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SUMMARY

Solving efficiently the incompressible Navier–Stokes equations is a major challenge, especially in the
three-dimensional case. The approach investigated by Elman, Silvester and Wathen [Finite Elements

and Fast Iterative Solvers. Oxford University Press, 2005] consists in applying a preconditioned
GMRES method to the linearized problem at each iteration of a nonlinear scheme. The preconditioner
is built as an approximation of an ideal block-preconditioner that guarantees convergence in 2 or
3 iterations. In this paper, we investigate the numerical behavior for wedge elements dedicated to
stratified oceanic flows. Numerical results for steady-state solutions of both the Stokes and the
Navier–Stokes problems are presented. Theoretical bounds on the spectrum and the rate of convergence
appear to be in agreement with the numerical experiments. Sensitivity analysis on different aspects
of the structure of the preconditioner and the block decomposition strategies are also discussed.
Copyright c© 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we analyze the performance and the theoretical behavior of a preconditioning
methodology used with Krylov subspace iteration to obtain a numerical solution of the
incompressible Navier–Stokes equations

ρ(u · ∇)u = −∇p + µ∇2u + f, in Ω,
∇ · u = 0, in Ω,

(1)
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Figure 1. The trajectories of particles of the cubic driven cavity problem. The norm of the velocity
ranging from 0 to 1 is given by the color.

where the computational domain Ω is a subset of R
3. The viscosity, the mass density of the

fluid and the external forces are denoted by µ, ρ and f , respectively. The velocity field u
satisfies suitable boundary conditions on ∂Ω, and the pressure field is given by p.

A large number of papers are devoted to iterative solutions of the Navier–Stokes equations.
The incompressibility constraint implies that the linearized matrix of the discrete problem has
the structure of a saddle-point problem. For this class of equations, special iterative solvers
must be designed because of their indefiniteness and poor spectral properties [20, 22, 26]. A
extensive overview of these methods is given by Benzi et al. [4], Elman et al. [12] and Turek [34].
Some recent works on numerical solution of saddle-point problems include [5, 11, 24, 27].

We investigate the approach of Elman, Silvester and Wathen [12] in order to solve the Stokes
and Navier–Stokes equations. This analysis is developed in the framework of the development
of new unstructured grid oceanic models [3, 10, 14, 40] . A specific feature appears, as the ocean
flows are strongly stratified. In other words, the horizontal scale is far bigger than the vertical
one and the discretization of in-plane components of the velocities (u and v) are distinguished
from the out-of-plane velocity, w. Unstructured grids for oceanic flows are attractive in view
of the geometrical flexibility to represent coastlines. However, the stratified vertical property
of the flows is better addressed by a regular structured grid in the vertical direction. As the
problem in oceanography are typically large scale, we investigate the use of preconditioned
Krylov solvers for three-dimensional unstructured grids, with wedge elements. In fact, the
meshes used in the oceanic model is obtained from a triangular grid.

We decide to restrict ourselves to a simple three-dimensional square cavity driven problem
[9, 25]. The trajectories of particles in this flow are drawn in Figure 1. Such a problem exhibits
many relevant effects and it can be considered as a first real benchmark testcase for iterative

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 00:1–20
Prepared using fldauth.cls



ANALYSIS OF ITERATIVE SOLVERS FOR INCOMPRESSIBLE FLOW PROBLEMS 3

Table I. Characteristics of 4 finite element meshes and CPU time for
solving the Stokes equations with both direct and iterative methods on

each mesh.

Mesh # Wedges # Unknowns γ2 Direct solver Iterative solver

M1 192 3216 0.126286 1 [s] 4 [s]
M2 588 9053 0.124565 18 [s] 10 [s]
M3 1998 28717 0.123363 210 [s] 42 [s]
M4 4602 64497 0.121416 898 [s] 114 [s]

preconditioned solvers. The motivation of this analysis is to address time-varying Navier–Stokes
equations with an implicit scheme. In such an approach, the discrete linear systems to be solved
consist of the combination of a mass matrix divided by the time step with a discrete convection
diffusion operator. The inclusion of this mass matrix term generates extra features that must
be taken into account by the preconditioner [8, 13, 17, 30]. Nevertheless, the time step must be
limited for accuracy reason and it renders the contribution of the transport operator relatively
small with respect to the steady state problem.

The meshes used for analyzing the convergence are given in Figure 2. We consider a MINRES
solver with a block diagonal preconditioner. The velocity is preconditioned by applying one
V-cycle of algebraic multigrid AMG. Such a method was introduced in the 1980’s by Brandt
[6] and Ruge & Stüben [28]. The main idea is to reduce the low-frequency components of the
error on coarser operators while the high-frequency components are reduced by a smoother on
the fine grid. Instead of using coarse grids, the AMG variant automatically builds a series of
coarser operator by only using the matrix given by the discretization on one fine grid [15]. An
iteration where the error is smoothed successively on each grid from the finest to the coarsest
and then from the coarsest to the finest is called a V-cycle.

As far as the pressure is concerned, its preconditioner is obtained from the mass matrix
Q. For cubic meshes composed of wedges extruded in the vertical direction, the l2 norm of
the residual converges linearly at the rate of approximately 0.73, independently of the mesh
refinement. The norm of the residual is decreased to 10−10 in approximately 60 iterations of
this preconditioned MINRES solver. The characteristics of the meshes and the typical CPU
times required by both the direct sparse and the iterative solvers used are given in Table I.
Moreover, the numerical estimation of the LBB constant γ is also provided [2, 7, 19].

This paper is organized as follows. The Stokes equations, which model creeping flows, are
first investigated as tight theoretical bounds can be derived in that case. Then, several choices
in the extension of this preconditioned iterative solver to the Navier–Stokes equations are
discussed from numerical experiments.

2. PRECONDITIONED MINRES SOLVER FOR THE STOKES EQUATIONS

The finite element discretization of the Stokes equations leads to a linear system
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Figure 2. Convergence of the MINRES solver preconditioned with one
AMG V-cycle and the mass matrix, for the Stokes equations for meshes
M1, M2, M3 and M4, respectively. The rate of convergence is 0.73 on

each mesh.
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Ax =

[
A BT

B 0

] [
u

p

]

=

[
f

g

]

,

where A is the stiffness matrix, i.e. a discrete vectorial Laplacian operator; B and BT are
discrete negative divergence and gradient operator, respectively. This mixed formulation is the
first-order optimality condition for finding the saddle-point to the Lagrangian of the Stokes
problem [4]. Hence, A is indefinite even though the stiffness matrix A is symmetric and positive
definite. To solve such a system, an iterative MINRES solver [23] is in general considered
because the coefficient matrix A is very large, ill-conditioned and indefinite. Moreover, this
system must be properly preconditioned in order to avoid stagnation in the convergence of the
norm of the residual.

An ideal preconditioner would be

M∗ =

[
A 0
0 BA−1BT

]

. (2)

As shown by Murphy, Golub & Wathen [21], the minimum polynomial of the preconditioned
matrix T∗ = M−1

∗ A has degree 3; this is exactly the number of iterations required for the
MINRES scheme to compute the solution with this preconditioner. However, it is not useful
in practice. In addition to the inversion of Laplacian operator A, the major drawback of such
a preconditioner M∗ is that solving the negative Schur complement BA−1BT is required.
Nevertheless, if MA and MBA−1BT are linear approximations of A and BA−1BT , respectively,
then this ideal preconditioner should for practical computations be substituted by

M =

[
MA 0
0 MBA−1BT

]

.

In order to quantify the quality of both those approximations, we use the concept of spectral

equivalence, introduced by Axelsson and Barker [1], for symmetric and positive matrices. The
matrices A and MA are said to be spectrally equivalent if there exists some constants δ, ∆ > 0
independent of the mesh size h, such that ∀v 6= 0 the following condition holds:

δ ≤ 〈Av,v〉
〈MAv,v〉 ≤ ∆ . (3)

In the special case where MA is a preconditioner that yields a convergence of the Richardson
iteration at a rate independent of h, such inequalities are satisfied. (see [12] p. 294). In this
case, δ = 1−ρ and ∆ = 1+ρ where ρ is the rate of convergence of this simple iterative scheme.
This is the case, for instance, for one multigrid V-cycle.

The Schur complement is approximated by the pressure mass matrix Q, since as shown for
example in [12] ∀q /∈ ker(BT ):

γ2 ≤
〈
BA−1BTq,q

〉

〈Qq,q〉 ≤ Γ2, (4)
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where γ > 0 is the LBB constant; values of γ2 on several meshes are given in Table I. On
the other side, the ratio between the inner products with the Schur complement and the
mass matrix is bounded above by Γ which is also independent of h. For enclosed flow, this
boundedness constant satisfies Γ = 1; otherwise, Γ <

√
d where d is the dimension of the space.

Note that the kernel of BT corresponds to the hydrostatic pressure, i.e. q = q01.

2.1. Defining a tight inclusion set that contains the preconditioned spectrum

Some theoretical bounds on the spectrum of the preconditioned matrix can be derived. Each
eigenvalue λ 6= 0 of T = M−1A lies in the inclusion set

S = [−a,−b] ∪ [c, d],

where a, b, c, d are positive real numbers. As this matrix is indefinite, this set must include
both positive and negative values. The eigenvalues of M−1A satisfy the generalized eigenvalue
problem:

[
A BT

B 0

] [
u

p

]

= λ

[
MA 0
0 Q

] [
u

p

]

. (5)

Following the approach developed in [12], we firstly decouple this system by substituting one
equation into the other:

B(A − λMA)−1BT p = −λQp, (6)

(A − λMA)u = −BT (λQ)−1Bu, (7)

for λ such that the inverse matrix (A − λMA)−1 exists. The spectral equivalence is then used
to obtain spectral bounds.

Let us first consider the case λ < 0. In this case, the matrix A−λMA is certainly invertible
and is spectrally equivalent to A:

(1 − λ

∆
) 〈Av,v〉 ≤ 〈(A − λMA)v,v〉 ≤ (1 − λ

δ
) 〈Av,v〉 , (8)

as a result of the inequalities (3). The spectral equivalence between their inverse directly follows
from the fact that 〈M1v,v〉 ≤ 〈M2v,v〉 is strictly equivalent to

〈
M−1

2 v,v
〉
≤
〈
M−1

1 v,v
〉
, for

symmetric and positive definite matrices. Finally, substituting v by BTp, the relations (8)
read:

(1 − λ

δ
)−1

〈
A−1BTp, BTp

〉
≤
〈
(A − λMA)−1BT p, BTp

〉
≤ (1 − λ

∆
)−1

〈
A−1BT p, BTp

〉
.

The latter gives after using the relations (6) and (4):

(1 − λ

δ
)−1γ2 〈Qp,p〉 ≤ −λ 〈Qp,p〉 ≤ (1 − λ

∆
)−1Γ2 〈Qp,p〉 .

The second inequality implies that λ2 − λ∆ − ∆Γ2 ≤ 0. The negative eigenvalues satisfying
the latter are bounded below as:
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λ ≥ ∆ −
√

∆2 + 4∆Γ2

2
= −a ≥ −Γ2, (9)

where the lower bound on −a is obtained after the addition of 4Γ4 inside the square root.
Similarly, the first inequality implies that λ2 − λδ − δγ2 ≥ 0. The negative solutions of this
inequation are given by:

λ ≤ δ −
√

δ2 + 4δγ2

2
= −b < 0. (10)

In the case λ > 0, the bounds are obtained similarly; it follows from the equation (7) and
the relations (3) that

(1 − λ

δ
) 〈Au,u〉 ≤ −1

λ

〈
BT Q−1Bu,u

〉
≤ (1 − λ

∆
) 〈Au,u〉 .

From the first inequality, it can be derived that:

λ ≥ δ = c > 0, (11)

as Q and A and are positive definite. From the second inequality, we take advantage of
〈
BT Q−1Bu,u

〉
≤ Γ2 〈Au,u〉 , which corresponds to the upper bound in (4), in order to

obtain λ2 − λ∆ − ∆Γ2 ≤ 0. The latter’s positive solutions satisfy:

λ ≤ ∆ +
√

∆2 + 4∆Γ2

2
= d ≤ ∆ + Γ2. (12)

As a summary of the bounds (9), (10), (11) and (12), the non-zero eigenvalues of equation
(5) belongs to the inclusion set S.

λ ∈ S =

[

∆ −
√

∆2 + 4∆Γ2

2
,
δ −

√

δ2 + 4δγ2

2

]

∪
[

δ,
∆ +

√
∆2 + 4∆Γ2

2

]

(13)

Those bounds are tight. For problems with Dirichlet boundary conditions, the constant Γ
is equal to 1 while it is bounded by the square root of the dimension of the computational
domain for Neumann boundary conditions [12]. If we restrict ourselves to Dirichlet boundary
condition, the set (13) for the ideal preconditioner M∗ (δ = ∆ = γ = Γ = 1) reduces to
{
(1 −

√
5)/2

}
∪
[
1, (1 +

√
5)/2

]
. The limits of this set are actually the three eigenvalues of T∗

which implies the three-iterations convergence. Hence, it appears that the approximation M
diffuses the discrete spectrum onto two intervals on each side of the origin.

It is interesting to compare the theoretical bounds (13) to the spectrum obtained on several
meshes. In Figure 3, the spectrum obtained in the case MA = A (i.e. only γ 6= 1 as it can be
shown that Γ = 1 for full Dirichlet problem) can be visualized. As it is required to compute
each eigenvalue of the preconditioned matrix, it is not practical to perform computation with
highly refined meshes. Therefore, we only consider a series of coarse regular cubic meshes with
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Figure 3. Spectrum of the preconditioned matrix T = M−1A with MA = A and
MBA−1BT = Q for a series of coarse regular cubic meshes with 1, 2 and 4 layers of

wedges. The theoretical bounds are indicated with vertical lines.

1, 2 and 4 layers of wedges; the most refined mesh exhibits only 64 degrees of freedom. In
order to visualize the density of the spectrum, a Gaussian with a small variance is centered on
each eigenvalue. Then, this curve is obtained by taking the logarithm of the sum of all these
Gaussians. Each curve is symmetric with respect to 0.5, except for the peaks around 0 and 1.
Such a result is proved in [12].

In Figure 4, the distributions of the eigenvalues for the mesh M1 and for an equivalent
regular mesh are compared. For the regular mesh, we observe the occurrence of two distinct
eigenvalues twice as close to 1. This can be viewed as a direct consequence of a smaller LBB
constant. As we will observe, it implies that the irregular mesh yields a better convergence,
recalling that the spectrum is symmetric with respect to 0.5. Nevertheless, both curves are
quite comparable, except the size of the gap around 1.5. In both cases, the upper theoretical
bound is strongly tight.

Such an approach can be considered as a better presentation of the eigenvalue bounds
presented in Elman, Silvester and Wathen [12]. Such bounds were established by Rusten and
Winther [29] and independently for the Stokes problem by Wathen and Silvester [32, 39].
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Figure 4. Close-up view of the positive eigenvalues of the preconditioned matrix T for
the regular mesh with 4 layers of wedges and for the irregular mesh M1. Both meshes

have approximately the same number of degrees of freedom.

2.2. From the inclusion set to a theoretical bound on the rate of convergence

The preconditioned MINRES scheme is a member of the family of Krylov subspace methods,
like the conjugate gradient method (CG) [16] and the generalized minimal residual method

(GMRES) [31]. The common idea behind these methods is to minimize the preconditioned
residual of the linear system in the Krylov subspace Kk(T , r(0)), with respect to a norm. Due
to the structure of this Krylov subspace, the following equality holds:

‖r̂(k)‖ = min
pk∈Πk,pk(0)=1

‖pk(T )r̂(0)‖, (14)

where Πk is the set of real polynomials of degree k, and r̂(k) = M−1r(k) is the preconditioned
residual. Let us assume that T is diagonalizable (T = VΛV−1 where Λ is the diagonal matrix
of the eigenvalues, and V is the matrix of the eigenvectors). It follows that

‖pk(T )r(0)‖ = ‖Vpk(Λ)V−1r(0)‖
≤ ‖V‖‖pk(Λ)‖‖V−1‖‖r(0)‖
= κ(V)max

j
|pk(λj)| ‖r(0)‖,

where κ(V)
∆
= ‖V‖‖V−1‖ is the condition number of V . In the cases of CG and MINRES, T is

symmetric and V is thus an orthogonal matrix with κ(V) = 1.

The norm of the preconditioned residual at each iteration is then bounded by the solution
of a optimization problem
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‖r̂(k)‖
‖r̂(0)‖

≤ κ(V) min
pk∈Πk,pk(0)=1

max
j

|pk(λj)| . (15)

In general, this problem is slightly relaxed by considering it over the inclusion region S. For the
Stokes equations, we can then easily estimate the rate of convergence. If both intervals have
the same length, the optimal polynomial at the 2kth MINRES iteration is τk(s(λ))/τk(s(0)),
where τk(s) is the kth Chebyshev polynomial and s(λ) is the quadratic polynomial which maps
[−a,−b] as well as [c, d] on [−1, 1]. Finally, the residual at iteration 2k satisfies:

‖r̂(2k)‖ ≤ 2

(√
ad −

√
bc√

ad +
√

bc

)k

‖r̂(0)‖. (16)

In Figure 5, the rate of convergence of the preconditioned residual is compared with the
theoretical bounds given by (16). We successively consider the cases where M−1

A is A−1 and
one algebraic multigrid (AMG) V-cycle [15], respectively. In the latter case, the values of δ and
∆ are deduced from the observed rate of convergence ρAMG = 0.185 of the multigrid V-cycles.
The only difference between the case MA = A and the ideal three-iterations preconditioner
is that the mass matrix approximates the Schur complement. Nevertheless, the convergence
behavior is really different: the number of iterations increases from 3 to more than 50.

Let us observe the staircase effect in the convergence behavior: the norm of the residual does
not decrease at the even iterations. This can be deduced from the symmetry of the spectrum.
Recalling the way the optimal polynomial is built from a Chebyshev polynomial, it is clear
that the optimal polynomial of degree 2k + 1 is the same as the optimal polynomial of degree
2k.

When M−1
A is one AMG V-cycle, the convergence is slightly deteriorated. Nevertheless the

computational time decreases from 1025 [s] to 105 [s]: using a algebraic multigrid iteration
is thus an efficient strategy. The staircase effect is weaker because the spectrum is no longer
symmetric in that case, as illustrated by the computed limits of the inclusion set for the mesh
M4:

S = [−0.6469,−0.1073]∪ [0.8150, 1.8319].

To apply the theoretical result (16)) to this case, we have to increase the first interval to
[−1.1242,−0.1073] in order to have both intervals of the same length. For both considered
preconditioners, it appears that the theoretical bounds on the rate of convergence are fairly
loose. This is partly due to the relaxation which gives the same length to both intervals,
especially in the case with the AMG V-cycle.

3. PRECONDITIONED GMRES SOLVER FOR THE NAVIER–STOKES EQUATIONS

From the Picard linearization of the discrete Navier–Stokes equations, we obtain:
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Figure 5. Convergence of the preconditioned MINRES solver and the corresponding theoretical bounds
for two different MA, for the Stokes lid driven cavity with the mesh M4. The preconditioned residual

norm ‖r‖M−1 is shown. The Schur complement is approximated by the mass matrix.

Ax =

[
F BT

B 0

] [
u

p

]

=

[
f

g

]

(17)

where F is the linear combination µA + ρN of the Laplacian operator and the linearized
convection term. Since the coefficient matrix of this system is not symmetric, the MINRES
method is replaced by the GMRES method. As illustrated in Figure 6, the computation of
the solution of the Navier–Stokes equations with a preconditioned iterative solver requires a
hierarchical interconnection of methods. At least four different levels can be distinguished.
The outer loop consists in the nonlinear iterations. Each of the latter requires to solve a
linear system. Therefore, the inner loop is the preconditioned Krylov subspace method which
computes its solution. Applying the inverse of the preconditioner requires to apply three
operations. They can be either simple multiplication, one V-cycle of a multigrid scheme or
the composition of three operators.

3.1. Block structure of the preconditioner

For the Stokes problem and the MINRES method, we used a symmetric and positive definite
block diagonal preconditioner. Now, it is no longer required for the preconditioner to be
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Figure 6. Structure of the nested iterations in the solver of the Navier–Stokes equations.

symmetric and positive definite with the GMRES method applied to the Navier–Stokes
equations.

On one hand, an ideal block upper triangular preconditioner would be

MU =

[
F BT

0 −S

]

, (18)

where S = BF−1BT is the negative Schur complement of the linearized matrix. It would
achieve an excellent convergence as was observed for the ideal Stokes preconditioner (2). The
minimum polynomial of the preconditioned matrix has degree 2; this is exactly the number of
iterations required for the GMRES scheme to compute the solution with this preconditioner.
Indeed, the matrix

TU = M−1
U A =

[
I + F−1BT S−1B F−1BT

−S−1B 0

]

satisfies (TU−I)2 = 0. The low rank matrix TU−I can be written as
[
F−1BT − I

]T [
S−1B I

]
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and it follows from the definition of S that
[
F−1BT

−I

]
[
S−1B I

]
[
F−1BT

−I

]

︸ ︷︷ ︸

S−1BF−1BT − I

[
S−1B I

]
= 0.

On the other hand, an ideal block lower triangular preconditioner would be

ML =

[
F 0
B −S

]

. (19)

It would also achieve excellent convergence as the matrix

TL = M−1
L A =

[
I F−1BT

0 I

]

.

satisfies (TL −I)2 = 0. In Figure 7, we observe almost the same convergence behavior for both
preconditioners. Intuitively, this might be understood as we apply the same operations but in
a different order. Moreover, MT

L = MU in the Stokes case.
The spectrum of TL and TU only contain eigenvalues λj = 1 with geometrical multiplicity of

one or two. If the sign in front of the matrix S is changed, the spectrum now consists in a set
of eigenvalues −1 and 1, with geometrical multiplicity 1. For any selection of sign, convergence
would be achieved in two iterations for both upper and lower ideal preconditioner. However, it
is no longer the case when approximations are used. The inclusion regions of the spectrum will
evolve from a point to a non-degenerated area in the complex plane. If the minus sign is chosen,
as in equation (18) and (19), there will be only one region in the right half-plane, instead of
one in each half plane with the opposite sign. The bound (15), with the maximization relaxed
over the inclusion region, indicates that the former choice might yield faster convergence.

Moreover, the preconditioned matrix has been written so far with the preconditioner applied
on the left side T = M−1A. Instead of solving the equation M−1Ax = M−1f, right
preconditioning consists in finding y = Mx such that AM−1y = f. One advantage of
this alternative is that the preconditioned norm is not different from the norm of the true
residual f −Ax. Therefore, the effect of distorted norm which could give a wrong impression
of convergence does not exist in this case. In the previous strategy for the Stokes problem, the
MINRES method actually solves the equation H−1AH−T (HT x) = H−1b, where H is obtained
from a theoretical decomposition for positive definite matrix M = HHT , like for instance the
Cholesky factorization. Such a factorization is not needed in practice. Hence, there is neither
discussion about the side of preconditioning, nor about the sign of the Schur complement since
this block must be positive definite.

As far as the spectrum is concerned, there is no difference between both possibilities of
preconditioning, M−1A and AM−1. Indeed, the eigenvalues are invariant under the similarity
transformation, i.e the multiplication on the left by a matrix, and on the right by its inverse.
However, the eigenvectors, which are the columns of the matrix V in the diagonalization of the
preconditioned matrix T = VΛV−1, are different. Since the condition number of V appears in
the bound (15) for the convergence of general Krylov methods, one of the sides might be more
efficient.
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Figure 7. Convergence of the GMRES solver, with upper and lower triangular preconditioners, for
several Stokes problems on the mesh M4. F and S are approximated in the preconditioner by 1 AMG

V-cycle and the mass matrix, respectively. The true residual norm ‖r‖2 is shown.

One way to compare both possibilities would be to evaluate the non-normality of the
preconditioned matrix, since normal matrices satisfy κ(V) = 1. The Frobenius norm of the
difference N (T ) = T T T − T TT is a possible measure of non-normality; its value is 0 for
normal matrix according to their definition. This measure can be improved by normalizing
it, as ‖N (T )‖F /‖T ‖2

F , so it is scale-invariant. This value is twice as small in the case of
left-preconditioning, which indicates that this choice would be more interesting. Nevertheless,
this difference is not sufficiently large to draw such a conclusion. A good discussion about
the choice of a measure of non-normality can be found in Trefethen and Embree [33]. Another
possible measure is ‖N (T )‖F /‖T 2‖F . This quantity is also scale-invariant and goes to infinity
if ν(A) → ∞, unlike ‖N (T )‖F /‖T ‖2

F , which is ≤ 2.

The other way is to compare the convergence when the approximation proposed for the
Stokes problem are used instead of F and S in this preconditioner. This experimentation,
shown in Figure 8, is not in agreement with the first observation. Preconditioning on the
right-hand side seems to give a faster convergence. This result confirms as well that the minus
sign in front of the Schur complement is more efficient, whatever the side of preconditioning.
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Figure 8. Convergence of the preconditioned residual norm ‖r‖M−1 with the GMRES
solver on the Stokes lid driven cavity flow on the mesh M4. F and S are approximated

in the preconditioner by 1 AMG V-cycle and the mass matrix, respectively

Whatever side is chosen, the observed rate of convergence is 0.53 in the minus case and 0.67
otherwise. The difference between both preconditioning sides seems to be only due to the gap
at the first iteration. The bounds (15) shows that the rate of convergence only depends on the
spectrum. We observe that the l2 norm of the residual can increase through one iteration in the
case of left preconditioning. The convergence is not monotonic because the GMRES method
actually minimizes the norm of the preconditioned residual ‖r‖M−1 which is thus distorted
[37].

One may observe that the rate of convergence to solve the Stokes equation is faster for
the GMRES solver with the block triangular preconditioner. This does not mean that the
symmetric strategy with MINRES can be forgotten. The theoretical bounds set the latter in a
reliable framework. Moreover, the MINRES algorithm is a short-term recurrence which works
only with 3 vectors while the GMRES method needs to keep in memory all vectors computed
for one Gram-Schmidt orthogonalization per iteration.

3.2. Approximation to the Schur complement

One possibility is the idea derived in Kay, Loghin & Wathen [18]:

MS = ApF
−1
p Q, (20)
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called the pressure convection–diffusion preconditioner. The matrix Ap is a discrete Laplacian
operator built in the pressure space. In order to approximately solve a system with this sparse
matrix, one AMG V-cycle can be efficient. The nonsymmetric matrix Fp is the analog, in the
pressure space, of the operator F from the Picard linearization. Based on intuition, one can
think that both matrices somehow have the same non-normality; this part of the preconditioner
is essential to take the convection term into account. Note that the matrix Fp is involved in one
multiplication since only M−1

S has to be applied. On the boundary, no conditions are imposed;
this seems reasonable since the mean value of the pressure is free for enclosed flow. Therefore,
both Ap and Fp are singular.

Finally, Q is the mass matrix in the pressure space, whose inversion is, in fact, approximated.
Only a few iterations of the Chebyshev Semi Iterative method (see Varga [35] pp. 149–156),
preconditioned by its diagonal DQ, are completed (see [38]). This scheme is an efficient Krylov
subspace iteration that is constant and linear, which is needed to ensure convergence of
GMRES. Otherwise, one should use FGMRES; this might be attractive even though it does
not enjoy the same theoretical convergence properties as GMRES. Eigenvalue bounds, required
as parameters of the Chebyshev Semi Iterative method, are given by the spectral bounds of
the local mass matrix (see Wathen [36]). The computation of these bounds for the linear wedge
elements shows that:

1

4
≤ 〈Qp,p〉

〈DQp,p〉 ≤ 3.

Since this element is the Cartesian product of a triangle by an interval, the values of these
bounds can be deduced from the bounds for these lower-dimensional elements. In fact, the
local mass matrix for the wedge element is equal to the Kronecker product† of the equivalent
matrices for the one-dimensional and the two-dimensional elements. Their spectrum and their
eigenvectors are also linked by Kronecker products; each eigenvalue of the local mass matrix
for the wedge element is the product of an eigenvalue for the triangle (either 0.5 or 2) with an
eigenvalue for the interval (either 0.5 or 1.5).

As far as the ordering of the matrices in the definition of MS is concerned, there is no
proof that it has to be as in equation (20). We studied the six different possibilities for solving
the Stokes equations, the Oseen problem and for the inversion of their Schur complement.
In the Stokes case, the preconditioner MS is not really a scaled mass matrix, because Ap is

singular and thus approximated by Âp where Â−1
p is the matrix representation of 1 AMG

V-cycle. It may seem irrelevant to apply pressure convection–diffusion preconditioning on the
Stokes problem, but it is nevertheless possible and the fact that the matrices do not commute
necessarily makes the different choices distinct. A summary of the observation sorted from the
best to the poorest is given in Table II and Table III.

There are no clear explanations of these different results. Nevertheless, intuition can be

†For the matrices A ∈ R
m×n and B ∈ R

p×q, the Kronecker product A ⊗ B ∈ R
mp×nq is the block matrix

2

6

4

a11B · · · a1nB

...
. . .

...
am1B · · · amnB

3

7

5
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Table II. Comparison between the convergence rate using the scaled mass matrix
and the convergence rate using the six possible orderings in the definition of the
pressure convection–diffusion preconditioner, for solving the Stokes equations and for

the inversion of its Schur complement.

Ordering Convergence rate

Q−1FpÂ−1

p equivalent to scaled mass matrix

Â−1

p FpQ−1 nearly equivalent to scaled mass matrix

Q−1Â−1

p Fp slower than scaled mass matrix

FpÂ−1

p Q−1 stagnation of the true residual norm

FpQ−1Â−1

p stagnation of the true residual norm

Â−1

p Q−1Fp no iteration

Table III. Comparison between the norm of the preconditioned residuals and the
true residuals at each iteration using the six possible orderings in the definition of
the pressure convection–diffusion preconditioner, for solving the Stokes equations, the

Oseen problem and the inversion of their Schur complement.

Ordering Preconditioned residual norm

Q−1FpÂ−1

p equivalent to true residual norm

Â−1

p FpQ−1 nearly equivalent to true residual norm

Q−1Â−1

p Fp a bit distorted

FpÂ−1

p Q−1 distorted norm

FpQ−1Â−1

p distorted norm

Â−1

p Q−1Fp highly distorted norm

used to find some interpretations. The last three orderings are clearly inefficient. Even if the
GMRES method manages to reduce the preconditioned norm of the residual, the norm of the
true residual of the system remains approximately constant. One could have foreseen that the
matrix Fp and Ap cannot be separated since, together, they form the nonsymmetric correction
to the Schur complement approximation for the Stokes equations.

The first three orderings are all acceptable. The best one is the ordering proposed initially
which fits the scaled mass matrix perfectly. The second one is also efficient; the common feature
of these two is that the matrix Fp is in the middle. It seems reasonable that both are somehow
equivalent since, in the Stokes case, one is the transpose of the other.

3.3. Results

Figure 10 shows that the number of iterations increases rather linearly with the mass matrix
while a curve fitting with a power law gives an experimental exponent of approximately 3

5 . The
value for Re = 500 is ignored in the curve fitting because the behavior of the iterative solver
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Figure 9. Convergence of the GMRES solver to compute the second Picard iterate,
with the preconditioner using one AMG V-cycle for MF and MS = QF−1

p Ap, for
several Reynolds numbers on the mesh M4.

is very different. Around Re = 300, new physics begins to emerge in the form of detachment
from the upstream side-wall of the separation line between the primary core and the secondary
eddies. It is interesting that we observe a similar behavior in the iterative scheme and in the
physical observations from the transient flows obtained numerically [9]. The flow appears to
remain laminar in the range 1 < Re < 1200, with vortices forming around Re = 1300.

4. CONCLUSIONS

A Krylov solver for the discrete Stokes equations is presented. The MINRES method
preconditioned using the mass matrix and the algebraic multigrid yields a convergence
independent of the mesh size. Hence, the complexity for solving this linear system is linear
with respect to the number of unknowns. Tight theoretical bounds on the spectrum of the
preconditioned matrix are derived and provide a better understanding of the behavior of the
technique. A new symmetrical and simpler proof of such bounds is given. Convergence analysis
exhibits some specific features : in particular, a better convergence is observed for irregular
meshes that seems to better transfer local information into the iterative scheme.

The generalization of this iterative method to the linearized Navier–Stokes equations is
discussed from numerical experiments. Firstly, we substitute the MINRES method by the
GMRES scheme suitable for any matrices. Secondly, the symmetric positive definite block
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Figure 10. Number of GMRES iterations to reach convergence in function of the
Reynolds number for both approximations of the Schur complement, on the mesh
M4. A curve fitting of ∆n, the increase in the number of iterations compared to the

case Re = 0, is given for the pressure convection–diffusion preconditioner.

diagonal preconditioner is now replaced by a block triangular one. Therefore, new degrees of
freedom appear in the definition of such a preconditioner. In this paper, the following questions
are analyzed.

• Firstly, the issue of selecting an upper or an lower triangular preconditioner is
investigated. Surprisingly, both structures provide almost the same behavior.

• Right preconditioning seems to be more efficient ; moreover, it avoids the ambiguity on
the norm to measure the convergence.

• A minus sign in front of the negative Schur complement yields a better rate of
convergence.

• A sensitivity analysis is performed on the ordering for the pressure convection–diffusion
preconditioner. All approaches are not equivalent and only the Q−1FpÂ

−1
p order yields

the same convergence as the scaled mass matrix in the Stokes case.

Several numerical experiments support those observations, based on an original
implementation of the solver.
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