
Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_143-1
© Springer-Verlag London 2014

Basic Numerical Methods and Software for Computer Aided
Control Systems Design

Volker Mehrmanna� and Paul Van Doorenb

aInstitut für Mathematik MA 4-5, Technische Universität Berlin, Berlin, Germany
bICTEAM: Department of Mathematical Engineering, Catholic University of Louvain, Louvain-la-Neuve, Belgium

Introduction

Basic numerical methods for the analysis and design of dynamical systems are at the heart of most
techniques in systems and control theory that are used to describe, control, or optimize industrial
and economical processes. There are many methods available for all the different tasks in systems
and control, but even though most of these methods are based on sound theoretical principles, many
of them still fail when applied to real-life problems. The reasons for this may be quite diverse, such
as the fact that the system dimensions are very large, that the underlying problem is very sensitive
to small changes in the data, or that the method lacks numerical robustness when implemented in
a finite precision environment.

To overcome such failures, major efforts have been made in the last few decades to develop
robust, well-implemented, and standardized software packages for computer-aided control systems
design (Grübel 1983; Nag Slicot 1990; Wieslander 1977). Following the standards of modern
software design, such packages should consist of numerically robust routines with known
performance in terms of reliability and efficiency that can be used to form the basis of more
complex control methods. Also to avoid duplication and to achieve efficiency and portability
to different computational environments, it is essential to make maximal use of the established
standard packages that are available for numerical computations, e.g., the Basic Linear Algebra
Subroutines (BLAS) (Dongarra et al. 1990) or the Linear Algebra Packages (LAPACK) (Anderson
et al. 1992). On the basis of such standard packages, the next layer of more complex control
methods can then be built in a robust way.

In the late 1980s, a working group was created in Europe to coordinate efforts and integrate
and extend the earlier software developments in systems and control. Thanks to the support of
the European Union, this eventually led to the development of the Subroutine Library in Control
Theory (SLICOT) (Benner et al. 1999; SLICOT 2012). This library contains most of the basic
computational methods for control systems design of linear time-invariant control systems.

An important feature of this and similar kind of subroutine libraries is that the development of
further higher level methods is not restricted by specific requirements of the languages or data
structures used and that the routines can be easily incorporated within other more user-friendly
software systems (Gomez et al. 1997; MATLAB 2013). Usually, this low-level reusability can
only be achieved by using a general-purpose programming language like C or Fortran.

We cannot present all the features of the SLICOT library here. Instead, we discuss its general
philosophy in section “The Control Subroutine Library SLICOT” and illustrate these concepts

�E-mail: mehrmann@math.tu-berlin.de

Page 1 of 8



Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_143-1
© Springer-Verlag London 2014

in section “An Illustration” using one specific task, namely, checking the controllability of a
system. We refer to SLICOT (2012) for more details on SLICOT and to Varga (2004) for a general
discussion on numerical software for systems and control.

The Control Subroutine Library SLICOT

When designing a subroutine library of basic algorithms, one should make sure that it satisfies
certain basic requirements and that it follows a strict standardization in implementation and
documentation. It should also contain standardized test sets that can be used for benchmarking,
and it should provide means for maintenance and portability to new computing environments. The
subroutine library SLICOT was designed to satisfy the following basic recommendations that are
typically expected in this context (Benner et al. 1999).

Robustness: A subroutine must either return reliable results or it must return an error or warning
indicator, if the problem has not been well posed or if the problem does not fall in the class
to which the algorithm is applicable or if the problem is too ill-conditioned to be solved in a
particular computing environment.

Numerical stability and accuracy: Subroutines are supposed to return results that are as good
as can be expected when working at a given precision. They also should provide an option to
return a parameter estimating the accuracy actually achieved.

Efficiency: An algorithm should never be chosen for its speed if it fails to meet the usual
standards of robustness, numerical stability, and accuracy, as described above. Efficiency
must be evaluated, e.g., in terms of the number of floating-point operations, the memory
requirements, or the number and cost of iterations to be performed.

Modern computer architectures: The requirements of modern computer architectures must be
taken into account, such as shared or distributed memory parallel processors, which are
the standard environments of today. The differences in the various architectures may imply
different choices of algorithms.

Comprehensive functional coverage: The routines of the library should solve control systems
relevant computational problems and try to cover a comprehensive set of routines to make
it functional for a wide range of users. The SLICOT library covers most of the numerical
linear algebra methods needed in systems analysis and synthesis problems for standard and
generalized state space models, such as Lyapunov, Sylvester, and Riccati equation solvers,
transfer matrix factorizations, similarity and equivalence transformations, structure exploiting
algorithms, and condition number estimators.

The implementation of subroutines for a library should be highly standardized, and it should be
accompanied by a well-written online documentation as well as a user manual (see, e.g., standard
Denham and Benson 1981; Working Group Software 1996) which is compatible with that of the
LAPACK library (Anderson et al. 1992). Although such highly restricted standards often put a
heavy burden on the programmer, it has been observed that it has a high importance for the
reusability of software and it also has turned out to be a very valuable tool in teaching students
how to implement algorithms in the context of their studies.

Page 2 of 8



Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_143-1
© Springer-Verlag London 2014

Benchmarking
In the validation of numerical software, it is extremely important to be able to test the correctness
of the implementation as well as the performance of the method, which is one of the major steps in
the construction of a software library. To achieve this, one needs a standardized set of benchmark
examples that allows an evaluation of a method with respect to correctness, accuracy, and efficiency
and to analyze the behavior of the method in extreme situations, i.e., on problems where the limit
of the possible accuracy is reached. In the context of basic systems and control methods, several
such benchmark collections have been developed (see, e.g., Benner et al. 1997; Frederick 1998, or
http://www.slicot.org/index.php?site=benchmarks).

Maintenance, Open Access, and Archives
It is a major challenge to maintain a well-developed library accessible and usable over time when
computer architectures and operating systems are changing rapidly, while keeping the library open
for access to the user community. This usually requires financial resources that either have to be
provided by public funding or by licensing the commercial use.

In the SLICOT library, this challenge has been addressed by the formation of the Niconet
Association (http://www.niconet-ev.info/en/) which provides the current versions of the codes and
all the documentations. Those of Release 4.5 are available under the GNU General Public License
or from the archives of http://www.slicot.org/.

An Illustration

To give an illustration for the development of a basic control system routine, we consider the
specific problem of checking controllability of a linear time-invariant control system. A linear
time-invariant control problem has the form

dx

dt
D Ax C Bu; t 2 Œt0; 1/ (1)

Here x denotes the state and u the input function, and the system matrices are typically of the form
A 2 Rn;n, B 2 Rn;m.

One of the most important topics in control is the question whether by an appropriate choice of
input function u.t/ we can control the system from an arbitrary state to the null state. This property,
called controllability, can be characterized by one of the following equivalent conditions (see Paige
1981).

Theorem 1 The following are equivalent:

(i) System (1) is controllable.
(ii) Rank ŒB; AB; A2B; � � � ; An�1B� D n.

(iii) Rank ŒB; A � �I � D n 8� 2 C.
(iv) 9F such that A and A C BF have no common eigenvalues.

Page 3 of 8

http://www.slicot.org/index.php?site=bench marks
http://www.niconet-ev.info/en/
http://www.slicot.org/


Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_143-1
© Springer-Verlag London 2014

The conditions of Theorem 1 are nice for theoretical purposes, but none of them is really
adequate for the implementation of an algorithm that satisfies the requirements described in
the previous section. Condition (ii) creates difficulties because the controllability matrix K D
ŒB; AB; A2B; � � � ; An�1B� will be highly corrupted by roundoff errors. Condition (iii) can simply
not be checked in finite time. However, it is sufficient to check this condition only for the
eigenvalues of A, but this is extremely expensive. And finally, condition (iv) will almost always
give disjoint spectra between A and A C BF since the computation of eigenvalues is sensitive to
roundoff.

To devise numerical procedures, one often resorts to the computation of canonical or condensed
forms of the underlying system. To obtain such a form one employs controllability preserving
linear transformations x 7! P x, u 7! Qu with nonsingular matrices P 2 Rn;n, Q 2 Rm;m.
The canonical form under these transformations is the Luenberger form (see Luenberger 1967).
This form allows to check the controllability using the above criterion (iii) by simple inspection of
the condensed matrices. This is ideal from a theoretical point of view but is very sensitive to small
perturbations in the data, in particular because the transformation matrices may have arbitrary large
norm, which may lead to large errors.

For the implementation as robust numerical software one uses instead transformations with
real orthogonal matrices P; Q that can be implemented in a backward stable manner, i.e., the
resulting backward error is bounded by a small constant times the unit roundoff u of the finite
precision arithmetic, and employs for reliable rank determinations the well-known singular value
decomposition (SVD) (see, e.g., Golub and Van Loan 1996).

Theorem 2 (Singular value decomposition) Given A 2 Rn;m, then there exist orthogonal matri-
ces U; V with U 2 Rn;n; V 2 Rm;m, such that A D U †V T and † 2 Rn;m is quasi-diagonal, i.e.,

† D
�
†r 0

0 0

�
where †r D

2
64

�1

: : :

�r

3
75 ;

and the nonzero singular values �i are ordered as �1 � �2 � � � � � �r > 0.

The SVD presents the best way to determine (numerical) ranks of matrices in finite precision
arithmetic by counting the number of singular values satisfying �j � u�1 and by putting those
for which �j < u�1 equal to zero. The computational method for the SVD is well established and
analyzed, and it has been implemented in the LAPACK routine SGESVD (see http://www.netlib.
org/lapack/). A faster but less reliable alternative to compute the numerical rank of a matrix A is
its QR factorization with pivoting (see, e.g., Golub and Van Loan 1996).

Theorem 3 (QRE decomposition) Given A 2 Rn;m, then there exists an orthogonal matrix Q 2
Rn;n and a permutation E 2 Rm;m, such that A D QRET and R 2 Rn;m is trapezoidal, i.e.,

R D

2
6664

r11 : : : r1l : : : r1m

: : :
:::

rl l : : : rlm

0 0

3
7775 :

and the nonzero diagonal entries rii are ordered as r11 � � � � � rl l > 0.

Page 4 of 8

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/


Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_143-1
© Springer-Verlag London 2014

The (numerical) rank in this case is again obtained by counting the diagonal elements rii � ur11.
One can use such orthogonal transformations to construct the controllability staircase form (see

Van Dooren 1981).

Theorem 4 (Staircase form) Given matrices A 2 Rn;n, B 2 Rn;m, then there exist orthogonal
matrices P; Q with P 2 Rn;n, Q 2 Rm;m, so that

PAP T D

2
6666664

A11 � � � � � � A1;r�1 A1;r

A21
: : :

:::
:::

: : :
: : :

:::
:::

Ar�1;r�2 Ar�1;r�1 Ar�1;r

0 � � � 0 0 Arr

3
7777775

n1

n2

:::

nr�1

nr

n1 : : : nr�2 nr�1 nr

PBQ D

2
666664

B1 0

0 0
:::

:::
:::

:::

0 0

3
777775

n1

n2

:::
:::

nr

n1 m � n1

(2)

where n1 � n2 � � � � � nr�1 � nr � 0; nr�1 > 0, Ai;i�1 D �
†i;i�1 0

�
, with nonsingular blocks

†i;i�1 2 Rni ;ni and B1 2 Rn1;n1 .

Notice that when using the reduced pair in condition (iii) of Theorem 1, the controllability
condition is just nr D 0, which is simply checked by inspection. A numerically stable algorithm
to compute the staircase form of Theorem 4 is given below. It is based on the use of the singular
value decomposition, but one could also have used instead the QR decomposition with column
pivoting.

Staircase Algorithm
Input: A 2 Rn;n; B 2 Rn;m

Output: PAP T ; PBQ in the form (2), P; Q orthogonal

Step 0: Perform an SVD B D UB

�
†B 0

0 0

�
V T

B with nonsingular and diagonal †B 2 R
n1;n1 . Set

P WD U T
B , Q WD VB , so that

A WD U T
B AUB D

�
A11 A12

A21 A22

�
;

B WD U T
B BVB D

�
†B 0

0 0

�

with A11 of size n1 � n1.

Step 1: Perform an SVD A21 D U21

�
†21 0

0 0

�
V T

21 with nonsingular and diagonal †21 2 Rn2;n2 . Set

Page 5 of 8



Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_143-1
© Springer-Verlag London 2014

P2 WD
�
V T

21 0

0 U T
21

�
; P WD P2P

so that

A WD P2AP T
2 DW

2
4A11 A12 A13

A21 A22 A23

0 A32 A33

3
5 ;

B WD P2B DW
2
4B1 0

0 0

0 0

3
5 ;

where A21 D Œ†21 0�, and B1 WD V T
21†B .

Step 2:
i = 3
DO WHILE .ni�1 > 0 AND Ai;i�1 ¤ 0/.

Perform an SVD of Ai;i�1 D Ui;i�1

�
†i;i�1 0

0 0

�
V T

i;i�1 with

†i;i�1 2 Rni ;ni nonsingular and diagonal.
Set

Pi WD

2
666664

In1

: : :

Ini�2

V T
i;i�1

U T
i;i�1

3
777775

; P WD PiP;

so that

A WD PiAP T
i DW

2
6666664

A11 � � � A1;iC1

A21
: : : A2;iC1

: : :
: : :

:::

Ai;i�1 Ai;i

:::

0 AiC1;i AiC1;iC1

3
7777775

where Ai;i�1 D Œ†i;i�1 0�.
i WD i C 1

END
r WD i

It is clear that this algorithm will stop with ni D 0 or Ai;i�1 D 0. In every step, the remaining
block shrinks at least by 1 row/column, as long as Rank Ai;i�1 > 1, so that the algorithm stops
after maximally n�1 steps. It has been shown in Van Dooren (1981) that system (1) is controllable
if and only if in the staircase form of .A; B/ one has nr D 0.

Page 6 of 8



Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_143-1
© Springer-Verlag London 2014

It should be noted that the updating transformations Pi of this algorithm will affect previously
created “stairs” so that the blocks denoted as †i;i�1 will not be diagonal anymore, but their singular
values are unchanged. This is critical in the decision about the controllability of the pair .A; B/

since it depends on the numerical rank of the submatrices Ai;i�1 and B (see Demmel and Kågström
1993). Based on this and a detailed error and perturbation analysis, the Staircase Algorithm has
been implemented in the SLICOT routine AB01OD, and it uses in the worst-case O.n4/ flops (a
“flop” is an elementary floating-point operation C; �; �, or =). For efficiency reasons, the SLICOT
routine AB01OD does not use SVDs for rank decisions, but QR decompositions with column
pivoting. When applying the corresponding orthogonal transformations to the system without
accumulating them, the complexity can be reduced to O.n3/ flops. It has been provided with error
bounds, condition estimates, and warning strategies.

Summary and Future Directions

We have presented the SLICOT library and the basic principles for the design of such basic
subroutine libraries. To illustrate these principles, we have presented the development of a method
for checking controllability for a linear time-invariant control system. But the SLICOT library
contains much more than that. It essentially covers most of the problems listed in the selected
reprint volume (Patel et al. 1994). This volume contained in 1994 the state of the art in numerical
methods for systems and control, but the field has strongly evolved since then. Examples of areas
that were not in this volume but that are included in SLICOT are periodic systems, differential
algebraic equations, and model reduction. Areas which still need new results and software are the
control of large-scale systems, obtained either from discretizations of partial differential equations
or from the interconnection of a large number of interacting systems. But it is unclear for the
moment which will be the methods of choice for such problems. We still need to understand the
numerical challenges in such areas, before we can propose numerically reliable software for these
problems: the area is still quite open for new developments.

Cross-References

� CACSD Introduction
� CACSD Software Tools

Bibliography

Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling
S, McKenney A, Ostrouchov S, Sorensen D (1995) LAPACK users’ guide, 2nd edn. SIAM,
Philadelphia. http://www.netlib.org/lapack/

Benner P, Laub AJ, Mehrmann V (1997) Benchmarks for the numerical solution of algebraic
Riccati equations. Control Syst Mag 17:18–28

Benner P, Mehrmann V, Sima V, Van Huffel S, Varga A (1999) SLICOT-A subroutine library in
systems and control theory. Appl Comput Control Signals Circuits 1:499–532

Page 7 of 8

http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://www.netlib.org/lapack/


Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_143-1
© Springer-Verlag London 2014

Demmel JW, Kågström B (1993) The generalized Schur decomposition of an arbitrary pencil A �
�B: robust software with error bounds and applications. Part I: theory and algorithms. ACM
Trans Math Softw 19:160–174

Denham MJ, Benson CJ (1981) Implementation and documentation standards for the software
library in control engineering (SLICE). Technical report 81/3, Kingston Polytechnic, Control
Systems Research Group, Kingston

Dongarra JJ, Du Croz J, Duff IS, Hammarling S (1990) A set of level 3 basic linear algebra
subprograms. ACM Trans Math Softw 16:1–17

Frederick DK (1988) Benchmark problems for computer aided control system design. In:
Proceedings of the 4th IFAC symposium on computer-aided control systems design, Bejing,
pp 1–6

Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University
Press, Baltimore

Gomez C, Bunks C, Chancelior J-P, Delebecque F (1997) Integrated scientific computing with
scilab. Birkhäuser, Boston. https://www.scilab.org/

Grübel G (1983) Die regelungstechnische Programmbibliothek RASP. Regelungstechnik 31:
75–81

Luenberger DG (1967) Canonical forms for linear multivariable systems. IEEE Trans Autom
Control 12(3):290–293

Paige CC (1981) Properties of numerical algorithms related to computing controllability. IEEE
Trans Autom Control AC-26:130–138

Patel R, Laub A, Van Dooren P (eds) (1994) Numerical linear algebra techniques for systems and
control. IEEE, Piscataway

The Control and Systems Library SLICOT (2012) The NICONET society. NICONET e.V. http://
www.niconet-ev.info/en/

The MathWorks, Inc. (2013) MATLAB version 8.1. The MathWorks, Inc., Natick
The Numerical Algorithms Group (1993) NAG SLICOT library manual, release 2. The Numerical

Algorithms Group, Wilkinson House, Oxford. Updates Release 1 of May 1990
The Working Group on Software (1996) SLICOT implementation and documentation standards

2.1. WGS-report 96-1. http://www.icm.tu-bs.de/NICONET/reports.html
Van Dooren P (1981) The generalized eigenstructure problem in linear system theory. IEEE Trans

Autom Control AC-26:111–129
Varga A (ed) (2004) Special issue on numerical awareness in control. Control Syst Mag 24-1:

14–17
Wieslander J (1977) Scandinavian control library. A subroutine library in the field of automatic

control. Technical report, Department of Automatic Control, Lund Institute of Technology, Lund

Page 8 of 8

https://www.scilab.org/
http://www.niconet-ev.info/en/
http://www.niconet-ev.info/en/
http://www.icm.tu-bs.de/NICONET/reports.html

	Basic Numerical Methods and Software for Computer Aided Control Systems Design
	Introduction
	The Control Subroutine Library SLICOT
	Benchmarking
	Maintenance, Open Access, and Archives

	An Illustration
	Summary and Future Directions
	Cross-References
	Bibliography


