.8)
\.x = (J  - R)Qx+ (G - K)u,
y = (G+K)\sansH Qx+ (S +N)u,

and the system matrices satisfy the symmetry conditions

\scrV :=

\biggl[ 
J G

 - G\sansH N

\biggr] 
=  - \scrV \sansH , \scrW :=

\biggl[ 
R K
K\sansH S

\biggr] 
= \scrW \sansH \geq 0, Q = Q\sansH \geq 0.

Port-Hamiltonian systems were introduced from a different point of view in [25],
but they also have a storage function and satisfy a dissipation inequality, and hence
they are passive. Thus, there must be a coordinate transformation between a passive
system and a representation (2.8) as a pH system. We briefly recall the construction
of such a possible transformation.

Consider a minimal state-space model \scrM := \{ A,B,C,D\} of a passive linear
time-invariant system and let X \in \BbbX >

be a solution of the LMI (2.2). We then use a
symmetric factorization X = T\sansH T , which implies the invertibility of T , and define a
new realization

\{ AT , BT , CT , DT \} := \{ TAT - 1, TB,CT - 1, D\} 
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so that \biggl[ 
T - \sansH 0
0 Im

\biggr] \biggl[ 
 - A\sansH X  - XA C\sansH  - XB
C  - B\sansH X D\sansH +D

\biggr] \biggl[ 
T - 1 0
0 Im

\biggr] 
=

\biggl[ 
 - AT  - BT

CT DT

\biggr] 
+

\biggl[ 
 - A\sansH 

T C\sansH 
T

 - B\sansH 
T D\sansH 

T

\biggr] 
\geq 0.(2.9)

We can then use the Hermitian and skew-Hermitian part of the matrix

\scrS :=

\biggl[ 
 - AT  - BT

CT DT

\biggr] 
to define the coefficients of a pH representation via\biggl[ 

R K
K\sansH S

\biggr] 
:=

\scrS + \scrS \sansH 

2
\geq 0,

\biggl[ 
J G

 - G\sansH N

\biggr] 
:=

\scrS  - \scrS \sansH 

2
.

This construction yields Q = In because of the chosen factorization X = T\sansH T . Note
that the factor T is unique up to a unitary factor U , since T\sansH U\sansH UT = T\sansH T , but this
factor U will not affect the results described in this paper.

There is a lot of freedom in the representation of the system, since we could have
used any matrix X from the set \BbbX >

, or we could have chosen a representation where Q
was not the identity matrix. In the remainder of this paper, we will restrict ourselves
to pH models where Q = In. The freedom remaining is thus the choice of the matrix
X from \BbbX >

, which we will use to make the representation ``maximally"" robust or
well-conditioned to perturbations.

Remark 2.2. We stress that when the model \scrM is real, then all the definitions
and properties discussed above still hold. Moreover, the sets \BbbX >

and \BbbX \gg 
can be

constrained to be real without altering any of the results, since the real part X\Re 
of a Hermitian matrix X is symmetric and positive (semi-)definite whenever X is
Hermitian and (semi-)definite. When the model \scrM is real it therefore follows that
wheneverW (X) \geq 0 (orW (X) > 0) then we also have thatW (X\Re ) \geq 0 (orW (X\Re ) >
0), and it then suffices to verify these conditions over the real symmetric matrices only.
When doing that, the corresponding pH realizations will also be real. Finally, we point
out that the extremal solutions X - and X+ of the Riccati equations are also real when
the model \scrM is real.

3. The passivity radius. Our goal to achieve robust pH representations of a
passive system can be realized in different ways. A natural measure for this optimality
is a large passivity radius \rho \scrM , which is the smallest perturbation (in an appropriate
norm) to the coefficients of a model \scrM that makes the system nonpassive. In this
section we recall and extend a few results on passivity radii from [5] that will be
employed in the next section.

Once we have determined a solution X \in \BbbX >
to the LMI (2.2), we can determine

the representations (2.8) as discussed in section 2 and the system is automatically
passive (but not necessarily strictly passive). For each such representation we can
determine the passivity radius and then choose the solution X \in \BbbX >

which is most
robust under perturbations \Delta \scrM of the model parameters \scrM := \{ A,B,C,D\} . This
is a very suitable approach for perturbation analysis, since as soon as we fix X, the
matrix

(3.1) W (X,\scrM ) =

\biggl[ 
0 C\sansH 

C D\sansH +D

\biggr] 
 - 
\biggl[ 

A\sansH X +X A X B
B\sansH X 0

\biggr] 
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is linear in the unknowns A,B,C,D, and when we perturb the coefficients, then we
preserve strict passivity as long as

W (X,\scrM +\Delta \scrM ) :=

\biggl[ 
0 (C +\Delta C)

\sansH 

(C +\Delta C) (D +\Delta D)\sansH + (D +\Delta D)

\biggr] 
 - 
\biggl[ 

(A+\Delta A)
\sansH X +X (A+\Delta A) X (B +\Delta B)

(B +\Delta B)
\sansH X 0

\biggr] 
> 0.

Hence, given X \in \BbbX \gg 
, we can look for the smallest perturbation \Delta \scrM to our model

\scrM that makes detW (X,\scrM +\Delta \scrM ) = 0. To measure the size of the perturbation \Delta \scrM 
of a state-space model \scrM we will use the Frobenius norm or the spectral norm

\| \Delta \scrM \| F :=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \Delta A \Delta B

\Delta C \Delta D

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
F

, \| \Delta \scrM \| 2 :=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \Delta A \Delta B

\Delta C \Delta D

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

,

and we use also the following X-passivity radius, which was introduced in [5] and
gives a bound for the usual passivity radius.

Definition 3.1. For X \in \BbbX \gg 
the X-passivity radius is defined as

\rho \scrM (X) := inf
\Delta \scrM \in \BbbC n+m,n+m

\{ \| \Delta \scrM \| | detW (X,\scrM +\Delta \scrM ) = 0\} .

Note that in order to compute \rho \scrM (X) for the model \scrM , we must have a matrix
X \in \BbbX \gg 

, since W (X,\scrM ) must be positive definite to start with, and also X should be
positive definite to obtain a state-space transformation from it. The following relation
between the X-passivity radius and the usual passivity radius was also given in [5].

Lemma 3.2. The passivity radius for a given model \scrM satisfies

\rho \scrM := sup
X\in \BbbX \gg 

inf
\Delta \scrM \in \BbbC n+m,n+m

\{ \| \Delta \scrM \| | detW (X,\scrM +\Delta \scrM ) = 0\} = sup
X\in \BbbX \gg 

\rho \scrM (X).

We now provide an exact formula for the X-passivity radius based on a one-
parameter optimization problem. For this, we rewrite the conditionW (X,\scrM +\Delta \scrM ) >
0 as \biggl[ 

 - X 0
0 Im

\biggr] \biggl[ 
A+\Delta A B +\Delta B

C +\Delta C D +\Delta D

\biggr] 
+

\biggl[ 
A\sansH +\Delta \sansH 

A C\sansH +\Delta \sansH 
C

B\sansH +\Delta \sansH 
B D\sansH +\Delta \sansH 

D

\biggr] \biggl[ 
 - X 0
0 Im

\biggr] 
> 0.(3.2)

Setting

(3.3) \^W := W (X), \^X :=

\biggl[ 
X 0
0 Im

\biggr] 
, \Delta \scrS :=

\biggl[ 
 - \Delta A  - \Delta B

\Delta C \Delta D

\biggr] 
,

inequality (3.2) can be written as the LMI

(3.4) W (X,\scrM +\Delta \scrM ) = \^W + \^X\Delta \scrS +\Delta \sansH 
\scrS 
\^X > 0

as long as the system is still passive. In order to violate this condition, we need to find
the smallest \Delta \scrS such that detW (X,\scrM + \Delta \scrM ) = 0. The following theorem, based
on results of [22] and [5], gives the minimal perturbation \Delta \scrS in both the Frobenius
norm and the spectral norm. We point out that the definition of \Delta \scrS yields that
\| \Delta \scrS \| 2 = \| \Delta \scrM \| 2 and \| \Delta \scrS \| F = \| \Delta \scrM \| F .
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Theorem 3.3. Consider the matrices \^X, \^W in (3.3) and the pointwise positive
semidefinite matrix function

(3.5) M(\gamma ) :=

\biggl[ 
\gamma \^X \^W - 1

2

\^W - 1
2 /\gamma 

\biggr] \bigl[ 
\gamma \^W - 1

2 \^X \^W - 1
2 /\gamma 

\bigr] 
in the real parameter \gamma . Then the largest eigenvalue \lambda max(M(\gamma )) is a unimodal func-
tion of \gamma (i.e., it is first monotonically decreasing and then monotonically increasing
with growing \gamma ). At the minimizing value \gamma , M(\gamma ) has an eigenvector z, i.e.,

M(\gamma )z = \lambda maxz, z :=

\biggl[ 
u
v

\biggr] 
,

where \| u\| 22 = \| v\| 22 = 1. The minimum norm perturbation \Delta \scrS is of rank 1 and is
given by \Delta \scrS = uv\sansH /\lambda max. It has norm 1/\lambda max both in the spectral norm and in the
Frobenius norm.

In [5] also the following simple bound for \lambda max was derived.

Corollary 3.4. Consider the matrices \^X, \^W in (3.3) and the pointwise positive
semidefinite matrix function M(\gamma ) as in (3.5). The largest eigenvalue of M(\gamma ) is also
the largest eigenvalue of

\gamma 2 \^W - 1
2 \^X2 \^W - 1

2 + \^W - 1/\gamma 2.

An upper bound for \lambda max is given by \lambda max \leq 2
\alpha \beta , where \alpha 2 := \lambda min( \^W ) and \beta 2 =

\lambda min( \^X
 - 1 \^W \^X - 1). The corresponding lower bound for \| \Delta \scrS \| 2 and \| \Delta \scrS \| F is given by

\rho \scrM (X) = min
\gamma 

\| \Delta \scrS \| 2 = min
\gamma 

\| \Delta \scrS \| F \geq \alpha \beta /2.

The following theorem, also proven in [5], constructs a rank one perturbation
which makes the matrixW\Delta \scrM singular and therefore gives an upper bound for \rho M (X).

Theorem 3.5. Let \scrM = \{ A,B,C,D\} be a given model and assume that we are
given a matrix X \in \BbbX \gg 

; then the X-passivity radius \rho \scrM (X) is bounded by

\alpha \beta /2 \leq \rho \scrM (X) \leq \alpha \beta /(1 + | v\sansH w| ),

where u, v, and w are vectors of norm 1, satisfying

\alpha 2 := \lambda min( \^W ), \beta 2 = \lambda min( \^X
 - 1 \^W \^X - 1), \^W - 1

2 v = v/\alpha , \^W - 1
2 \^Xu = w/\beta .

Moreover, if v and w are linearly dependent, then \rho \scrM (X) = \alpha \beta /2.

The following corollary shows how these results can be applied to pH systems.

Corollary 3.6. If for a given system \scrM we have that X = In, then the cor-
responding representation of the system is pH, i.e., it has the representation \scrM :=
\{ J  - R,G - K,G\sansH +K\sansH , S+N\} , and the X-passivity radius of this model is given by

\rho \scrM (I) =
1

2
\lambda minW (I,\scrM ) = \lambda min

\biggl[ 
R K
K\sansH S

\biggr] 
.

Proof. The proof follows directly from Theorem 3.5, since under the given as-
sumption we have \alpha = \beta and we can choose u = w. A more intuitive proof follows
from Theorem 3.3, since we then have \^X = In+m and \gamma = 1.
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Finally, we also show that pH realizations always have a better X-passivity radius
than models that are not in pH form.

Theorem 3.7. Let \scrM = \{ A,B,C,D\} be a given model and let X \in \BbbX \gg 
; then the

pH model \scrM T = \{ TAT - 1, TB,CT - 1, D\} constructed from any matrix T such that
X = T\sansH T has an I-passivity radius \rho \scrM T

(I) which is at least as large as \rho \scrM (X).

Proof. It follows from Corollary 3.4 that \rho \scrM (X) satisfies

\rho  - 1
\scrM (X) = min

\gamma 
\| 
\bigl[ 
\gamma \^W - 1

2 \^X \^W - 1
2 /\gamma 

\bigr] \biggl[ \gamma \^X \^W - 1
2

\^W - 1
2 /\gamma 

\biggr] 
\| 2,

while \rho \scrM T
(I) satisfies

\rho  - 1
\scrM T

(I) = min
\gamma 

\| 
\bigl[ 
\gamma \^W - 1

2 \^X
1
2 \^W - 1

2 \^X
1
2 /\gamma 

\bigr] \biggl[ \gamma \^X
1
2 \^W - 1

2

\^X
1
2 \^W - 1

2 /\gamma 

\biggr] 
\| 2

= \| 
\bigl[ 

\^W - 1
2 \^X

1
2 \^W - 1

2 \^X
1
2

\bigr] \biggl[ \^X
1
2 \^W - 1

2

\^X
1
2 \^W - 1

2

\biggr] 
\| 2 = \| 2 \^W - 1

2 \^X \^W - 1
2 \| 2.

But the matrix inequality

\bigl[ 
\gamma \^W - 1

2 \^W - 1
2 /\gamma 

\bigr] \biggl[ \^X2  - \^X

 - \^X In

\biggr] \biggl[ 
\gamma \^W - 1

2

\^W - 1
2 /\gamma 

\biggr] 
\geq 0

implies that

\bigl[ 
\gamma \^W - 1

2 \^W - 1
2 /\gamma 

\bigr] \biggl[ \^X2 0
0 In

\biggr] \biggl[ 
\gamma \^W - 1

2

\^W - 1
2 /\gamma 

\biggr] 
\geq 2 \^W - 1

2 \^X \^W - 1
2

for all values of \gamma , and therefore \rho  - 1
\scrM (X) \geq \rho  - 1

\scrM T
(I) or \rho \scrM (X) \leq \rho \scrM T

(I). Note

also that any other factorization X = (UT )\sansH (UT ) yields the same result, since
\rho \scrM (UT )

(I) = \rho \scrM T
(I).

Remark 3.8. An intuitive explanation of the above result is that any certificate
X associated to an arbitrary model \scrM can be replaced by In for the corresponding
pH model \scrM T . For a pH model \scrM T , the corresponding minimal perturbation will
also only affect the Hermitian part \scrW of the matrix \scrS .

4. Maximizing the passivity radius. The main goal of our paper is the
maximization of the passivity radius over all pH representations of a passive sys-
tem. It follows from Theorem 3.3 that the interplay between \^W := W (X,\scrM ) and
\^X := diag(X, Im) is important. For this we now have a closer look at the constrained
LMI

(4.1) W (X,\scrM ) \geq \xi diag(X, Im)

and obtain the following theorem.

Theorem 4.1. Let \scrM := \{ A,B,C,D\} be a minimal realization of a passive sys-
tem, and let X be any matrix in \BbbX >

. Then there is a unique \xi \ast (X) which is maximal
for the matrix inequality (4.1). Moreover, this value of \xi \ast (X) is also the X-passivity
radius of the pH system \scrM T = \{ TAT - 1, TB,CT - 1, D\} , where X = T\sansH T , in both the
spectral and the Frobenius norm.
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Proof. Every X \in \BbbX >
is positive definite and can be factorized as X = T\sansH T with

detT \not = 0, which defines the transformed system \scrM T = \{ TAT - 1, TB,CT - 1, D\} . It
is obvious that the passivity LMI W (X,\scrM T ) \geq 0 of the transformed system \scrM T is
satisfied with X = In and that it is related to the passivity LMI W (X,\scrM ) \geq 0 of \scrM 
via

W (I,\scrM T ) :=

\biggl[ 
T - \sansH 0
0 Im

\biggr] 
W (X,\scrM )

\biggl[ 
T - 1 0
0 Im

\biggr] 
\geq 0.

It also follows that (4.1) is satisfied if and only if W (I,\scrM T ) \geq \xi In+m is satisfied. But
the largest value \xi \ast (X) of \xi for which this holds is clearly equal to

\xi \ast (X) := max
\xi 

\{ \xi | W (X,\scrM ) \geq \xi diag(X, Im)\} 

= max
\xi 

\{ \xi | W (I,\scrM T ) \geq \xi In+m\} = \lambda minW (I,\scrM T ).

Since state-space transformations do not change the transfer function, it follows that
\scrM T is a particular pH realization of the transfer function of \scrM and that

W (I,\scrM T ) = 2

\biggl[ 
R K\sansH 

K S

\biggr] 
as in Definition 2.1. Then, it follows from Corollary 3.6 that \xi \ast (X) is also equal to the
X-passivity radius \rho \scrM T

(I) of the pH system \scrM T := \{ J - R,G - K,G\sansH +K\sansH , S+N\} ,
and this holds for both the spectral and the Frobenius norm.

We point out that Theorem 4.1 applies to all matrices in \BbbX >
and therefore also

to all matrices in \BbbX \gg 
, which can be distinguished as follows.

Corollary 4.2. The maximal value \xi \ast (X) of a matrix X \in \BbbX >
for a given model

\scrM equals zero if X is a boundary point of \BbbX >
and is positive if and only if X is in \BbbX \gg 

.

Proof. If X is a boundary point of \BbbX >
, then detW (X,\scrM ) = 0, and for those

X, we have \xi \ast (X) = 0. If X belongs to \BbbX \gg 
, then W (X,\scrM ) > 0 and diag(X, Im) >

0. Therefore there exists a \xi > 0 such that W (X,\scrM ) > \xi diag(X, Im), and hence
\xi \ast (X) > 0. Conversely, if \xi \ast (X) > 0, then W (X,\scrM ) > 0 and X \in \BbbX \gg 

.

In order to maximize the passivity radius, it is clear that we need to look at \BbbX \gg 
.

For a given X in \BbbX \gg 
, we therefore consider the passivity LMI W (X,\scrM \xi ) for the

modified model \scrM \xi := \{ A+ \xi 
2In, B,C,D  - \xi 

2Im\} with a \xi chosen such that
(4.2)

W (X,\scrM \xi ) :=

\biggl[ 
 - (A+ \xi 

2In)
\sansH X  - X(A+ \xi 

2In) C\sansH  - XB

C  - B\sansH X (D  - \xi 
2Im)\sansH + (D  - \xi 

2Im)

\biggr] 
\geq 0.

We have the following lemma.

Lemma 4.3. For every X > 0 in \BbbX \gg 
and any 0 \leq \xi  - < \xi + \leq \xi \ast (X), the systems

\scrM \xi  - and \scrM \xi + are passive. Moreover, the whole solution set of W (X,\scrM \xi +) \geq 0 is
included in the solution set of W (X,\scrM \xi  - ) > 0.

Proof. The LMIs for two different values \xi  - < \xi + are related as

W (X,\scrM \xi +) = W (X,\scrM \xi  - ) - (\xi +  - \xi  - ) diag(X, Im).

Since X \in \BbbX \gg 
, \xi \ast (X) > 0 and diag(X, Im) > 0, it follows that

(4.3) W (X,\scrM ) \geq W (X,\scrM \xi  - ) > W (X,\scrM \xi +) \geq W (X,\scrM \xi \ast (X)) \geq 0.
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Hence, the systems \scrM \xi  - and \scrM \xi + are passive, since the associated LMIs have a
nonempty solution set. Now consider any X for which W (X,\scrM \xi +) \geq 0. Since
\xi + is positive, so is \xi \ast (X) and hence X \in \BbbX \gg 

. It then follows from (4.3) that
W (X, \xi  - ) > 0. Hence, the solution set of W (X,\scrM \xi +) \geq 0 is included in the solution
set of W (X,\scrM \xi  - ) > 0.

Lemma 4.3 implies that for a given X \in \BbbX \gg 
, the solution sets of W (X,\scrM \xi ) \geq 0

are shrinking with increasing \xi . It remains to find the \xi \ast (X) that corresponds to
the largest possible passivity radius. We can obtain this value by relating it to the
passivity of the transfer function

\scrT \xi (s) := C((s - \xi /2)In  - A) - 1B + (D  - \xi Im/2)

of the modified system \scrM \xi . Note that we have assumed that the associated system is
minimal, a property which is not changed by the shift. It follows from the discussion of
section 2 that this transfer function corresponds to a strictly passive system if and only
if (i) the transfer function \scrT \xi (s) is asymptotically stable and (ii) the matrix function
\Phi \xi (s) := \scrT \sansH 

\xi ( - s) + \scrT \xi (s) is positive definite on the \imath \omega axis, with \omega = \pm \infty included.
It has been presented in section 2 that the zeros of \Phi \xi (s) are also the eigenvalues of
the Hamiltonian matrix

H\xi :=

\biggl[ 
A+ \xi In/2 0

0  - (A\sansH + \xi In/2)

\biggr] 
+

\biggl[ 
 - B
C\sansH 

\biggr] 
(D\sansH +D  - \xi Im) - 1

\bigl[ 
C B\sansH 

\bigr] 
,

provided that D\sansH +D  - \xi Im > 0 and the realization of \scrM \xi is minimal.
The three algebraic conditions corresponding to strict passivity of \scrT \xi (s) are, there-

fore, given by the following:
A1. A+ \xi In/2 has all its eigenvalues in the open left half plane (stability).
A2. D\sansH +D  - \xi Im has positive eigenvalues (positive-realness at \omega = \infty ).
A3. H\xi has no eigenvalues on the \imath \omega axis (positive-realness at finite \omega ).

All of these conditions are phrased in terms of eigenvalues of certain matrices that
depend on the parameter \xi . Since eigenvalues are continuous functions of the matrix
elements, one can consider limiting cases for the above conditions. As explained in
section 2, the passive transfer functions are limiting cases of the strictly passive ones.
These limiting cases correspond to the first value of \xi where one of the three algebraic
conditions fails. Note that condition A3 is more robustly expressed in terms of the
eigenvalues of the matrix pencil

(4.4) S\xi (s) :=

\left[  0 A+ \xi In/2 - sIn B
A\sansH + \xi In/2 + sIn 0 C\sansH 

B\sansH C D\sansH +D  - \xi Im

\right]  .

It is obvious that the conditions A1--A3 are not satisfied anymore for large enough
\xi \in \BbbR . For instance, for \xi > \lambda min(D

\sansH +D) the second condition fails and \lambda min(D
\sansH +D)

is thus a simple upper bound for \xi \ast (X) for any X.

Theorem 4.4. Let \scrM be a strictly passive system. Then there is a bounded supre-
mum \Xi := sup\xi \{ \xi | \scrT \xi (s) is strictly passive\} for which the following properties hold:

1. \scrT \Xi (s) is passive,
2. the solution set of W (X,\scrM \Xi ) \geq 0 is not empty,
3. the solution of W (X,\scrM \Xi ) > 0 is empty,
4. for any \xi < \Xi the solution set of W (X,\scrM \xi ) > 0 is nonempty,
5. \Xi := sup

X\in \BbbX > \xi \ast (X).
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Proof. The existence of a bounded supremum follows from the fact that \scrT \xi (s) is
strictly passive only if \xi is smaller than \lambda min(D

\sansH + D). Property 1 holds because
\scrT \Xi (s) is the limit of \scrT \xi (s) for \xi \rightarrow \Xi . Property 2 is a direct consequence of the
previous property. Property 3 follows by contradiction, since if W (X,\scrM \Xi ) > 0 would
not be empty, then \xi \ast (X) for X in the solution set of W (X,\scrM \Xi ) > 0 would be
larger than \Xi . Property 4 follows from Lemma 4.3, where we use any X in the
solution set of W (X,\scrM \Xi ) \geq 0 and choose \xi + = (\Xi + \xi )/2 and \xi  - = \xi to show
that X also lies in the solution set of W (X,\scrM \xi ) > 0. Property 5 follows from
\xi \ast (X) = max\{ \xi | W (X,\scrM \xi ) \geq 0\} , which expresses that \scrT \xi (s) is passive.

We now link the value of \Xi in Theorem 4.4 to the passivity radius of an optimally
robust pH realization.

Theorem 4.5. Let \scrM := \{ A,B,C,D\} be a minimal realization of a strictly pas-
sive transfer function \scrT (s) := C(sI  - A) - 1B +D. Then

\Xi := sup
\xi 
\{ \xi | \scrT \xi (s) is strictly passive\} 

is the largest possible passivity radius out of all realizations of this transfer func-
tion. The models with such an optimal passivity radius correspond to a solution X
of W (X,\scrM \Xi ) \geq 0 and a pH realization is given by \scrM T := \{ T - 1AT,BT, T - 1C,D\} ,
where X := T\sansH T .

Proof. Consider realizations \scrM T := \{ T - 1AT,BT, T - 1C,D\} with X := T\sansH T
and X \in W (X,\scrM ) \geq 0. It was shown in Theorem 4.1 that such realizations have
passivity radius equal to \xi \ast (X) and Theorem 4.4 shows that the supremum of all
\xi \ast (X) is precisely \Xi .

Let us now consider an arbitrary model \scrM . Then its passivity radius is \rho \scrM =
\rho \scrM (X) for some X \in \BbbX \gg 

. It follows that the passivity radius of the pH realization
\scrM T derived from X = T\sansH T is larger than or equal to that of \scrM . Moreover, the
corresponding passivity radius is \xi \ast (X). To complete the proof we point out that the
matrices X that maximize \xi \ast (X) are in W (X,\scrM \Xi ) \geq 0.

In this section we have derived a characterization of the passivity radius of a
strictly passive system. In the next section we show how this can be computed
numerically.

5. Computing the optimal passivity radius. In this section we describe
algorithms that compute, within a given tolerance \tau , an approximation of the optimal
\Xi as in Theorem 4.5 for a given minimal realization \scrM := \{ A,B,C,D\} of a passive
system.

First of all, if \scrM is passive but not strictly passive, then \Xi = 0. If \scrM is strictly
passive, then a simple upper bound for \Xi is given by the conditions A1 and A2 in
section 4, i.e.,

\Xi up = min

\biggl[ 
min
j

( - 2\Re \lambda j(A)), \lambda min(D
\sansH +D)

\biggr] 
.

The procedure to compute \Xi can then be restricted to the interval 0 \leq \xi \leq \Xi up and
consists in checking condition A3, namely that H\xi has no generalized eigenvalues on
the imaginary axis. In order to prove this, we first recall some basic properties of the
scalar function

(5.1) \gamma (\xi , \omega ) := \lambda min\Phi \xi (\imath \omega ), where \Phi \xi (s) := \scrT \sansH 
\xi ( - s) + \scrT \xi (s).
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Theorem 5.1. The real function \gamma (\xi , \omega ) := \lambda min\Phi \xi (\imath \omega ) in (5.1) is continuous in
the real variables \xi and \omega and it has the following properties. It is positive for all \omega 
in the interval \xi \in [0,\Xi ), it is zero for at least one value of \omega at \xi = \Xi , and it is
negative in some open interval(s) of \omega whenever \xi \in (\Xi ,\Xi up], provided that \Xi < \Xi up.

Proof. The continuity follows trivially from the fact that eigenvalues of a (Hermit-
ian) matrix are continuous functions of the parameters of the matrix. It is clear that if
\xi < \Xi , then the matrix function \Phi (\imath \omega ) is positive definite for all \omega and so is its small-
est eigenvalue \gamma (\xi , \omega ). When we increase \xi and reach the limiting value \Xi , then the
transfer function is passive but not strictly passive anymore, and hence \gamma (\xi , \omega ) must
lose positivity in at least one point \imath \omega , i.e., H\xi must have at least one eigenvalue on
the imaginary axis. When we further increase \xi , H\xi will have more purely imaginary
eigenvalues, and there will be purely imaginary eigenvalues for all \xi \in [\Xi ,\Xi up] because
at \omega = \pm \infty we have \lambda min\Phi \xi (\pm \infty ) = \lambda min(D

\sansH +D  - \xi Im) = \lambda min(D
\sansH +D)  - \xi \geq 0.

By continuity, \gamma (\xi , \omega ) = 0 must therefore intersect the zero-level for all \xi \in [\Xi ,\Xi up].
Notice also that when D\sansH +D - \xi Im > 0, then the 2n eigenvalues of H\xi are bounded
and so are those on the imaginary axis. These three different cases are also depicted
in Figure 5.1.

As a consequence of Theorem 5.1, the smallest value of \xi in the interval [0,\Xi up],
where condition A3 fails, is equal to \Xi . (Note that this could be equal to \Xi up.) One
can then apply bisection to this interval and check the presence of purely imaginary
eigenvalues in the above interval. Putting \Xi lo = 0, we have the following procedure.

Bisection procedure for computing \Xi .

\xi = (\Xi lo + \Xi up)/2; if H\xi has purely imaginary eigenvalues \Xi up := \xi , else \Xi lo := \xi .

Since the interval for \Xi shrinks by a factor 2 at each step of the iteration, then in
k = \lceil log2(\Xi up/\tau )\rceil steps we will have \Xi up  - \Xi lo \leq \tau .

Fig. 5.1. Three frequency plots for the cases \xi smaller than, equal to, and larger than \Xi .
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One can also view the Hermitian matrix M(\omega , \xi ) in the real variables \omega and \xi 

M(\omega , \xi ) :=

\left[  0 A+ \xi In/2 - \imath \omega In B
A\sansH + \xi In/2 + \imath \omega In 0 C\sansH 

B\sansH C D\sansH +D  - \xi Im

\right]  ,

as a generalized eigenvalue problem S\xi (\imath \omega ) in \omega for a fixed value \xi or as a generalized
eigenvalue problem S\imath \omega (\xi ) in \xi for a fixed value \imath \omega . One can then use this to conceive a
method similar to the technique developed in [7] for the computation of the L\infty -norm
of a transfer function.

Let \^\xi \in [\Xi ,\Xi up], let \Omega be the set of purely imaginary eigenvalues of S\^\xi (\imath \omega ), let
\partial \Omega be the corresponding set of derivatives of these eigenvalues with respect to \omega , and
let \gamma (\^\xi , \omega ) be the smallest eigenvalue of \Phi \^\xi (\imath \omega ). Then we exploit the following ideas:

1. The real roots \omega i of \gamma (\^\xi , \omega ) are a subset of \Omega . They can be identified by looking
at the derivatives in \partial \Omega . We can also identify the intervals for which the
function \gamma (\^\xi , \omega ) is negative. A detailed description of this selection procedure
is described in [27].

2. If (\omega 1, \omega 2) is an open interval for the real variable \omega where \gamma (\^\xi , \omega ) < 0 then the

smallest real root \~\xi of S\imath \omega (\xi ) lies between 0 and \^\xi in that interval. Moreover,
at the midpoint \^\omega := (\omega 1 + \omega 2)/2 the smallest real eigenvalue \~\xi lies in the

interval [0, \^\xi ) and is a new upper bound for \Xi .
This then leads to the following algorithm, which we believe should have better con-
vergence properties than the bisection algorithm, because of its similarity with the
method described in [7]. A detailed analysis of its convergence requires more investi-
gation.

Fig. 5.2. Three-dimensional illustration of \gamma (\xi , \omega ).
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An improved algorithm.
1. \^\xi := \Xi up  - \tau .
2. Compute the eigenvalues of S\^\xi (\imath \omega ) and select those corresponding to real

zeros of \gamma (\^\xi , \omega ).

3. if \gamma (\^\xi , \omega ) has no real zeros, then \Xi lo = \^\xi , stop,
4. else let \^\omega := (\omega 1 + \omega 2)/2 for the largest interval (\omega 1, \omega 2) of these roots.

Compute the real eigenvalues \xi i of S\xi (\imath \^\omega ) and update \Xi up := mini \xi i.

Define the next guess \^\xi := \Xi up  - \tau and go to step 2.
Both algorithms rely on eigenvalue solvers and hence have a complexity that

is cubic in the matrix dimensions, but they are guaranteed to provide a required
accuracy. For large-scale problems, this complexity may become a problem, but one
can combine it with iterative structured Krylov space techniques like those discussed
in [20] or model reduction based techniques as in [2, 3].

6. The distance to passivity. In real-world applications the system data are
usually inaccurate and therefore only an approximate model is known. Often the real
physical problem is nonlinear or a partial differential equation and it is approximated
by a finite element or finite difference model [17], it may be obtained by a realization
or system identification procedure [10, 16, 24], or it is the result of a model reduction
procedure [4]. Then it is in general not clear that in the approximation process
passivity is preserved. In this situation one approximates the nonpassive system by a
(hopefully) nearby passive system, by introducing small or minimal perturbations to
the model \scrM := \{ A,B,C,D\} ; see [1, 9, 10, 12, 15, 24, 26]. Therefore, in this section
we start with a system \scrM that is not passive and ask the question about the smallest
perturbation \Delta \scrM of the model that makes the system \scrM +\Delta \scrM passive.

It is clear from our previous analysis that to find the smallest perturbation that
makes the system passive is equivalent to finding the smallest perturbation \Delta \scrM such
that the LMI W (X,\scrM +\Delta M) \geq 0 has a Hermitian and positive semidefinite solution
X. Moreover, if the perturbed system remains minimal, then we expect X > 0. We
recall the notation

\scrS :=

\biggl[ 
 - A  - B
C D

\biggr] 
and \Delta \scrS :=

\biggl[ 
 - \Delta A  - \Delta B

\Delta C \Delta D

\biggr] 
.

Definition 6.1. The distance to passivity of a minimal system \scrM =\{ A,B,C,D\} 
is the minimum norm \| \Delta \scrS \| 2 (\| \Delta \scrS \| F ) such that there exists a matrix X > 0 satisfying

(6.1) (\scrS +\Delta \scrS )
\sansH \^X + \^X(\scrS +\Delta \scrS ) \geq 0, where \^X :=

\biggl[ 
X 0
0 Im

\biggr] 
.

In the following we need an extension of Lemma 4.3, for which we consider the
LMI for the modified model \scrM  - \xi := \{ A - \xi 

2In, B,C,D+ \xi 
2Im\} with the corresponding

transfer function

(6.2) T - \xi (s) := C((s+ \xi /2)In  - A) - 1B + (D + \xi Im/2)

and LMI

W (X,\scrM  - \xi ) :=

\biggl[ 
 - (A - \xi 

2In)
\sansH X  - X(A - \xi 

2In) C\sansH  - XB

C  - B\sansH X (D + \xi 
2Im)\sansH + (D + \xi 

2Im)

\biggr] 
\geq 0.(6.3)
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Lemma 6.2. Let \scrM := \{ A,B,C,D\} be a nonpassive system. Then for every
X > 0 in \BbbH n there exists a \xi \ast (X) > 0 such that the LMI (6.3) for the system
\scrM  - \xi \ast (X) holds. Moreover, for every value \xi > \xi \ast (X), the system \scrM  - \xi is passive.

Proof. Clearly we have that W (X,\scrM  - \xi ) = W (X,\scrM ) + \xi \^X. Since W (X,\scrM ) is

bounded from below and \^X > 0, the inequalityW (X,\scrM  - \xi ) \geq 0 holds for a sufficiently
large value of \xi . Let \xi \ast (X) be the smallest \xi value for which W (X,\scrM  - \xi ) \geq 0 holds;

then W (X,\scrM  - \xi ) = W (X,\scrM  - \xi \ast (X))+(\xi  - \xi \ast (X)) \^X, which implies that the passivity
condition holds for all \xi > \xi \ast (X).

To find the optimal \xi , let us consider first perturbations \Delta \scrS that are a multiple
of the identity.

Theorem 6.3. The minimum norm perturbation of the type

(6.4) \Delta \scrS =
1

2
\xi In+m

that makes system \scrM passive has spectral norm \Xi /2 and Frobenius norm \Xi 
\surd 
n+m/2,

where \Xi is the minimum value of \xi such that the model \scrM  - \xi := \{ A - \xi In/2, B,C,D+
\xi Im/2\} with transfer function T - \xi (s) is passive.

Proof. It follows from (6.1) that \xi must satisfy

(6.5)

\biggl( 
\scrS +

1

2
\xi In+m

\biggr) \sansH 

\^X + \^X

\biggl( 
\scrS +

1

2
\xi In+m

\biggr) 
\geq 0, where \^X :=

\biggl[ 
X 0
0 Im

\biggr] 
,

for some X > 0. By Lemma 6.2 there exists a bounded minimal solution, which we
call \Xi . The state-space model corresponding to \scrS + 1

2\xi In+m is \scrM  - \xi with transfer
function (6.2). Therefore, \Xi is the smallest value of \xi that makes the model \scrM  - \xi 

with transfer function T - \xi (s) become passive. We can then choose X > 0 from the
solution set of W (X,\scrM  - \Xi ) \geq 0 to satisfy (6.1).

The minimal value \Xi of \xi for the restricted class of perturbations being a multiple
of the identity can then be computed with the algorithms described in the previous
section.

Since, most likely, the perturbation will not lead to (6.1) being an equality,
we can reduce the Frobenius norm of the perturbation \Delta \scrS by considering more
general perturbations than (6.4). In order to do that, we use a matrix X from
the set W (X,\scrM  - \Xi ) \geq 0, where \Xi was obtained from perturbations as in (6.4).
We use the factorization X = T\sansH T to transform the system \scrM to the pH form
\scrM T = \{ TAT - 1, TB,CT - 1, D\} := \{ J - R,G - K,G\sansH +K\sansH , S+N\} . If we denote the
transformed matrix \scrS as \^\scrS := \^T\scrS \^T - 1, where \^T = diag(T, Im), then it follows that

1

2
( \^\scrS \sansH + \^\scrS ) =: \^\scrR =

\biggl[ 
R K
K\sansH S

\biggr] 
\geq  - \Xi In+m,

since \scrM  - \Xi is passive. The smallest eigenvalue of 1
2 (

\^\scrS \sansH + \^\scrS ) is greater than or equal
to  - \Xi , but the other eigenvalues may be larger or even positive.

To obtain a solution for the minimum Frobenius norm problem

min
\Delta \scrS 

\biggl\{ 
\| \Delta \scrS \| F | 1

2
[( \^T\Delta \scrS \^T - 1)\sansH + \^T\Delta \scrS \^T - 1] +

\biggl[ 
R K
K\sansH S

\biggr] 
\geq 0

\biggr\} 
,
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let \^T = \^UT \^\Sigma \^V be a singular value decomposition with \^\Sigma diagonal and \^U, \^V unitary.
Then we can alternatively study the problem

(6.6) min
\Delta \~\scrS 

\biggl\{ 
\| \Delta \~\scrS \| F | 1

2
[(\^\Sigma \Delta \~\scrS 

\^\Sigma  - 1)\sansH + \^\Sigma \Delta \~\scrS 
\^\Sigma  - 1] + \~\scrR \geq 0

\biggr\} 
,

where \Delta \~\scrS := \^V\Delta \scrS \^V H and \~\scrR := \^U \^\scrR \^U\sansH .

For the given \~\scrR we have a unitary spectral decomposition

\~U\sansH \~\scrR \~U = diag(D1, 0) - diag(0, D2),

where D1 is diagonal with positive diagonal elements and D2 is diagonal with non-
negative diagonal elements. Then \Delta \~\scrR = \~U\sansH diag(0, D2) \~U is the minimum Frobenius
norm perturbation so that \~\scrR +\Delta \~\scrR is positive semidefinite. We can then replace the
optimization problem (6.6) by the simpler problem

(6.7) min
\Delta \~\scrS 

\biggl\{ 
\| \Delta \~\scrS \| F | 1

2
[(\^\Sigma \Delta \~\scrS 

\^\Sigma  - 1)\sansH + \^\Sigma \Delta \~\scrS 
\^\Sigma  - 1] = \Delta \~\scrR 

\biggr\} 
.

Indeed, let \Delta F be the strictly lower triangular part plus 1
2 the diagonal part of \Delta \~\scrR .

Then clearly \^\Sigma  - 1\Delta F \^\Sigma is the optimal Frobenius norm solution to (6.7).
It should be pointed out that we could have used another matrix X from the

domain of W (X,\scrM  - \Xi ) \geq 0. The matrices R, K, and S will then change and the
minimum Frobenius norm solution will be affected as well. Note that if we choose a
matrix X that does not belong to the solution set of W (X,\scrM  - \Xi ) \geq 0, then because
of Lemma 6.2, the value of the most negative eigenvalue in \Lambda will be equal to  - \xi \ast (X),
but it follows that \xi \ast (X) > \Xi . It is therefore unlikely that the Frobenius norm of the
constructed minimum norm perturbation will be smaller.

7. The distance to stability. We can employ similar arguments as in the
previous section for the computation of the smallest perturbation that makes a given
system stable; see [13, 14, 19, 21] for other approaches. When searching for the
smallest perturbation we only have to study the (1, 1) block of the LMI (2.2), i.e., the
case where the matrices B, C, and D are void, or where m = 0. In this case we write
the LMI (2.2) as

(7.1) W (X,A) =  - A\sansH X  - XA = 2R \geq 0,

while the shifted LMI takes the form

(7.2) W\xi (X,A) := W (X,A) - \xi X =  - (A+\xi In/2)
\sansH X - X(A+\xi In/2) = 2R - \xi X \geq 0.

For any X in the solution set of W (X,A) \geq 0, the shifted LMI (7.2) has a
nonempty solution set as long as \xi is smaller than \xi \ast (X). Instead of the three condi-
tions A1--A3 for passivity, we only have one condition, namely that the Hamiltonian
matrix

(7.3) H\xi :=

\biggl[ 
A+ \xi In/2 0

0  - (A\sansH + \xi In/2)

\biggr] 
= H + \xi /2

\biggl[ 
In 0
0  - In

\biggr] 
has no purely imaginary eigenvalue for all 0 \leq \xi < \xi \ast (X). So if \Xi is the largest
value of \xi \ast (X) over all X in the solution set of W (X,A) \geq 0, then the solution set of
W\Xi (X,A) \geq 0 is not empty, but it has an empty interior.
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A well-known formula for the stability radius \rho A of a given matrix A is given by

\rho A = min
\omega \in \BbbR 

\sigma min(A - \imath \omega In).

The perturbation that achieves the minimum is constructed from the smallest singular
value \sigma min and corresponding singular vectors u and v of A - \imath \omega In at the minimizing
value of \omega :

(A - \imath \omega In)v = \sigma minu, \Delta A := \sigma minuv
\sansH .

A similar result is obtained using the analysis of section 3. This encourages us to also
use the distance to passivity results to derive bounds for the distance to stability.

Let us first look at the solution of the problem for a specific diagonal form of
the perturbation. Given an unstable matrix A we study the question of what is
the smallest perturbation of the type \Delta A :=  - 1

2\xi In that makes the matrix stable.
Following a similar analysis as in section 6 we can prove the following theorem.

Theorem 7.1. The minimum norm solution of the form

(7.4) \Delta A =  - 1

2
\xi In

for the stabilization problem of a matrix A, has spectral norm \Xi /2 and Frobenius norm
\Xi 
\surd 
n/2, where \Xi is the minimum value of \xi such that the matrix A - \xi := A - \xi In/2,

is stable.

Proof. Clearly \xi must satisfy

(7.5)  - 
\biggl( 
A - 1

2
\xi In

\biggr) \sansH 

X  - X

\biggl( 
A - 1

2
\xi In

\biggr) 
\geq 0

for some X > 0. It follows from Lemma 6.2 that there exists a bounded minimal
solution, which we call \Xi . The matrix corresponding to A - \xi := A  - 1

2\xi In has the
associated Hamiltonian matrix

H - \xi :=

\biggl[ 
A - \xi In/2 0

0  - (A\sansH  - \xi In/2)

\biggr] 
.

Let \Xi be the smallest value such that H - \xi has no purely imaginary eigenvalues for
\xi < \Xi . Then the matrix A - \Xi is stable (but not asymptotically stable) and we can
then choose X > 0 from the solution set of W (X,A - \Xi ) \geq 0 to satisfy (7.5).

Since we made some of the eigenvalues of the LMI in (7.5) positive, rather than
nonnegative, we can further reduce the Frobenius norm of the perturbation \Delta A when
removing the imposed restriction of a diagonal perturbation. In order to do that, we
use a matrix X from the set W (X,A - \Xi ) \geq 0, where \Xi was obtained from the diagonal
perturbation. Using its factorization X = T\sansH T , we transform A to AT = TAT - 1 :=
J  - R, which satisfies

 - 1

2
(A\sansH 

T +AT ) = R \geq  - \Xi In,

since A - \Xi is stable. We know that the smallest eigenvalue equals  - \Xi , but the others
may be larger or even positive. In order to construct a nearly optimal solution to this,
we can again use the two-stage procedure and the perturbation result derived in the
previous section.
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8. Conclusion. We have presented analytic formulas and numerical methods to
construct optimally robust port-Hamiltonian realizations of a given transfer function
of a linear time-invariant passive system. We have shown how to use shifted linear
matrix inequalities to achieve this goal. The techniques can also be applied to compute
a nearby passive system to a given nonpassive one or a nearby stable system to a given
unstable one.
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