
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2012; 68:269–286
Published online 13 January 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/fld.2505

Analysis of preconditioned iterative solvers for incompressible
flow problems

S. A. Melchior1,∗,†, V. Legat1, P. Van Dooren1 and A. J. Wathen2

1CESAME, Batiment Euler, Avenue Georges Lemaître, 4, Louvain-la-Neuve B-1348, Belgium
2Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.

SUMMARY

Solving efficiently the incompressible Navier–Stokes equations is a major challenge, especially in the
three-dimensional case. The approach investigated by Elman et al. (Finite Elements and Fast Iterative
Solvers. Oxford University Press: Oxford, 2005) consists in applying a preconditioned GMRES method
to the linearized problem at each iteration of a nonlinear scheme. The preconditioner is built as an
approximation of an ideal block-preconditioner that guarantees convergence in 2 or 3 iterations. In this
paper, we investigate the numerical behavior for the three-dimensional lid-driven cavity problem with
wedge elements; the ultimate motivation of this analysis is indeed the development of a preconditioned
Krylov solver for stratified oceanic flows which can be efficiently tackled using such meshes. Numerical
results for steady-state solutions of both the Stokes and the Navier–Stokes problems are presented.
Theoretical bounds on the spectrum and the rate of convergence appear to be in agreement with the
numerical experiments. Sensitivity analysis on different aspects of the structure of the preconditioner and
the block decomposition strategies are also discussed. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we analyze the performance and the theoretical behavior of a preconditioning
methodology used with Krylov subspace iteration to obtain a numerical solution of the steady-state
incompressible Navier–Stokes boundary value problem

�(u ·∇)u = −∇ p+�∇2u+ f in �,

∇ ·u = 0 in �,

u = w in ��D,

−pn+�
�u

�n
= 0 in ��N ,

(1)

where the velocity u and the pressure p are the unknown fields. The viscosity, the mass density
of the fluid and the external forces are denoted by �, � and f , respectively. The computational
domain � is a subset of R3 bounded by ��=��D ∪��N with outward-pointing normal n.
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A large number of papers are devoted to iterative solutions of the Navier–Stokes equations.
The incompressibility constraint implies that the linearized matrix of the discrete problem has the
structure of a saddle-point problem. For this class of equations, special iterative solvers must be
designed because of their indefiniteness and poor spectral properties [1–3]. An extensive overview
of these methods is given by Benzi et al. [4], Elman et al. [5] and Turek [6]. Some recent works
on numerical solution of saddle-point problems include [7–10].

We investigate the approach of Elman et al. [5] in order to solve the Stokes equations, which
model creeping flows, and the Navier–Stokes equations. This analysis is developed in the framework
of the development of new unstructured grid oceanic models [11–14]. A specific feature appears,
as the ocean flows are strongly stratified. In other words, the horizontal scale is far bigger than
the vertical one and the discretization of in-plane components of the velocities are distinguished
from the out-of-plane velocity. In order to better address this vertical stratification of the flows, the
three-dimensional meshes used for oceanic models are obtained by extruding triangular grids along
the vertical direction. Unstructured meshes composed of several layers of wedges are attractive in
view of their geometrical flexibility to represent coastlines. As the problem in oceanography are
typically large scale, we investigate the use of the preconditioned Krylov solvers on such meshes.

We decide to restrict ourselves to a simple three-dimensional lid-driven cavity problem [15, 16],
i.e. f =0 and homogeneous Dirichlet boundary conditions everywhere except on the upper
boundary where a constant velocity aligned with an horizontal axis is imposed. The trajectories of
particles in this flow are drawn in Figure 1. Such a problem exhibits many relevant effects and it
can be considered as a first real benchmark testcase for iterative preconditioned solvers.

One motivation for this analysis is to address time-varying Navier–Stokes equations with an
implicit scheme. In such an approach, the discrete linear systems to be solved contains a combination
of a mass matrix divided by the time step with a discrete convection–diffusion operator. The
inclusion of this mass matrix term generates extra features that must be taken into account by the
preconditioner [17–20]. Nevertheless, the time step must be limited for accuracy reason and it
renders the contribution of the transport operator relatively small with respect to the steady-state
problem.

The meshes used for analyzing the convergence are given in Figure 2. We consider a MINRES
solver [21] with a block diagonal preconditioner. The velocity is preconditioned by applying one
V-cycle of algebraic multigrid AMG. Such a method was introduced in the 1980s by Brandt [22]
and Ruge and Stüben [23]. The main idea is to reduce the low-frequency components of the error
on coarser operators while the high-frequency components are reduced by a smoother on the fine

Figure 1. The trajectories of particles of the three-dimensional lid-driven cavity problem.

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:269–286
DOI: 10.1002/fld



ANALYSIS OF ITERATIVE SOLVERS FOR INCOMPRESSIBLE FLOW PROBLEMS 271

Figure 2. Convergence of the MINRES solver preconditioned with one AMG V-cycle and
the mass matrix, for the Stokes equations for meshes M1, M2, M3 and M4, respectively.

The rate of convergence is 0.73 on each mesh.

grid. Instead of using several meshes, the AMG variant automatically builds a series of coarser
operators by only using the matrix given by the discretization on one fine grid [24]. An iteration
where the error is smoothed successively on each grid from the finest to the coarsest and then
from the coarsest to the finest is called a V-cycle.

As far as the pressure is concerned, its preconditioner is obtained from the mass matrix Q. For
cubic meshes composed of horizontal layers of wedges extruded along the vertical direction, the
l2 norm of the residual converges linearly at the rate of approximately 0.73, independently of the
mesh refinement. The norm of the residual is decreased to 10−10 in approximately 60 iterations of
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Table I. Characteristics of four finite element meshes and CPU time for solving the Stokes equations with
both direct and iterative methods on each mesh.

Mesh # Wedges # Unknowns �2 Direct solver (s) Iterative solver (s)

M1 192 3216 0.126286 1 4
M2 588 9053 0.124565 18 10
M3 1998 28717 0.123363 210 42
M4 4602 64497 0.121416 898 114

this preconditioned MINRES solver. The characteristics of the meshes and the typical CPU times
required by both the direct sparse and the iterative solvers used are given in Table I. Moreover,
numerical estimations based on the relation (4) of the LBB constant � is also provided [25–27].

This paper is organized as follows. The Stokes equations are first investigated as tight theoretical
bounds can be derived in that case. Then, several choices in the extension of this iterative solver
to the Navier–Stokes equations are discussed from numerical experiments.

2. PRECONDITIONED MINRES SOLVER FOR THE STOKES EQUATIONS

The finite element discretization of the Stokes equations leads to a linear system

Ax=
[

A BT

B 0

][
u

p

]
=

[
f

g

]
,

where A is the stiffness matrix, i.e. a discrete vectorial Laplacian operator; B and BT are the
discrete negative divergence and gradient operators, respectively. This mixed formulation is the
first-order optimality condition for finding the saddle-point to the Lagrangian of the Stokes problem
[4]. Hence, A is indefinite even though the stiffness matrix A is symmetric and positive definite. To
solve such a system, an iterative MINRES solver is in general considered because the coefficient
matrix A is very large, ill-conditioned and indefinite. Moreover, this system must be properly
preconditioned in order to avoid stagnation in the convergence of the norm of the residual.

An ideal preconditioner would be

M∗ =
[

A 0

0 B A−1 BT

]
. (2)

As shown by Murphy et al. [28], the minimal polynomial of the preconditioned matrix T∗ =
M−1∗ A has degree 3; this is exactly the number of iterations required for the MINRES scheme
to compute the solution with this preconditioner. However, it is not useful in practice. In addition
to the inversion of Laplacian operator A, the major drawback of such a preconditioner M∗ is that
solving the negative Schur complement B A−1 BT is required. Nevertheless, if MA and MB A−1 BT

are matrix representations of linear approximations of A and B A−1 BT, respectively, then this ideal
preconditioner should for practical computations be substituted by

M=
[

MA 0

0 MB A−1 BT

]
.

In order to quantify the quality of both those approximations, we use the concept of spectral
equivalence, introduced by Axelsson and Barker [29], for symmetric and positive matrices. The
matrices A and MA are said to be spectrally equivalent if there exists some constants �,�>0
independent of the mesh size h, such that ∀v �=0 the following condition holds:

�� 〈Av,v〉
〈MAv,v〉�� . (3)
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This relation implies that the real interval [�,�] contains all eigenvalues of the preconditioned

matrix M
− 1

2
A AM

− 1
2

A . In the special case where MA is a preconditioner that yields convergence of
the Richardson iteration at a rate independent of h, such inequalities are satisfied (see [5], p. 294).
In this case, �=1−� and �=1+�, where � is the rate of convergence of this simple iterative
scheme. This is the case, for instance, for one multigrid V-cycle.

The Schur complement is approximated by the pressure mass matrix Q, as shown for example
in [5] ∀q /∈ker(BT)

�2� 〈B A−1 BTq,q〉
〈Qq,q〉 ��2, (4)

where �>0 is the LBB constant. The estimated values of �2 given in Table I for several meshes are
computed as the smallest eigenvalue of Q−1S as indicated by the eigenvalue interpretation of this
relation. On the other hand, the ratio between the inner products with the Schur complement and
the mass matrix is bounded above by � which is also independent of h. For enclosed flow, this
boundedness constant satisfies �=1; otherwise, ��

√
d , where d is the dimension of the space.

Note that the kernel of BT corresponds to the hydrostatic pressure, i.e. q=q01.

2.1. Defining a tight inclusion set that contains the preconditioned spectrum

Some theoretical bounds on the spectrum of the preconditioned matrix can be derived. Each
eigenvalue � �=0 of T=M−1A lies in the inclusion set

S= [−a,−b]∪[c,d],

where a,b,c,d are the positive real numbers. As this matrix is indefinite, this set must include
both positive and negative values. The eigenvalues of M−1A satisfy the generalized eigenvalue
problem: [

A BT

B 0

][
u

p

]
=�

[
MA 0

0 Q

][
u

p

]
. (5)

Following the approach developed in [5], we first decouple this system by substituting one equation
into the other

B(A−�MA)−1 BTp=−�Qp, (6)

(A−�MA)u=−BT(�Q)−1 Bu (7)

for � such that the inverse matrix (A−�MA)−1 exists. The spectral equivalence is then used to
obtain spectral bounds.

Let us first consider the case �<0. In this case, the matrix A−�MA is certainly invertible and
is spectrally equivalent to A(

1− �

�

)
〈Av,v〉�〈(A−�MA)v,v〉�

(
1− �

�

)
〈Av,v〉 (8)

as a result of the inequalities (3). The spectral equivalence between their inverse directly follows
from the fact that 〈M1v,v〉�〈M2v,v〉 is strictly equivalent to 〈M−1

2 v,v〉�〈M−1
1 v,v〉, for symmetric

and positive definite matrices. Finally, substituting v by BTp, the relations (8) read:(
1− �

�

)−1

〈A−1 BTp, BTp〉�〈(A−�MA)−1 BTp, BTp〉�
(

1− �

�

)−1

〈A−1 BTp, BTp〉.

The latter gives after using the relations (7) and (4):(
1− �

�

)−1

�2〈Qp,p〉�−�〈Qp,p〉�
(

1− �

�

)−1

�2〈Qp,p〉.
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The second inequality implies that �2−��−��2�0. The negative eigenvalues satisfying the latter
are bounded below as

���−
√

�2+4��2

2
=−a�−�2, (9)

where the lower bound on −a is obtained after the addition of 4�4 inside the square root.
Similarly, the first inequality implies that �2−��−��2�0. The negative solutions of this inequation
are given by:

��
�−

√
�2+4��2

2
=−b<0. (10)

In the case �>0, the bounds are obtained similarly; it follows from Equation (6) and the relations
(3) that (

1− �

�

)
〈Au,u〉�−1

�
〈BTQ−1 Bu,u〉�

(
1− �

�

)
〈Au,u〉.

From the first inequality, it can be derived that

���=c>0 (11)

as Q and A are positive definite. From the second inequality, we take advantage of 〈BTQ−1 Bu,u〉
��2〈Au,u〉, which corresponds to the upper bound in (4), in order to obtain �2−��−��2�0.
The latter’s positive solutions satisfy:

���+
√

�2+4��2

2
=d��+�2. (12)

As a summary of the bounds (9), (10), (11) and (12), the non-zero eigenvalues of Equation (5)
belong to the inclusion set S

�∈S=
⎡
⎣�−

√
�2+4��2

2
,
�−

√
�2+4��2

2

⎤
⎦∪

[
�,

�+
√

�2+4��2

2

]
. (13)

These bounds are tight. For problems with the Dirichlet boundary conditions, the constant � is
equal to 1 while it is bounded by the square root of the dimension of the computational domain
for Neumann boundary conditions [5]. If we restrict ourselves to the Dirichlet boundary condition,
the set (13) for the ideal preconditioner M∗ (�=�=�=�=1) reduces to {(1−√

5)/2}∪[1, (1+√
5)/2]. The limits of this set are actually the three eigenvalues of T∗ that implies the three-

iteration convergence. Hence, it appears that the approximation M diffuses the discrete spectrum
onto two intervals on each side of the origin.

It is interesting to compare the theoretical bounds (13) with the spectrum obtained on several
meshes. In Figure 3, the spectrum obtained in the case MA = A (i.e. only � �=1 as it can be shown
that �=1 for full Dirichlet problem) can be visualized. As it is required to compute each eigenvalue
of the preconditioned matrix, it is not practical to perform computation with highly refined meshes.
Therefore, we only consider a series of coarse regular cubic meshes with 1, 2 and 4 layers of
wedges; the most refined mesh exhibits only 64 degrees of freedom. In order to visualize the
density of the spectrum, a Gaussian with a small variance is centered on each eigenvalue. Then,
this curve is obtained by taking the logarithm of the sum of all these Gaussians. Each curve is
symmetric with respect to 0.5, except for the peaks around 0 and 1. Such a result is proved in [5].

In Figure 4, the distributions of the eigenvalues for the mesh M1 and for an equivalent regular
mesh are compared. In the case of the regular mesh, there are two distinct eigenvalues that are
twice as close to 1 as the closest one in the irregular mesh case. This can be viewed as a direct
consequence of a smaller LBB constant. As we will observe, it implies that the irregular mesh yields
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Figure 3. Spectrum of the preconditioned matrix T=M−1A with MA = A and
MB A−1 BT = Q for a series of coarse regular cubic meshes with 1, 2 and 4 layers of wedges.

The theoretical bounds are indicated with vertical lines.

Figure 4. Close-up view of the positive eigenvalues of the preconditioned matrix T for
the regular mesh with 4 layers of wedges and for the irregular mesh M1. Both meshes

have approximately the same number of degrees of freedom.

better convergence, recalling that the spectrum is symmetric with respect to 0.5. Nevertheless,
both curves are quite comparable, except the size of the gap around 1.5. In both cases, the upper
theoretical bound is strongly tight.

Such an approach can be considered as an improved presentation of the eigenvalue bounds
presented in Elman et al. [5]. Such bounds were established by Rusten and Winther [30] and
independently for the Stokes problem by Wathen and Silvester [31, 32].

2.2. From the inclusion set to a theoretical bound on the rate of convergence

The preconditioned MINRES scheme is a member of the family of Krylov subspace methods,
such as the conjugate gradient method (CG) [33] and the generalized minimal residual method
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(GMRES) [34]. The common idea behind these methods is to minimize the preconditioned residual
of the linear system in the Krylov subspace Kk(T,r(0)) with respect to a norm. Due to the
structure of this Krylov subspace, the following equality holds:

‖r̂(k)‖= min
pk∈�k ,pk (0)=1

‖pk(T)r̂(0)‖, (14)

where �k is the set of real polynomials of degree k, and r̂(k) =M−1r(k) is the preconditioned
residual. Let us assume that T is diagonalizable (T=V�V−1, where � is the diagonal matrix
of the eigenvalues, and V is the matrix of the eigenvectors). It follows that

‖pk(T)r(0)‖ = ‖Vpk(�)V−1r(0)‖
� ‖V‖‖pk(�)‖‖V−1‖‖r(0)‖
= �(V)max

j
|pk(� j )|‖r(0)‖,

where �(V)
�=‖V‖‖V−1‖ is the condition number of V. In the cases of CG and MINRES, T is

symmetric and V is thus an orthogonal matrix with �(V)=1.
The norm of the preconditioned residual at each iteration is then bounded by the solution of an

optimization problem

‖r̂(k)‖
‖r̂(0)‖��(V) min

pk∈�k ,pk (0)=1
max

j
|pk(� j )|. (15)

In general, this problem is slightly relaxed by considering it over the inclusion region S. For
the Stokes equations, we can then easily estimate the rate of convergence. If both intervals have
the same length, the optimal polynomial at the 2kth MINRES iteration is �k(s(�))/�k(s(0)), where
�k(s) is the kth Chebyshev polynomial and s(�) is the quadratic polynomial which maps [−a,−b]
as well as [c,d] on [−1,1]. Finally, the residual at iteration 2k satisfies:

‖r̂(2k)‖�2

(√
ad −√

bc√
ad +√

bc

)k

‖r̂(0)‖. (16)

In Figure 5, the rate of convergence of the preconditioned residual is compared with the theo-
retical bounds given by (16). We successively consider the cases where M−1

A is A−1 and one
algebraic multigrid (AMG) V-cycle [24], respectively. In the latter case, the values of � and �
are deduced from the observed rate of convergence �AMG =0.185 of the multigrid V-cycles. The
only difference between the case MA = A and the ideal three-iterations preconditioner is that the
mass matrix approximates the Schur complement. Nevertheless, the convergence behavior is really
different: the number of iterations increases from 3 to more than 50.

Let us observe the staircase effect in the convergence behavior: the norm of the residual does not
decrease at the even iterations. This can be deduced from the symmetry of the spectrum. Recalling
the way the optimal polynomial is built from a Chebyshev polynomial, it is clear that the optimal
polynomial of degree 2k+1 is very similar to the optimal polynomial of degree 2k.

When M−1
A is one AMG V-cycle, the convergence is slightly deteriorated. Nevertheless, the

computational time decreases from 1025 (s) to 105 (s): using one algebraic multigrid iteration is
thus an efficient strategy. The staircase effect is weaker because the spectrum is no longer exactly
symmetric in this case, as illustrated by the computed limits of the inclusion set for the mesh M4:

S= [−0.6469,−0.1073]∪[0.8150,1.8319].

To apply the theoretical result (16) to this case, we have to increase the first interval to
[−1.1242,−0.1073] in order to have both intervals of the same length. For both considered
preconditioners, it appears that the theoretical bounds on the rate of convergence are fairly loose.
This is partly due to the relaxation that gives the same length to both intervals, especially in the
case with the AMG V-cycle.
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Figure 5. Convergence of the preconditioned MINRES solver and the corresponding theoretical bounds
for two different MA, for the Stokes lid-driven cavity with the mesh M4. The preconditioned residual

norm ‖r‖M−1 is shown. The Schur complement is approximated by the mass matrix.

Figure 6. Structure of the nested iterations in the solver of the Navier–Stokes equations.

3. PRECONDITIONED GMRES SOLVER FOR THE NAVIER–STOKES EQUATIONS

The Picard linearization of the discrete Navier–Stokes equations yield

Ax=
[

F BT

B 0

][
u

p

]
=

[
f

g

]
, (17)

where F is the linear combination �A+�N of the Laplacian operator and the linearized convection
term. As the coefficient matrix of this system is not symmetric, the MINRES method is replaced by
the GMRES method. As illustrated in Figure 6, the computation of the solution of the Navier–Stokes
equations with a preconditioned iterative solver requires a hierarchical interconnection of methods.
At least four different levels can be distinguished. The outer loop consists of nonlinear iterations.
Each of the latter requires to solve a linear system. Therefore, the inner loop is the preconditioned
Krylov subspace method that computes its solution. Applying the inverse of the preconditioner
requires the application of three operations. They can be either simple multiplication, one V-cycle
of a multigrid scheme or the composition of three operators.
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3.1. Block structure of the preconditioner

For the Stokes problem and the MINRES method, a symmetric and positive definite block diagonal
preconditioner is used. Now, it is no longer required for the preconditioner to be symmetric and
positive definite with the GMRES method applied to the Navier–Stokes equations. Note that the
only extra cost between block triangular and block diagonal preconditioners is a simple sparse
matrix multiplication.

On the one hand, an ideal block upper triangular preconditioner would be

MU =
[

F BT

0 −S

]
, (18)

where S = BF−1 BT is the negative Schur complement of the linearized matrix. It would achieve
excellent convergence as was observed for the ideal Stokes preconditioner (2). The minimum
polynomial of the preconditioned matrix has degree 2; this is exactly the number of iterations
required for the GMRES scheme to compute the solution with this preconditioner. Indeed, the
matrix

TU =M−1
U A=

[
I + F−1 BTS−1 B F−1 BT

−S−1 B 0

]

satisfies (TU −I)2 =0. The low-rank matrix TU −I can be written as [F−1 BT− I ]T[S−1 B I ]
and it follows from the definition of S that[

F−1 BT

−I

][
S−1 B I

][
F−1 BT

−I

]
︸ ︷︷ ︸

S−1 BF−1 BT−I

[S−1 B I ]=0.

On the other hand, an ideal block lower triangular preconditioner would be

ML =
[

F 0

B −S

]
. (19)

It would also achieve excellent convergence as the matrix

TL =M−1
L A=

[
I F−1 BT

0 I

]

satisfies (TL −I)2 =0. In Figure 7, almost the same convergence behavior is observed for both
preconditioners. Intuitively, this might be understood as the same operations are applied but in a
different order. Moreover, MT

L =MU in the Stokes case.
The only eigenvalue of TL and TU is �=1, but its geometric multiplicity is smaller than its

algebraic multiplicity. If the sign in front of the matrix S is changed, the spectrum now consists in a
set of eigenvalues −1 and 1 whose geometric and algebraic multiplicity are equal. For any selection
of sign, convergence would be achieved in two iterations for both choice of sign. However, it is no
longer the case when approximations are used. The inclusion regions of the spectrum will evolve
from a point to a non-degenerated area in the complex plane. If the minus sign is chosen, as in
Equations (18) and (19), there will be only one region in the right half-plane, instead of one in
each half-plane with the opposite sign. The bound (15), with the maximization relaxed over the
inclusion region, indicates that the former choice might yield faster convergence.

Moreover, the preconditioned matrix has been written so far with the preconditioner applied on
the left side T=M−1A. Instead of solving the equation M−1Ax=M−1f, right preconditioning
consists in finding y=Mx such that AM−1y= f. One advantage of this alternative is that the
preconditioned norm is not different from the norm of the true residual f−Ax. Therefore, the effect
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Figure 7. Convergence of the GMRES solver, with upper and lower triangular preconditioners, for several
Stokes problems on the mesh M4. F and S are approximated in the preconditioner by 1 AMG V-cycle

and the mass matrix, respectively. The true residual norm ‖r‖2 is shown.

of distorted norm which could give a wrong impression of convergence does not exist in this case.
In the previous strategy for the Stokes problem, the MINRES method actually solves the equation
H−1AH−T (HTx)=H−1f, where H is obtained from a theoretical decomposition for positive
definite matrix M=HHT, like, for instance, the Cholesky factorization. Such a factorization is
not needed in practice. Hence, there is neither discussion about the side of preconditioning, nor
about the sign of the Schur complement as this block must be positive definite.

As far as the spectrum is concerned, there is no difference between both possibilities of precon-
ditioning, M−1A and AM−1. Indeed, the eigenvalues are invariant under the similarity transfor-
mation, i.e the multiplication on the left by a matrix, and on the right by its inverse. However, the
eigenvectors, which are the columns of the matrix V in the diagonalization of the preconditioned
matrix T=V�V−1, are different. As the condition number of V appears in the bound (15) for
the convergence of general Krylov methods, one of the sides might be more efficient.

One way to compare both possibilities would be to evaluate the non-normality of the precondi-
tioned matrix, as normal matrices satisfy �(V)=1. The Frobenius norm of the difference N(T)=
TTT−TTT is a possible measure of non-normality; its value is 0 for normal matrix according
to their definition. This measure can be improved by normalizing it, as ‖N(T)‖F/‖T‖2

F , so it
is scale-invariant. This value is twice as small in the case of left preconditioning, which indicates
that this choice would be more interesting. Nevertheless, this difference is not sufficiently large
to draw such a conclusion. A good discussion about the choice of a measure of non-normality
can be found in Trefethen and Embree [35]. Another possible measure is ‖N(T)‖F/‖T2‖F .
This quantity is also scale-invariant and goes to infinity if N(T)→∞, unlike ‖N(T)‖F/‖T‖2

F ,
which is �2.

Both the questions of the sign in front of the Schur complement and of the preconditioning
side are investigated in Figure 8. The latter shows for the four possibilities the convergence of
the preconditioned GMRES solver when the approximation proposed for the Stokes problem is
used instead of F and S in this preconditioner. This result tends to confirm that the minus sign
in front of the Schur complement is more efficient, whatever the side of preconditioning. Because
of the difference between the geometric and algebraic multiplicities, this change in sign does
not modify the number of iterations to solve the ideally preconditioned system, even though the
number of distinct eigenvalues is reduced from 2 to 1. However, it improves significantly the rate
of convergence when approximations are used for the practical preconditioner.
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Figure 8. Convergence of the true residual norm ‖r‖2 with the GMRES solver on the Stokes
lid-driven cavity flow on the mesh M4. F and S are approximated in the preconditioner

by 1 AMG V-cycle and the mass matrix, respectively.

Whatever preconditioning side is chosen, the observed rate of convergence is 0.53 in the minus
case and 0.67 otherwise. Indeed, the relation (15) indicates that the eigenvalue spectrum solely
determines the evolution of the upper bound on the norm of the residual at each iteration and by
extension, an upper bound on the rate of convergence. However, nothing prevents the norm of the
residual from being smaller than the upper bound; in other words, the number of iterations does
not only depend on the eigenvalue spectrum. It appears that preconditioning on the right-hand side
yields faster convergence thanks to the gap in the norm of the residual at the first iteration. This
empirical observation does not confirm the trend indicated by the measure of non-normality.

The l2 norm of the residual can increase through one iteration in the case of left preconditioning.
The convergence is not monotonic because the GMRES method actually minimizes the norm of
the preconditioned residual ‖r‖M−1 which is thus distorted [36]. For the sake of completeness, the
convergence of the same computations but observed in the preconditioned norm of the residual
is shown in Figure 9. The termination criterion used is a relative tolerance on the preconditioned
norm of 10−10.

One may observe that the rate of convergence to solve the Stokes equation is faster for the
GMRES solver with the block triangular preconditioner. This does not mean that the symmetric
strategy with MINRES can be forgotten. The theoretical bounds set the latter in a reliable frame-
work. Moreover, the MINRES algorithm is a short-term recurrence that works only with three
vectors, whereas the GMRES method needs to keep in memory all vectors computed for one
Gram–Schmidt orthogonalization per iteration.

3.2. Approximation to the Schur complement

For the Navier–Stokes equations, preconditioners of the Schur complement can be deduced from
the assumption that a discrete version of the commutator between some convection–diffusion and
mixed first-order differential operators is small. Choosing the latter as the gradient operator yield
the formulation initially proposed by Kay et al. [37]

MS = Ap F−1
p Q (20)

called the pressure convection–diffusion preconditioner. The matrix Ap is a discrete Laplacian
operator built in the pressure space. In order to approximately solve a system with this sparse
matrix, one AMG V-cycle can be efficient. The nonsymmetric matrix Fp is the analog, in the
pressure space, of the operator F from the Picard linearization. Based on intuition, one can think
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Figure 9. Convergence of the preconditioned residual norm ‖r‖M−1 with the GMRES solver on the Stokes
lid-driven cavity flow on the mesh M4. F and S are approximated in the preconditioner by 1 AMG

V-cycle and the mass matrix, respectively.

that both matrices somehow have the same non-normality; this part of the preconditioner is essential
to take the convection term into account. Note that the matrix Fp is involved in one multiplication
as only M−1

S has to be applied.
Both these matrices are not involved in the discrete linearized system; one major issue is the

boundary conditions used in their definition. As the three-dimensional lid-driven cavity problem
is an enclosed flow, Ap and Fp corresponds to discretizations where the Neumann conditions are
imposed and are thus singular; this seems reasonable as the mean value of the pressure is free in
such a case. For problems with inflow and outflow boundary, it is shown in [38] that considering
the commutator with the divergence operator and using, e.g. Robin conditions can help obtaining
a better approximation.

Finally, Q is the mass matrix in the pressure space, whose inversion is, in fact, approximated.
Only a few iterations of the Chebyshev Semi Iterative method (see Varga [39], pp. 149–156),
preconditioned by its diagonal DQ , are completed (see [40]). This scheme is an efficient Krylov
subspace iteration that is constant and linear, which is needed to ensure convergence of GMRES.
Otherwise, one should use FGMRES; this might be attractive even though it does not enjoy the
same theoretical convergence properties as GMRES. Eigenvalue bounds, required as parameters
of the Chebyshev Semi Iterative method, are given by the spectral bounds of the local mass matrix
(see Wathen [41]). The computation of these bounds for the linear wedge elements shows that:

1

4
� 〈Qp,p〉

〈DQp,p〉�3.

As this element is the Cartesian product of a triangle by an interval, the values of these bounds
can be deduced from the bounds for these lower dimensional elements. In fact, the local mass
matrix for the wedge element is equal to the Kronecker product of the equivalent matrices for the
one-dimensional and the two-dimensional elements. Their spectrum and their eigenvectors are also
linked by Kronecker products; each eigenvalue of the local mass matrix for the wedge element is
the product of an eigenvalue for the triangle (either 0.5 or 2) with an eigenvalue for the interval
(either 0.5 or 1.5).

The inverse of the mass matrix has a two-fold goal: scaling and unsmoothing. Indeed, the
integration on each element bring an extra scaling proportional to its mesh size in the block of
the discretized system. Moreover, applying the latter has the effect of averaging the values of the
continuous differential operator between the nodes and their close neighbors. The mass matrix is
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Table II. Comparison between the convergence rate using the scaled mass matrix
and the convergence rate using the six possible orderings in the definition of the
pressure convection–diffusion preconditioner, for solving the Stokes equations and

for the inversion of its Schur complement.

Ordering Convergence rate

Q−1Fp Â−1
p Equivalent to scaled mass matrix

Â−1
p Fp Q−1 Nearly equivalent to scaled mass matrix

Q−1 Â−1
p Fp Slower than scaled mass matrix

Fp Â−1
p Q−1 Stagnation of the true residual norm

Fp Q−1 Â−1
p Stagnation of the true residual norm

Â−1
p Q−1Fp No iteration

Table III. Comparison between the norm of the preconditioned residuals and the true residuals
at each iteration using the six possible orderings in the definition of the pressure convec-
tion–diffusion preconditioner, for solving the Stokes equations, the Oseen problem and the

inversion of their Schur complement.

Ordering Preconditioned residual norm

Q−1Fp Â−1
p Equivalent to true residual norm

Â−1
p Fp Q−1 Nearly equivalent to true residual norm

Q−1 Â−1
p Fp A bit distorted

Fp Â−1
p Q−1 Distorted norm

Fp Q−1 Â−1
p Distorted norm

Â−1
p Q−1Fp Highly distorted norm

somehow a generalization of the identity matrix that includes this scaling and smoothing property.
Hence, applying its inverse somehow improves the approximations used in the discrete version of
the commutator. The way it is applied to derive MS in [37, 38] can be interpreted in a least-square
sense. Nevertheless, the other choices of ordering obtained by permuting the position of the mass
matrix are also valid.

We studied the six different possibilities for solving the Stokes equations, the Oseen problem
and for the inversion of their Schur complement. For the Stokes problem, the preconditioner MS
would be a scaled pressure mass matrix if the matrix Ap could be inverted exactly. However,
the latter is singular and thus its inverse Â−1

p is approximated by 1 AMG V-cycle. It may seem
irrelevant to apply pressure convection–diffusion preconditioning on the Stokes problem, but it is
nevertheless possible and the fact that the matrices do not commute necessarily makes the different
choices distinct. A summary of the observation sorted from the best to the poorest is given in
Tables II and III.

There are no clear explanations of these different results; nevertheless, intuition can be used
to find some interpretations. The last three orderings are clearly inefficient. Even if the GMRES
method manages to reduce the preconditioned norm of the residual, the norm of the true residual of
the system remains approximately constant. One could have foreseen that the matrices Fp and Ap
cannot be separated as, together, they form the nonsymmetric correction to the Schur complement
approximation for the Stokes equations.

The first three orderings are all acceptable. The best one is the ordering proposed initially which
fits the scaled mass matrix perfectly. The second one is also efficient; the common feature of these
two is that the matrix Fp is in the middle. It seems reasonable that both are somehow equivalent
as, in the Stokes case, one is the transpose of the other.
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3.3. Numerical results

In Figure 10, the convergence of the GMRES solver to compute the second Picard iterate is shown
for the three-dimensional lid-driven cavity problem at different Re�500. The preconditioner uses
one AMG V-cycle and the pressure convection–diffusion preconditioner Ap F−1

p Q as approximation
of the convection–diffusion operator and of the negative Schur complement, respectively. The
evolution with the Reynolds numbers of the number of iterations to reach convergence can be
visualized in Figure 11. If the matrix Ap could be inverted exactly, the product F−1

p Ap would
yield a scaled identity matrix for the Stokes problem. Therefore, it can be seen as a nonsymmetric
correction to this approximation of the Schur complement for the Navier–Stokes equations. It
appears that the number of iterations increases rather linearly with the mass matrix while a curve

0 10 20 30 40 50 60 70 80 90

100

102

Figure 10. Convergence of the GMRES solver to compute the second Picard iterate with the preconditioner
using one AMG V-cycle for MF and MS = Ap F−1

p Q, for several Reynolds numbers on the mesh M4.
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Figure 11. Number of GMRES iterations in order to reach a relative tolerance of 10−10, in function of
the Reynolds number for both approximations of the Schur complement on the mesh M4. A curve fitting
of �n, the increase in the number of iterations compared with the case Re=0, is given for the pressure

convection–diffusion preconditioner.
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fitting with a power law gives an experimental exponent of approximately 3
5 for the pressure

convection–diffusion preconditioner. This shows that this modification of MS significantly improves
the convergence of the GMRES solver.

The value for Re=500 is ignored in the curve fitting because the behavior of the iterative solver
is very different. Around Re=300, new physics begins to emerge in the form of detachment from
the upstream side-wall of the separation line between the primary core and the secondary eddies.
It is interesting to observe that this critical value for the Reynolds number has a similar impact on
the iterative scheme and on the physical observations from the transient flows obtained numerically
[15]. The flow appears to remain laminar in the range 1<Re<1200 with vortices forming around
Re=1300.

4. CONCLUSIONS

A Krylov solver for the discrete Stokes equations is presented. The MINRES method preconditioned
using the mass matrix and the algebraic multigrid yields convergence independent of the mesh
size. Hence, the complexity for solving this linear system is linear with respect to the number of
unknowns. Tight theoretical bounds on the spectrum of the preconditioned matrix are derived and
provide a better understanding of the behavior of the technique. A new symmetrical and simpler
proof of such bounds is given. Convergence analysis exhibits some specific features: in particular,
better convergence is observed for irregular meshes that seems to better transfer local information
into the iterative scheme.

The generalization of this iterative method to the linearized Navier–Stokes equations is discussed
on the basis of numerical experiments. First, the MINRES method must be substituted by another
Krylov solver that is suitable for any matrices as the coefficient matrix is nonsymmetric. We choose
the GMRES scheme as it computes the optimal solution in each successive Krylov subspaces.
Second, a symmetric positive definite preconditioned is not required by GMRES. Hence, the block
diagonal preconditioner can be replaced by a block triangular one that improves significantly the
rate of convergence with a simple sparse matrix multiplication as extra cost. As this preconditioned
is less constrained, new degrees of freedom appear in its definition. In this paper, the following
issues have been analyzed for solving the linearized Navier–Stokes equations with a preconditioned
GMRES scheme:

• First, the issue of selecting an upper or a lower triangular preconditioner is investigated.
Surprisingly, both structures exhibit almost the same behavior.

• Right preconditioning seems to be more efficient; moreover, it avoids the ambiguity on the
norm to measure the convergence.

• A minus sign in front of the negative Schur complement tends to yield a better rate of
convergence.

• A sensitivity analysis is performed on the ordering for the pressure convection–diffusion
preconditioner. All approaches are not equivalent and only the Q−1Fp Â−1

p order is able to
yield the same convergence as the scaled mass matrix in the Stokes case.

Several numerical experiments support those observations, based on an original implementation
of the solver. However, no rigorous theoretical explanations are provided in this paper.
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