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Abstract. When computing the eigenstructure of matrix pencils associated with the passivity
analysis of perturbed port-Hamiltonian descriptor system using a structured generalized eigenvalue
method, one should make sure that the computed spectrum satisfies the symmetries that corresponds
to this structure and the underlying physical system. We perform a backward error analysis and show
that for matrix pencils associated with port-Hamiltonian descriptor systems and a given computed
eigenstructure with the correct symmetry structure there always exists a nearby port-Hamiltonian
descriptor system with exactly that eigenstructure. We also derive bounds for how near this system
is and show that the stability radius of the system plays a role in that bound.
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1. Introduction. We study the perturbation analysis of the eigenstructure (fi-
nite and infinite eigenvalues, left and right eigenvectors) of matrix pencils associated
the with the passivity analysis of linear time-invariant descriptor systems of the form

Eẋ(t) = Ax(t) +Bu(t), x(0) = 0,
y(t) = Cx(t) +Du(t),

(1.1)

where u : R→ Cm, x : R→ Cn, and y : R→ Cm are vector-valued functions denoting,
respectively, the input, state, and output of the system. Denoting real and complex
n-vectors (n × m matrices) by Rn, Cn (Rn×m, Cn×m), respectively, the coefficient
matrices satisfy A,E ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n, and D ∈ Cm×m. Note that
we require that input and output dimensions are both equal to m; and that sE − A
is a square regular pencil sE −A, i.e. det(sE −A) does not vanish identically for all
s ∈ C.

We will particularly focus on systems that are positive real or passive and their
port-Hamiltonian realizations (see next section). Our work is motivated by two ap-
plications, the first is the perturbation analysis arising from computational methods
to compute the eigenstructure [21, 45] and the second arises from the need to obtain
small perturbations that bring the system back to this structure when it has been
destroyed in the process of discretization, model reduction, or other computational
techniques, [1, 9, 16, 22, 25, 37]. In these applications one either wants to deter-
mine a nearby passive system with the perturbed eigenstructure (if this exists) or
one wants to perturb the eigenstructure so that it is that of a nearby passive system
[20]. A similar problem arises in stability analysis and the computation of stability
radii and smallest pertubations that make a system stable [18, 19, 29]. Most of these
previous works are for standard passive systems. Here we deal with descriptor sys-
tems, as they arise from the linearization around stationary solutions of systems of
differential-algebraic equations [8, 13, 27, 33].

Throughout this article we will use the following notation. The Hermitian (or
conjugate) transpose (transpose) of a vector or matrix V is denoted by V H (V T) and
the identity matrix is denoted by In or I if the dimension is clear. We denote the
set of Hermitian and skew-Hermitian matrices in Cn×n, respectively, by Hn and Sn.
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Positive definiteness (semi-definiteness) of A ∈ Hn is denoted by A > 0 (A ≥ 0).
The set of all positive definite (positive semidefinite) matrices in Hn is denoted H>

n

(H≥
n). With In(H) of a Hermitian matrix H we denote the triple of integers {p, n, z}

of numbers of positive, negative and zero eigenvalues of H. The real and imaginary
parts of a complex matrix Z are written as <(Z) and =(Z), respectively, and ı is
the imaginary unit. The 2-norm of a matrix M will be denoted by ‖M‖2 and the
Frobenius norm by ‖M‖F . The Frobenius norm of a list of matrices Mi, i = 1, . . . , k

is defined as ‖(M1, . . . ,Mk)‖F :=
√∑k

i=1 ‖Mi‖2F .

1.1. Positive-realness, passivity, port-Hamiltonian systems . By apply-
ing the Laplace transform to (1.1) and eliminating the state, we obtain the transfer
function

T (s) := D + C(sE −A)−1B, (1.2)

mapping the Laplace transform of u to that of y. On the imaginary axis ıR, T (ıω)
describes the frequency response of the system. We have the following definition of
positive realness and passivity for descriptor systems, see e.g. [16].

Definition 1.1.
1. A transfer function T (s) as in (1.2) is positive real if it is i) analytic in the

open right half complex plane (including∞), and ii) Φ(s) := T (s)+[T (s)]H ≥
0 for all s in the closed right half complex plane. Moreover, T (s) is strictly
positive real if Φ(s) > 0 for all s in the closed right half complex plane.

2. A system of the form (1.1) is passive if there exists a state-dependent storage
function, H(x) ≥ 0, such that for any t1 > t0 ∈ R the dissipation inequality

H(x(t1))−H(x(t0)) ≤
∫ t1

t0

<(y(t)Hu(t)) dt (1.3)

holds. If for all t1 > t0, inequality (1.3) is strict then the system is called
strictly passive.

It is well-known, see e.g. [5, 16], that a system with regular pencil sE − A that
is controllable (rank[ sE − A, B ] = n for all s ∈ C), and observable (rank[ sEH −
AH, CH ] = n for all s ∈ C) is (strictly) passive if and only if it is positive real and
(asymptotically) stable (all finite eigenvalues of sE − A are in the closed (open) left
half complex plane, and those on the imaginary axis including ∞ are semisimple).

In recent years, the special class of port-Hamiltonian (pH) realizations of passive
systems has received a lot attention. PH systems are a tool for energy-based modeling,
see [40]; with the energy storage function H(x) = 1

2x
HEx, the dissipation inequality

(1.3) holds and so pH systems are always passive. The (robust) representation of
passive systems as pH systems has been analyzed in [5], and in the extension to pH
descriptor systems in [6, 34, 41].

Definition 1.2. A linear time-invariant port-Hamiltonian (pH) descriptor sys-
tem has the generalized state-space form

Eẋ = (J −R)x+ (G− P )u,
y = (G+ P )Hx+ (S −N)u,

(1.4)

where the coefficient matrices satisfy

E = EH ≥ 0, V :=

[
J G
−GH N

]
= −VH, W :=

[
R P
PH S

]
=WH ≥ 0.
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The correspondence with the generalized state-space realization (1.1) is given via
A = J −R, B = G− P , CH = G+ P , and D = S −N .

The pH representation seems to be a very robust representation [30], it allows
easy ways for structure preserving model reduction [23, 39] and it greatly simplifies
optimization methods for computing stability and passivity radii [18, 19, 20, 37].

1.2. Eigenstructure computation. In order to guarantee that a transfer func-
tion T (s) := C(sE − A)−1B + D is strictly passive, it suffices to make sure that its
poles are stable and that the para-Hermitian matrix function T (s) + T H(−s), has no
transmission zeros on the imaginary axis [5, 16]. These transmision zeros are also the
eigenvalues of the even matrix pencil

S(s) := s

 0 E 0
−EH 0 0

0 0 0

−
 0 A B
AH 0 CH

BH C DH +D

 . (1.5)

An often more advantageous representation of this pencil (in the context of pH sys-
tems) is obtained by applying a congruence transformation. Consider the unitary
matrix

X :=
1√
2

[
In In
In −In

]
,

and X̂ := diag(X, 1√
2
Im), then one can form the specially structured even pencil

Ŝ(s) := X̂HS(s)X̂, where

Ŝ(s) := s

 0 E 0
−EH 0 0

0 0 0

−
 −R −J G
−JH R −P
GH −PH S

 . (1.6)

The system is passive if the pencil (1.5) (or equivalently the pencil (1.6)) is regular,
has no purely imaginary eigenvalues and the infinite eigenvalues are semisimple, see
[16], so computing the eigenvalues and the structure at ∞ allows to check passivity.

In view of this fact it is important to understand the perturbation theory and
the backward error analysis for the pencils (1.5) (or equivalently the pencil (1.6)). In
this respect, the advantage of the form (1.6) is that perturbations can be mapped
back directly to the data matrices {E, J,R,G, P, S}, while in (1.5) this holds for the
data matrices {E,A,B,C,D}. In both cases, for the backward error analysis, we
should also make sure that an arbitrary perturbation of the pencil can be mapped
back in a structured sense to perturbations in the data matrices, meaning that the
zero blocks should not be perturbed, that the perturbed matrices E,W should remain
Hermitian, positive semidefinite, and J skew-Hermitian, and that the repeated block
entries should have repeated perturbations as well.

There exist simple and well-conditioned transformations to go back and forth
between the two representations (1.1) and (1.4), since[

−R G S
J −P −N

]
=

1√
2
X

[
A B D
AH CH DH

]
,

and [
A B D
AH CH DH

]
=
√

2XH

[
−R G S
J −P −N

]
.

Thus for a perturbation analysis we can use either of the two sets of data matrices.
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1.3. Backward error analysis. Let us assume that we have determined (via a
computational method) an approximate eigenstructure of the pencil S(s) := sE − A.
A backward error analysis yields that this eigenstructure corresponds to the exact
eigenstructure of a perturbed pencil

(S + ∆S)(s) := s(E + ∆E)− (A+ ∆A),

where ‖(∆E ,∆A)‖F ≈ ε‖(E ,A)‖F and ε is the perturbation level. If the eigenstructure
is determined by a backward stable algorithm, then ε is a small multiple of the machine
precision (round-off unit), but in other approximations it may be much larger, e.g.
when the perturbation arises from model reduction or other approximations. But
even if the relative perturbation (∆E ,∆A) is small, it is likely to destroy the structure
present in the original pencil sE − A.

In view of this, we will verify if the perturbed (computed) eigenstructure corre-
sponds exactly to that of a pH descriptor system, by reconstructing such a pH system.
If this is not possible, we are interested in finding the nearest pH descriptor system to
the given one. Related questions have already been studied in [3, 5, 18, 20, 29, 36, 37]
in the context of finding best pH representations of stable and passive systems and
the computation of stability and passivity radii of linear time-invariant dynamical
systems. However, all these papers mainly deal with classical pH systems, i.e. the
case E = I; here we study pH descriptor systems, which have extra properties that
need to be incorporated [31, 32].

1.4. Stability Radii. A lower bound for the backward errors that one can ex-
pect is the stability radius of the generalized eigenvalue problem sE − A, since pH
systems are guaranteed to be stable. The stability radius ρ(E,A) of a pencil sE−A is
defined as the smallest perturbation ‖(∆E ,∆A)‖F that causes s(E+ ∆E)− (A+ ∆A)
to be on the border of the stability region [17]. In the descriptor case this happens
when an eigenvalue reaches the imaginary axis, when the system has an infinite eigen-
value with Jordan block of size greater than 1, or when the pencil becomes singular
[15].

In general, to characterize the smallest perturbation that makes a pencil singular
is an open problem for unstructured descriptor systems [11, 24] and requires very
complex optimization methods even in special cases. However, for pH descriptor sys-
tems it has recently been shown in [32] that these distances are easily characterized.
Actually the distance to singularity is given by the smallest perturbation that gen-
erates a common nullspace of E, J,R, while actually the distance to instability and
the structured distance to the nearest problem with an infinite eigenvalue with Jor-
dan block of size greater or equal to 2, are the same and are characterized by the
smallest perturbation that generates a common nullspace of E and R under structure
preservering perturbations.

The classical stability radius is given by

ρ(E,A) = inf
‖(∆E ,∆A)‖F

{Λ(E + ∆E , A+ ∆A) ∩ ı< 6= ∅} = inf
ω
σn(A− ıωE)/

√
1 + ω2,

(1.7)
and the minimizing perturbation can be constructed from the n-th singular value
triple (σn, un, vn) of the pencil sE−A evaluated at the minimizing frequency s = ıω :

∆E := ıωσnunv
H
n/(1 + ω2), ∆A := σnunv

H
n/(1 + ω2). (1.8)

For large scale pH systems, recently a computational method to compute the stability
radius has been derived in [2].
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The paper is organized as follows. In Section 2 we construct a congruence trans-
formation that restores the special structure of the pencil sE − A and we compute
upper bounds for its departure from the identity. In Section 3 we illustrate the results
of Section 2 with a number of numerical experiments. In Section 4 we end with a few
concluding remarks.

2. Computing structured perturbation matrices that realize backward
errors. In this section we address the question whether an eigenstructure associated
with a system of the form (1.1) corresponds to that of a pencil associated with a pH
descriptor system. Assume that sE − A is a regular pencil and that i) rank[ sE −
A, B ] = n for all s ∈ C, i.e. the system is controllable, and ii) rank[ sEH−AH, CH ] =
n for all s ∈ C, i.e. the system is observable, see [10, 33] for a detailed discussion.
Before we characterize structured backward errors we need the following lemma.

Lemma 2.1. Consider a controllable and observable descriptor system of the
form (1.1) associated with a strictly passive pH descriptor system of the form (1.4)
and with E positive definite. If sE − A is a regular pencil, then the finite generalized
eigenvalues of sE −A are symmetric with respect to the imaginary axis and there are
exactly m semisimple infinite generalized eigenvalues. Moreover, for all ω ∈ R,

In(ıE) = {n, n,m}, In(A− ıωE) = {n+m,n, 0}.

Proof. Since E > 0 and since sE − A is regular, the pencil sE − A has exactly
m infinite eigenvalues. Since by strict passivity W > 0, it follows that DH + D > 0.
Hence the infinite eigenvalues are semisimple and the finite eigenvalues of sE −A are
the eigenvalues of the Hamiltonian matrix

H :=

[
E−1A 0

0 −AHE−H

]
−
[
E−1B
−CH

]
(DH +D)−1

[
C BHE−H

]
obtained by forming the Schur complement of sE −A with respect to the block DH +
D > 0. It is well-known, see [33, 38] that Hamiltonian matrices have a spectrum that
is symmetric with respect to the imaginary axis. The inertia of the Hermitian matrix
(ıE) is clearly {n, n,m}, since E is invertible. Since we have assumed controllability
and observability, it is also well-known [33, 45] that sE − A has no purely imaginary
eigenvalues.

A similar result as Lemma 2.1 can also be obtained for the case that E and/orW
are only semidefinite. In this case one has to separate the differential and the algebraic
equations and one has to make the stronger assumption that the pencil sE − A has
semisimple infinite eigenvalues. This can be achieved via structured staircase forms,
see e.g. [10] for general descriptor system and [4] for pH descriptor systems. In the
following we treat the case of Lemma 2.1, i.e. we assume that E,W > 0 so that we
are not on the boundary of the set of passive systems.

When we perturb the pencil sE −A, it is clear that we cannot allow for arbitrary
perturbations. The symmetry of the finite spectrum follows from the fact that A is
Hermitian end E is skew-Hermitian. We will therefore require that the perturbation
preserves this, and hence that the backward errors ∆A and ∆E are also Hermitian
and skew-Hermitian, respectively.

If we start to perturb a matrix, then its inertia remains constant in an open neigh-
borhood of the matrix only if it has no zero eigenvalues. Otherwise the inertia will
change for arbitrarily small perturbations, unless we impose constraints on the type
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of perturbations. Therefore we will need to impose that our perturbation preserves
the rank of the matrix E .

When computing the eigenstructure of even pencils such as (1.5) or (1.6), then
there exist algorithms that guarantee these properties, see [7] and the references
therein. We will employ the even implicitly restarted Arnoldi method of [35], in which
A+ ∆A stays Hermitian, E + ∆E stays skew-Hermitian, and the null-space of E + ∆E
is preserved. When our perturbation results from an eigenvalue algorithm, we can
therefore assume that the perturbation s∆E −∆A of the pencil sE − A satisfies

∆E =

 ∆E11 ∆E12 0
∆E21 ∆E22 0

0 0 0

 = −∆H
E , ∆A =

 ∆A11 ∆A12 ∆A13

∆A21 ∆A22 ∆A23

∆A31 ∆A32 ∆A33

 = ∆H
A. (2.1)

If the perturbation arises from an approximation of the model, then this approxima-
tion process needs to be done in such a way, that constraints (such as Kirchhoff’s
conditions in networks, or position constraints as in mechanical systems) that result
from the physical properties of the system are not destroyed, see [4]. If this is done
properly then again the structure (2.1) is typically preserved.

2.1. Bounds on the structured backward errors. If we use a backward
stable structure preserving algorithm like that of [35] to compute the eigenstructure,
then ‖(∆E ,∆A)‖F ≈ ε‖(E ,A)‖F , where ε is a small multiple of the unit round-off,
and ∆A and ∆E have the structure indicated in (2.1). To see whether the computed
eigenstructure is that associated with a pH descriptor system and to compute the
backward error, we need to find a transformation that preserves the computed eigen-
structure, preserves the structure indicated in (2.1), annihilates the diagonal blocks
s∆E11−∆A11 and s∆E22−∆A22, and also restores the property E+∆E12 = (E+∆E12)H > 0.

To preserve the computed eigenstructure and that ∆A is Hermitian, we perform
a congruence transformation; and in order to preserve the structure of ∆E indicated
in (2.1), we constrain it to be block lower triangular, i.e.

Z :=

 Z11 Z12 0
Z21 Z22 0
Z31 Z32 Z33


such that 0 A+ ∆A B + ∆B

AH + ∆H
A 0 CH + ∆H

C

BH + ∆H
B C + ∆C DH + ∆H

D +D + ∆D

 := ZH (A+ ∆A)Z,

and  0 E + ∆E 0
−EH −∆H

E 0 0
0 0 0

 := ZH (E + ∆E)Z,

with (E + ∆E)H = E + ∆E > 0. We also require that Z is as close as possible to the
identity matrix, such that {∆E ,∆A,∆B ,∆C ,∆D} remain as small as possible. This
suggests that we choose Z31 = Z32 = 0 and Z33 = Im and look for a submatrix of Z[

Z11 Z12

Z21 Z22

]
:= I2n + Y = I2n +

[
Y11 Y12

Y21 Y22

]
6



near the identity matrix, and satisfying the matrix equations

(I + Y H)

[
∆A11 A+ ∆A12

AH + ∆A21 ∆A22

]
(I + Y ) =

[
0 A+ ∆A

AH + ∆H
A 0

]
,

(I + Y H)

[
∆E11 E + ∆E12

−EH + ∆E21 ∆E22

]
(I + Y ) =

[
0 E + ∆E

−EH −∆H
E 0

]
.

Removing common terms on both sides and using the notation A∆ = A + ∆A12,
E∆ = E + ∆E12, we can rewrite these as

Y H

[
∆A11 A∆

AH
∆ ∆A22

]
+

[
∆A11 A∆

AH
∆ ∆A22

]
Y +

[
∆A11 ∆A12

∆A21 ∆A22

]

=

[
0 ∆A

∆H
A 0

]
− Y H

[
∆A11 A∆

AH
∆ ∆A22

]
Y,

and

Y H

[
∆E11 E∆

−EH
∆ ∆E22

]
+

[
∆E11 E∆

−EH
∆ ∆E22

]
Y +

[
∆E11 ∆E12

∆E21 ∆E22

]

=

[
0 ∆E

−∆H
E 0

]
− Y H

[
∆E11 E∆

−EH
∆ ∆E22

]
Y,

in which we need to zero out the diagonal blocks. Considering these equations, it
seems reasonable to choose Y11 = Y22 = 0 and then solve the remaining quadratic
equations

A∆Y21 + Y H
21A

H
∆ = −∆A11 − Y H

21∆A22Y21, (2.2)

E∆Y21 − Y H
21E

H
∆ = −∆E11 − Y H

21∆E22Y21, (2.3)

AH
∆Y12 + Y H

12A∆ = −∆A22 − Y H
12∆A11Y12, (2.4)

−EH
∆Y12 + Y H

12E∆ = −∆E22 − Y H
12∆E11Y12 (2.5)

for the unknowns Y12 and Y21. If we decompose Y12 and Y21 in their Hermitian and
skew-Hermitian parts, Y12 = W12 + V12, and Y21 = W21 + V21, with W12 = WH

12,
W21 = WH

21, V12 = −V H
12, and V21 = −V H

21, then, using the vec function which stacks
the columns of a matrix in a vector, we have

vec(Y12) = vec(W12) + vec(V12), vec(Y H
12) = vec(W12)− vec(V12),

vec(Y21) = vec(W21) + vec(V21), vec(Y H
21) = vec(W21)− vec(V21).

We can then rewrite the equations (2.2)–(2.5) using Kronecker products as[
In ⊗ E∆ −E∆ ⊗ In
In ⊗A∆ A∆ ⊗ In

] [
vec(W21) + vec(V21)
vec(W21)− vec(V21)

]
=

[
− vec(∆E11)
− vec(∆A11)

]
+O(‖Y21‖2),

(2.6)
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[
−In ⊗ EH

∆ ET
∆ ⊗ In

In ⊗AH
∆ AT

∆ ⊗ In

] [
vec(W12) + vec(V12)
vec(W12)− vec(V12)

]
=

[
− vec(∆E22)
− vec(∆A22)

]
+O(‖Y12‖2).

(2.7)
If we ignore the quadratic terms on the right hand side, then we obtain linear systems
that are solvable when the pencils sE∆ − A∆ and −sEH

∆ − AH
∆ have no common

eigenvalues, see e.g. [28], which is the case when these pencils come from a sufficiently
small perturbation of a system T (s) which is strictly passive. We have the following
result.

Lemma 2.2. Consider the linear systems (2.6)–(2.7) with the quadratic terms set
to 0, set

K1(E,A) :=

[
In ⊗ E −E ⊗ In
In ⊗A A⊗ In

]
, K2(E,A) :=

[
−In ⊗ EH ET ⊗ In
In ⊗AH AT ⊗ In

]
,

(2.8)
and let

δ̂ := max(‖∆A12‖2, ‖∆E12‖2) <
1

2
min{σ2n2(K1(E,A)), σ2n2(K2(E,A))},

where σj(M) denotes the jth singular value of the matrix M . Then the solution
(Y21, Y12) satisfies the bound

‖(Y21, Y12)‖F ≤
‖(∆E11,∆

A
11,∆

E
22,∆

A
22)‖F /

√
2

min{σ2n2K1(E,A), σ2n2K2(E,A)} − 2δ̂
. (2.9)

Proof. Define K̂i := Ki(E∆, A∆) = Ki(E + ∆E12, A + ∆A12) for i = 1, 2, then it
follows from standard perturbation theory, see e.g. [26], that for i = 1, 2,

σ2n2(Ki(E∆, A∆)) ≥ σ2n2(Ki(E,A))− 2δ̂,

The bound (2.9) then follows from the solutions of the linear systems (2.6)–(2.7),
which can be written as

√
2X

[
vec(W21)
vec(V21)

]
=

[
vec(Y21)

vec(Y H
21)

]
= −K̂−1

1

[
vec(∆E11)
vec(∆A11)

]
,

√
2X

[
vec(W12)
vec(V12)

]
=

[
vec(Y12)

vec(Y H
12)

]
= −K̂−1

2

[
vec(∆E22)
vec(∆A22)

]
,

(2.10)

and the fact that ‖ vec(M)‖2 = ‖M‖F for any matrix M .
An estimate of the smallest singular values σ2n2(K1(E,A)) and σ2n2(K2(E,A))

is obtained from considering the triple (σn, un, vn) in (1.8) which yields[
ıω(uTn ⊗ uHn) −(uTn ⊗ uHn)

] [ In ⊗ E −E ⊗ In
In ⊗A A⊗ In

]
= σn

[
(uTn ⊗ vHn) (vTn ⊗ uHn)

]
,[

ıω(vTn ⊗ vHn) −(vTn ⊗ vHn)
] [ −In ⊗ EH ET ⊗ In

In ⊗AH AT ⊗ In

]
= σn

[
(vTn ⊗ uHn) (uTn ⊗ vHn)

]
.

Since un and vn have norm 1, so do the vectors uTn⊗uHn, vTn⊗vHn , uTn⊗vHn and vTn⊗uHn.
We then obtain the following inequality for both K1(E,A) and K2(E,A) :

σ2n2(Ki(E,A)) ≤
√

2σn/
√

1 + ω2 =
√

2ρ(E,A).

We will see in the numerical examples of Section 3 that is a good estimate.
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2.2. An iteration solution procedure. The solution of the quadratic equa-
tions (2.2)–(2.3) in (Y21, Y

H
21) and (2.4)–(2.5) in (Y12, Y

H
12), can be obtained using the

iterative schemes

A∆[Y21]i+1 + [Y H
21]i+1A

H
∆ = −∆A11 − [Y H

21]i∆
A
22[Y21]i,

E∆[Y21]i+1 − [Y H
21]i+1E

H
∆ = −∆E11 − [Y H

21]i∆
E
22[Y21]i,

and

AH
∆[Y12]i+1 + [Y H

12]i+1A∆ = −∆A22 − [Y H
12]i∆

A
11[Y12]i,

−EH
∆[Y12]i+1 + [Y H

12]i+1E∆ = −∆E22 − [Y H
12]i∆

E
11[Y12]i.

Using an analysis similar to that of [42], we can show that these iterations converge
to a solution of the quadratic equations (2.2), (2.3), (2.4), and (2.5), see [42, Theorem
2.11, p. 242] and [14]. We obtain the following main result.

Theorem 2.3. Consider the system of matrix equations (2.2), (2.3), (2.4), (2.5).
Let

δ := min{σ2n2(K1(E∆, A∆)), σ2n2(K2(E∆, A∆))} − 2 max{‖∆A12‖2, ‖∆E12‖2},
θ := ‖(∆E11,∆

E
22,∆

A
11,∆

A
22)‖F ,

ω :=
√

2
∥∥(∆A11,∆

A
22,∆

E
11,∆

E
22)
∥∥
F
.

If δ > 0 and θω
δ2 <

1
4 , then there exists a solution (Y12, Y21) of these equations satisfying

‖(Y12, Y21)‖F ≤ 2θ/δ. (2.11)

Proof. Lemma 2.2 and the assumption δ > 0 guarantee that the linear system of
matrix equations (2.10) is solvable. If we write its solution ([Y21]1, [Y12]1) in terms of
the representation with the matrices (W21, V21) for Y21 and with (W12, V12) for Y12,
then we obtain the bound

‖([W21]1, [V21]1, [W12]1, [V12]1)‖F ≤
‖(∆E11,∆

E
22,∆

A
11,∆

A
22)‖F

δ
=
θ

δ
=: ρ0,

using Lemma 2.2. The iterative schemes can then be written as[
vec([W21]i+1)
vec([V21]i+1)

]
=

[
vec([W21]0)
vec([V21]0)

]
+(K̂1

√
2X)−1

[
vec([W21 − V21]i∆

E
11[W21 + V21]i)

vec([W21 − V21]i∆
A
11[W21 + V21]i)

]
,(2.12)[

vec([W12]i+1)
vec([V12]i+1)

]
=

[
vec([W12]0)
vec([V12]0)

]
+(K̂2

√
2X)−1

[
vec([W12 − V12]i∆

E
22[W12 + V12]i)

vec([W12 − V12]i∆
A
22[W12 + V12]i)

]
.(2.13)

We now show that the sequences {[W12, V12]i)}∞i=0 and {[W21, V21]i)}∞i=0 converge to a
solution of (2.2), (2.3), (2.4), (2.5) satisfying (2.11). To prove this, we first show that
these sequences are bounded. The proofs for {[W12, V12]i)}∞i=0 and {[W21, V21]i)}∞i=0

are identical, so we only prove it for one sequence and we drop the indices of W , V ,
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K, ∆E and ∆A, in order to simplify the notation. If ‖(Wi, Vi)‖F ≤ ρi, then from
(2.12) and (2.13) we have that

‖(Wi+1, Vi+1)‖F ≤‖(W0, V0)‖F +
√

2‖K̂−1‖2‖(Wi, Vi)‖2F ‖(∆E ,∆A)‖F
≤ρ0 + ρ2

iωδ
−1 =: ρi+1 .

We may write the quantity ρi in this equation as ρi = ρ0(1 + κi), where κi satisfies
the recursion {

κ1 = ρ0ωδ
−1 = θωδ−2,

κi+1 = κ1(1 + κi)
2 .

(2.14)

An induction argument used in [14] then shows that 0 < κ1 < κ2 < · · · , i.e. that the
sequence is strictly increasing and that, if κ1 < 1/4, then

κ = lim
i→∞

κi =
2κ1

1− 2κ1 +
√

1− 4κ1
< 1,

and κi < κ for all i ≥ 1. Thus, the norms of the elements of the sequence {(Wi, Vi)}∞i=0

are bounded as

‖(Wi, Vi)‖F ≤ ρ := lim
i→∞

ρi = ρ0(1 + κ) . (2.15)

It is shown in [14] that the sequence {(Wi, Vi)}∞i=0 is a Cauchy sequence and therefore
converges, provided that 2δ−1ωρ < 1, which is ensured by (2.11). Finally, from (2.15),
‖(W,V )‖F ≤ ρ0(1 + κ) < 2ρ0 = 2δ−1θ, which concludes the proof.

Once the zero blocks have been restored, we still need to restore the property that
E was Hermitian and positive definite. This can be incorporated in the pencil via an
additional congruence transformation Z = diag(In, Z22, Im), where Z22 is the polar
factor of the perturbed matrix E + ∆E . It was shown in [43] that the polar factor
of a perturbed positive definite Hermitian matrix E + ∆E is near the identity matrix
and if expressed as Z22 = I + Y22 satisfied the bound

‖Y22‖F ≤ 2‖E−1‖2‖∆E‖F .

We can thus restore also the positive definite symmetry of the matrix E at the cost
of a growth factor 2‖E−1‖2 in the blocks E∆, A∆ and C∆, since the congruence
transformation yields a right multiplication of these matrices by In + Y22. It is worth
pointing out that ‖E−1‖2 ≤ 1

ρ(E,A) , since the limit of σn(A − ıωE)/
√

1 + ω2 for

increasing ω is σn(E). The numerical errors corresponding to this second step are
therefore of the same order of magnitude as in the first step. But this also shows that
a very small stability radius ρ gives very large backward errors.

2.3. The complete procedure. The combination of the two steps in computing
the structured perturbation described in the previous subsection corresponds to a
congruence transformation Z of the form

Z =

 In Y12 0
Y21 In 0
0 0 Im

 In 0 0
0 In + Y22 0
0 0 Im

 =

[
I2n + Ŷ

0 Im

]
,

where

‖Ŷ ‖F ≤ 2(‖(∆E11,∆
A
11,∆

E
22,∆

A
22)‖F + ‖∆E12‖F )/δ +O(ε2), (2.16)
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and δ is as defined in Theorem 2.3. Note that the zero blocks created in the first step
are not destroyed in the second step and the error growth of the two stages just add
together (except for the second order terms).

It follows that forcing the pH structure of the pencil (1.5) requires a growth of
a factor 1/ρ(E,A) in the perturbations of the blocks E∆, A∆, B∆ := B + ∆B and
C∆ := C + ∆C , but not in D∆ := D + ∆D.

If one wants to find the corresponding errors in the representation R, J , G and
P , we can use the linear transformation between the two representations which yields[

−∆R ∆G

∆J −∆P

]
=

1√
2
X

[
∆A ∆B

∆H
A ∆H

C

]
with backward errors of the same order of magnitude.

Remark 2.1. We remark that we did not attempt to preserve passivity; we only
made sure that the pencil structure is preserved. But if the original perturbation
s∆E − ∆A did not destroy passivity, then the restoration also does not destroy it,
since it is a congruence transformation on the pencil S(s). This follows from the
discussion in the beginning of this section.

2.4. Passivity restoration. As we have discussed in Remark 2.1, when the
original perturbation does not destroy passivity then the procedure still delivers a
passive system. However, in many applications the system starts out as a passive sys-
tem model and then discretization or model reduction may destroy passivity. Whether
this has happend can be observed by checking the eigenvalues of the pencils eigenstruc-
ture of the pencils (1.5) (or (1.6)) with a structure preserving method. If this pencil
has purely imaginary eigenvalues or if the pencil is singular or has infinite eigenvalues
with Jordan blocks of size greater than one, which can be checked by computing the
rank of A projected on the kernel of E , then the underlying system (1.1) is not passive
any longer. In this case it has been a difficult and essentially still an open problem
to find the smallest perturbation to the system matrices {E,A,B,C,D} in order to
restore passivity. One would hope that this requires a correction on the order of the
perturbation that has been already comitted; see [1, 9, 16, 22, 25, 37], mostly for the
case of standard state space systems.

For descriptor systems this question was mostly open, but our procedure from
the last subsection suggests an immediate solution to the problem. We can first
perturb the pencil (1.5) (or (1.6)) so that it does not have purely imaginary eigenvalues
anymore, or to produce a reasonable margin arround the imaginary axis, where there
should be no eigenvalues, see the procedures in [1, 9] for the standard case.

But before one can use these procedures one needs a perturbation that fixes
the pencil to be regular and does not change the size of Jordan blocks of infinite
eigenvalues. This can be done as follows. If the matrix E is not already in partitioned
form

E =

[
E11 0
0 0

]
(2.17)

with E11 positive definite, then one can achieve this via a spectral decomposition,
Cholesky factorization, or singular value decomposition of E ≥ 0. However in many
applications this partitioning already exists: see [4] for a canonical form of pH de-
scriptor systems or [10] for the general case.

11



Let us therefore assume that E has the partitioned form (2.17) and partition
A,B,C conformally as

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
.

Then the system (1.5) has semisimple infinite eigenvalues if and only if the matrix

Ŝ :=

 0 A22 B2

AH
22 0 CH

2

BH
1 C2 D +DH

 ,
is invertible. For passivity we also need that D + DH > 0. We thus need to perturb
the pencil so that D + ∆D + (D + ∆D)H > µI, where µ is the perturbation level of
the approximation that has led to the system matrices {E,A,B,C,D}. This can be
easily done by taking ∆D = µ

2 I. If such a perturbed pencil s(E+ ∆E)− (A+ ∆A) has
infinite eigenvalues that are not semisimple, then further perturbations are necessary.
If the original pencil sE −A has the property that A22 is invertible or if the matrices
[A22, B2] and [AH

22, C
H
2 ] have full rank, i.e. the system is controllable and observable at

∞, then one can increase µ further until Ŝ is invertible or remove the uncontrollable
part, see [10].

3. Numerical results. In this section we describe numerical experiments il-
lustrating the results of the previous section. The numerical tests were carried out
in Matlab version R2019a running on an Intel Core i5 processor, with unit roundoff
ε = 2.2204e−16. In this first test, we generated a passive system {A,B,C,D,E} with
a stability radius for the pencil sE − A of the order of 0.5. The stability radius was
computed with 5 digits of accuracy as ρ(E,A) = 4.0537e−01. We then perturbed the
structured pencil S(s) in (1.5) with a random perturbation of the form (2.1) and of ap-
proximate norms δi = 10−i for i = 1, 2, . . . , 10, and applied the iterative procedure of
Section 2.3. We report in Table 3.1 the quantities δ(E,A) := ‖(∆A11,∆

A
22,∆

E
11,∆

E
22)‖F

as a function of the number of iterations needed to reach convergence. The first col-
umn (for k = 0) corresponds to the initial perturbations of the order of δi = 10(−i).
The next columns indicate the convergence behaviour, which is at least quadratic
(and possibly cubic).

Table 3.1
Evolution of δk(E,A) as function of the number of iterations

δ δ0(E,A) δ1(E,A) δ2(E,A) δ3(E,A)
1.e-01 5.3979e-01 3.1042e-02 1.3663e-07 3.2135e-16
1.e-02 8.1884e-02 1.0068e-04 3.3695e-15 2.8047e-17
1.e-03 6.4600e-03 3.8518e-08 4.1879e-18
1.e-04 6.4211e-04 5.3011e-11 3.4952e-19
1.e-05 5.2796e-05 4.5678e-14 7.2183e-20
1.e-06 6.6959e-06 8.9386e-17
1.e-07 6.2294e-07 3.5734e-20
1.e-08 7.8891e-08 1.8682e-22
1.e-09 7.8703e-09 1.6507e-23
1.e-10 8.3537e-10 1.1050e-24

In the second table, we look at how close the transformation Z = I + Y that
is restoring the structure of the pencil, is to identity, by comparing ‖Y ‖F = ‖Z −
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I2n+m‖F and δ, the initial unstructured perturbation. Clearly, they are of the same
order, indicating that the restoration is of the same order as the original perturbation,
provided the stability radius is not too small. The third column gives the ratio
δ1(E,A)/[δ0(E,A)]2 for the structured error in the first iteration, which suggests
that the process is at least quadratically and probably cubically convergent (which is
often the case in Hermitian eigenvalue problems). The last column is a verification
of the bound in Lemma 2.2. It follows from Theorem 2.3 and from (2.16) that a fair
estimate of ‖Y ‖F is given by 2δ0(E,A))/σ2n2(Ki(E,A)). The fact that the quantities√

2‖Y ‖F ρ(E,A)/δ0(E,A) are close to 1 indicates that the smallest singular values of
the matrices K1 and K2 are close to

√
2ρ(E,A).

Table 3.2
Convergence rate and condition estimate

δ ‖Y ‖F δ1(E,A)
[δ0(E,A)]2

√
2‖Y ‖F ρ(E,A)
δ0(E,A)

1.e-01 6.2266e-01 1.0654e-01 6.6129e-01
1.e-02 7.9702e-02 1.5016e-02 5.5800e-01
1.e-03 6.8401e-03 9.2299e-04 6.0701e-01
1.e-04 6.8668e-04 1.2857e-04 6.1306e-01
1.e-05 7.6133e-05 1.6387e-05 8.2668e-01
1.e-06 9.3534e-06 1.9937e-06 8.0080e-01
1.e-07 7.1741e-07 9.2085e-08 6.6021e-01
1.e-08 9.0728e-08 3.0017e-08 6.5929e-01
1.e-09 7.4229e-09 2.6649e-07 5.4069e-01
1.e-10 6.9376e-10 1.5835e-06 4.7610e-01

In the third table we look at the effect of the stability radius on the restoration
results. We modified the previous model in order to have a stability radius that is
arbitrarily small, but yet larger than the perturbations added to the pencil. We used
initial perturbations of the order of δ = 1.e − 10 and let the stability radius ρ(E,A)
vary between 1.e− 1 and 1.e− 6. The second column shows that the transformation
Z := I2n+m + Y starts to diverge from the identity, but one can see from the next
columns that one iteration step is enough to restore the original structure, and this for
perturbations of the order of δ = 1.e − 10! The last column indicates again that the
stability radius ρ(E,A) is a very good estimate of the conditioning of the restoration
matrices K1 and K2.

It should be pointed out that passive systems are also stable and that in practice
their stability radius is never so close to 0 as in the above example. In fact, when
forcing the stability radius to be so small, we meanwhile lost the property of passivity
in this example.

4. Conclusion. When computing the eigenstructure of even matrix pencils as-
sociated with the passivity analysis of port-Hamiltonian descriptor systems using a
structured generalized eigenvalue method, one can expect to loose the special struc-
ture present in the corresponding even pencil. This structure is also responsible for
the special symmetry that is present in the computed spectrum. We showed that
the computed spectrum actually corresponds to a nearby passive system, provided
the perturbations satisfy some reasonable bounds. The construction of the nearby
port-Hamiltonian system that corresponds exactly to the computed spectrum was
obtained by a congruence transformation that is very near the identity matrix. We
have performed a backward error analysis and shown that the departure from the
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Table 3.3
Effect of the stability radius on the convergence

ρ(E,A) ‖Y ‖F δ0(E,A) δ1(E,A)
√

2‖Y ‖F ρ(E,A)
δ0(E,A)

9.9594e-02 1.2223e-09 7.6689e-10 3.3150e-24 2.2449e-01
3.7125e-02 1.4023e-09 6.9962e-10 1.9251e-24 1.0523e-01
1.3499e-02 1.4400e-08 5.7975e-10 2.6391e-23 4.7417e-01
4.8692e-03 4.6806e-09 5.0612e-10 1.3357e-23 6.3683e-02
1.7506e-03 2.7512e-08 5.9770e-10 4.6125e-23 1.1395e-01
6.2759e-04 1.1548e-07 7.2317e-10 1.8410e-22 1.4173e-01
2.2373e-04 1.6259e-07 6.6532e-10 3.2569e-22 7.7321e-02
7.8553e-05 1.5850e-06 5.1837e-10 3.7833e-21 3.3968e-01
2.6375e-05 6.6021e-06 6.3500e-10 1.0618e-20 3.8780e-01
7.6220e-06 1.7707e-05 6.7353e-10 6.2209e-20 2.8338e-01

identity is of the same order as the numerical errors induced by the eigenvalue solver,
except for a moderate growth factor that depends on the stability radius of the poles
of the system.

This procedure can also be applied to any para-Hermitian function Φ(s) := T (s)+
T H(−s), as long as the transfer function T (s) is stable, but not passive. We also show
how to possibly exploit the ideas developed in this paper, in order to address the more
challenging problem of restoring the passivity of a system that was destroyed by a
perturbation.
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