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1. Introduction

Model reduction is a key analytical and computational component for simulation, design and control of dynamical sys-
tems. Theoretical and computational frameworks for the design and analysis of efficient and effective algorithms have been
developing steadily over the last few decades. For linear time-invariant dynamical systems there is an extensive and detailed
literature and several efficient algorithms for large scale systems. An excellent review of the basic theory and algorithms can
be found in the book by Antoulas [1]. Antoulas et al., [2], provide an up-to-date survey of methods for linear time-invariant
systems using the interpolatory framework and related projection-based algorithms for computational efficiency.

Recently, there has been an important addition to the interpolatory framework for model reduction. Baur et al., [3],
adapted the tangential interpolation framework of [8] to a Hermite tangential interpolation approach and combined it with
algorithmic ideas from the efficient H; norm model reduction algorithm IRKA, [9], to address the important problem of
model reduction of parameterized linear time-invariant systems.

For general nonlinear time-varying and/or parameterized differential equations, proper orthogonal decompositions (PODs)
have been used to create reduced order models based on observed trajectories of the solution. Chaturantabut and Sorensen
have improved dramatically the efficiency and effectiveness of trajectory-based methods with the recent development of
their Discrete Empirical Interpolation Method (DEIM) [6]. Their approach addresses a key problem of PODs: the computa-
tional cost of evaluating the nonlinear term in the reduced order model is not necessarily lower than the corresponding
term in the full model.

In this paper, we consider the case of model reduction of a linear time-varying dynamical system. These systems have
not received quite as much attention as linear time-invariant systems but there have been several attempts to develop an
efficient approach to model reduction.

For continuous-time systems, Imae et al,, [10], developed the idea of w-balancing solutions. Rather than computing
balancing transformations at each point in time, Riccati equations associated with the balancing problem are solved and
under appropriate conditions converge to balancing transformations with accuracy related to the choice of the parameter .
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Shokoohi, Silverman and Van Dooren considered continuous-time systems in [16] and [17]. They investigated the de-
velopment of a uniformly balanced realization of the system and generated a reduced order model by truncation. Of key
interest in the work is the investigation of the preservation of stability, controllability and observability in the reduced
order model. Shokoohi and Silverman applied the idea of truncated uniformly balanced realizations to discrete-time sys-
tems in [15]. They also explored an alternative algorithm based on a Hankel matrix approach and showed the results to be
equivalent. In [15] the relationship between the Hankel operator of the system and balanced truncation is explored. Model
reduction based on optimization of the approximation in the Hankel norm has been investigated in [7] by Dewilde and van
der Veen.

Recently, Lall and Beck, [11] have considered model reduction of time-varying discrete-time systems. They develop bal-
anced realizations using generalized Gramians defined using linear matrix inequalities, specifically Lyapunov inequalities.
The realizations are truncated to produce a reduced order model. Error bounds are derived in an induced norm and a
procedure for robust synthesis of reduced order models that satisfy desired error bounds is presented.

Sandberg and Rantzer have considered balanced truncation of time-varying systems for both continuous- and discrete-
time using Lyapunov inequalities to define controllability and observability Gramians in [14]. They derive generalized error
bounds that include those of Lall and Beck and show that input-output stability of the full model is preserved in the reduced
order models.

While the approaches above produce a reduced order model for an infinite horizon discrete- or continuous-time system,
the associated algorithms have not been shown conclusively to be efficient for large scale systems. Chahlaoui and Van
Dooren approached the problem from the point of view of their earlier work on efficiently tracking certain subspaces as
they evolve over time. In [5], they propose two methods: the Recursive Low-rank Gramian method (RLRG) and the Recursive
Low-rank Hankel method (RLRH). At each instance in time, an efficient update is computed to the dominant subspaces
required to form low-rank approximations to the Gramians and to the Hankel map defining the input-output relationship,
respectively. Each of these can be used to define a local projection to a reduced order model. Error bounds are derived and
the methods are compared to each other and to balanced truncation. It is seen that the RLRH method is preferred over
RLRG due to less sensitivity and that RLRH compares favorably with balanced truncation.

We follow an approach similar in spirit to that of RLRH and RLRG in that our objective is to develop a simple algorithm
based on a local finite horizon view of the problem and the parameters of the model, i.e., data from a particular solution
trajectory is not used. We, however, use a well-defined local optimization approach to model reduction and therefore control
directly the accuracy achieved by the reduced order model.

Specifically, we consider the problem of approximating a Linear Time-Varying (LTV) p x m state space model

o {Xk+1 = AkXk + Biug, (1)
Yk = CiXk,
with a state x; of dimension N by another LTV p x m state-space model
g:: {E{k-ﬁ-l /z\ﬂk/)?k + BkUk, (2)
Vi = CieXi

with a state X, of dimension n <« N. If we initialize both systems at time k; with initial states x;, =0 and X;, = 0, then over
a finite horizon [k;, kf], (1) and (2) define linear mappings, respectively from the input sequence Uk k=1 1O Yigt+1k; and
from Uk k=1 1O Yig+1ky» where
Ug; Yki+1 37’(1'4-1
uk,’,kf—l = s }’Iq-&-l,kf = s YI<i+1,kf =
Ukp—1 Yy Yk

Denoting these mappings by S and S, respectively, we are addressing the problem

. =~ R _
min ”S_S”Fv yk,‘+1,kf =Suk,',kf7]v yk,‘+1,kf ZSU]('-,](},,],

where we use the Frobenius norm rather than the 2-norm, because it is easier to compute its gradient, and hence to

formulate a gradient-based optimization method. Notice also that we can construct an “error” system S, with extended

state Xe = [;ﬁ ] input u, and output ey := y; — Vi

(3)

) Xek+1= Ae kXe k + Be klk
e i =
e = Ce,kxe,k
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Its initial state at time k; is also given by x,, = 0. Defining S :=S —S as the linear mapping of the error model, the
problem is then equivalent to

. 2 . o~
min ”56”1-‘7 ekj+1,kf = yk,'-‘rl,kf - Yki+1,kf = Seuk,‘,kf—l'

Notice that we have chosen not to have any direct feed-through terms (Dj and Bk) in the systems (1) and (2) since by
choosing Dy = Dy this term disappears in the error system S, anyway. This also explains why the output vector et k, is
shifted in time with respect to the input vector Uk ky—1-

In order to clarify the link with the H,-norm, we first recall the equivalent time-invariant case problem, where the
dynamical systems are simplified to

Xk+1 = AXy + Buy
= 5
{ Yk = Cxk (%)
and
S._ /X\k+1 Z/A&\k +§u
S:=1%1 2 (6)
{ Y= C&\k-

The time-invariant error system is now given by

Xe k+1 = AeXe k + Bellg

Se =
ex = CeXe k

with time-invariant coefficient matrices

A=A ﬁ] Be:[%] C.=[c -C]

Since the system is time-invariant one can consider as well the infinite horizon problem, with zero initial state at time
ki = —oo. It is then useful to formulate this problem using the transfer functions of these systems, which are respectively
given by

H(z)=C(zI —A)"'B, H(z)=CzZI-A)"'B and E(z):=H(2) —H(2).
The squared H,-norm of the error function E(z) is then defined as (see [1])

2

2 jw jo\H dw - T
T = EO) |3, = tr/E(eJ )E(e?) > =trk2(:)(CeA’;Be)(CeA’gBe) : (7)
0 -

This can be rewritten in terms of the solutions of the Stein equations

AePeAl + BBl =P,,  AlQcA.+ClCc=0Q. (8)

as

which are computable quantities (see [1]). Indeed, one can partition the solutions P, and Q. to obtain the Stein equations
in the form

_| P X _|Q Y
Pe-_|:xT P]v QE'_[YT Q]a
A p X][AT B ~ P X
)l B w )[R = B

" w b el al e o[ 8]

The expansions above can be used to express first order optimality conditions for the squared H;-norm in terms of the
gradients of 7 versus A, B and C. This theorem is originally due to Wilson [19] (see also [18,9,4]):

Theorem 1.1. The gradients V37, V3J and V¢ J of J = ||E(-)||%1{2 are given by

V37 =2(QAP+YTAX), Vv3J=2(QB+Y"B), VeJ=2(CP-CX), (9)
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where
ATYA—CcTC=Y, ATQA+C'C=qQ, (10)
AXTAT +BBT=x", APA' +BB' =D. (11)

It follows from the gradient expression that the following equations hold at the stationary points (see [18] for a proof).

Theorem 1.2. At every stationary point of J where P and Q are invertible, we have the following identities

A=wTav, B=w'B, <C=cv, wlv=l, (12)

with W :=—YQ 1, V := XP~! and where X, Y, P and Q satisfy the Stein equations (10)-(11).

We can rewrite this as_a projection since we are constructing a projector [7 := VWT (implying WTV = I,,) where
V:=XP~! and W := —YQ ! are derived from the Stein equations. Those ideas also lead to algorithms. One can view
(10)-(12) as two coupled systems of equations

(X,Y,P,Q)=F(A,B,C) and (A,B,0)=G(X,Y,P,Q)

o~ A~

for which we have a fixed point (Z, B,0)= G(F(A, B, (C)) at every stationary point of 7 (Z, B, C). This automatically sug-
gests an iterative procedure

(Xv Y’ﬁs Q)i-‘r] = F((’A’ Ev ’C\)H-l)v (27 §’ 6)i+1 = G((X’ Y,/I;, a)i)’

which is expected to converge to a nearby fixed point. This is essentially the idea behind existing algorithms using Stein
equations in their iterations (see [1]) and behind the IRKA algorithm of [9].

In the following section, we extend this to the time-varying case. Since the matrices Ay, By and Cj are varying with time
we must consider the finite horizon case in order to be tractable.

2. The time-varying approximation problem

We consider the discrete-time linear systems S and S given in (1) and (2) and associate with it the “error” system S,
given in (3) and (4). Its state for initial condition x,eq =0 is given by

k—1
Xy = ®Ppi1Beil;
i=/€,‘

where
i1, =AexPri fork>i, and &y, =1. (13)

We now simplify the notation by using u and é for the inputs and outputs of S, over a time interval [k;, k], respectively.
This yields

€ki+1 Ug;

e =S.u where e:= : , U= : ,
ekf ukf*‘l
and
Ce,lq—i—l 0
Se =Dc®eDs, D¢ = >
0 Ce’kf
dski-i-l,k,'—l-l 0 Be,k,’ 0
¢€ = . . s DB = .
q)kf,k,‘—}—] cee ¢kf,kf 0 Be,kf—]

We will define the squared H3(k;, kf) norm, simply denoted by Hj, of the finite horizon time-varying system S, as the
trace of SeTSe (or the Frobenius norm squared of S.)

1Sell3, := T (ki k) :=tr(SI Se) = [ISell%.
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Notice that

=12 =112 2017012 25712
el = lISeully < ISellzllully < ISellellully- (14)

For LTI systems, one can show that ||S¢|» is related to the Hso-norm, while ||S¢||r is shown here to be related to the
‘Hz-norm. Since the 2-norm is not so simple to differentiate versus its matrix elements, we choose here to minimize ||Se| r
in order to guarantee nearby responses for a given input energy.

We now consider how tr(SeT Se) can be rewritten and possibly minimized versus changes in Z,’,Ei and a-. Therefore we
define the Gramians P, and Q. as follows:

k—1

Per:=» (Prit1Be)(@riv1Bei)’. k=ki+1,....k;. Pey =0,
i:k,‘
kf

Qeki= Y (Cei®irs1) (Cei®irs1), k=ki,....kf =1, Qes, =0.
i=k+1

These Gramians satisfy also the difference equations (see [5])

Ak A Bk |rpT BT
Peyi1 = |: ’A\ki| Pe i |: ’A‘IT + Ek [Bk Bk]’ (15)
k
Pe,ki =0
Al Ak cl ~
Q]_=[k A]Qk[ A:|+|:Ak:|Ck Ck
e.k—1 Al{ e, A CIZ [ ] (16)
Qe,kf =0

They can be seen to correspond to the diagonal blocks of ®.DgD}®[ and @I DD ®.:

diag{®@eDpDp Py } = {Pek+1.---» Peis}:
diag{(pgTDgDC(pe} = {Qe,k,-: ey Qe,kffl}-

From this it follows that 7 (k;, kf) can also be written as

kf kf—l
T ki kp):= > tr(CoxPerCor) = Y tr(Bl; QexBek) (17)
k=k;+1 k=k;

which looks very much like the time-invariant case (in fact, one can relate both quantities in the case of time-invariant
systems by letting the window length go to infinity). Let us again partition P,y and Q. as follows

_| Pk Xk 1 Qr Yk
Pe,k—|:XT Pk:| and Qe,k—|:YIZ' Q|

The following theorem gives then the gradients of [ (k;, k) versus Zk,Ek and fk.

Theorem 2.1. The gradients VﬁkJ V3, J and 4 of T (ki kp) =1Se ||312 are given by

Vi J = 2(QAKPy + Y] AcXe). (18)
V3, J =2(QuBi + Yy By). (19)
. J =2(CPi — CeXi) (20)

where Xy, Y, @k, 75,( satisfy the recurrence relations

Xk+1=A/<XkZE+B/<§Z, k=ki,...,kf—1, in=0,
ﬁk+1 = Zkﬁkﬁ,f +§k§£, k=ki,..., kf -1, Py =0, (21)
Y,<_1=A£Ykﬁk—c,fa<, I<=kf,...,ki+1, ka=0,

Q\k,1 Z,AIZ Qk;\\k +E];r€k, k= kf, P ki +1, 6’<f =0. (22)
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Proof. The proofs for ngj and kaj are similar. We therefore only derive it for ngj . We use the fact that J(k;j, kr) :=
kp—1
k:k,‘

out as

tr(BeT,er,kBe,k) has only one term that depends on variations in Ek. The k-th term in this equation can be worked

tl‘(BIZ QiBy + ZBIZYk,B\k +§,€ a]<§]<),

and the gradient of this term is clearly given by 2(@k§k + YkTBk).

The proof for V;kj is more involved since Ay appears in many terms of tr(SeT Se¢). The matrix ﬁk enters only in Ag,
and hence only in the factor @, of S.. It follows from the repetitive Hankel structure of @, that its first order perturbation
A is given by

0 O
A(p = qj:,k"r] [0 AZ } ¢k,3
k

where k=k; + 1, ..., ks — 1. The corresponding perturbation Ag of S then equals Dc Ag Dp which yields

0 0
Ay(sTs,) = 2tr(SIAs) = 2tr(cpk,:DBDg@ZDgchb:,kH [o Ax D
k

But the expression @ .DgDL I DIDc®. 11 is the same as

0 0

&y .DgD}
kB B|:(pk+1:kf,k,'+1:k 0

T
:| DEDC®. jiq

since that is the only part of @, that gets multiplied by nonzero elements. From the Hankel structure of @, it again follows
that

0 0
=o. Ao kD -,
|:(pk+1:kf,k,-+1:k 0} Rlep1 ek Tk

which finally yields
@y :DgDp®y AL P 1 DEDCP: k1 = PerAg Qe
From this, we obtain

0 0 S 7o
AsTs,) = 2tr<Pe,kA§’er’k [0 As ]) =tr(2(X} Af Yk + PyA; Qi) A%)
k

which expresses that V3 J = 20Y] AeXi + QiAKPy). O

The initialization of the Gramians implies that the gradient with respect to K,qfkiﬁk ; and By 5 are automatically 0.
Indeed, these matrices are not used in the definition of [ (k;, ks) since the mapping over the finite horizon [k;, k] does not
depend on them. R R

The recurrences (21)-(22) and the associated matrices Yy, Qk, X and Py for k=k;, ..., k¢ provide a method to compute
projections

Wii=-YQ, ', Vi=XcP,!

that satisfy WkT Vi+1 = I. Therefore, these can be used to construct a reduced order model
(Ak, Bk, Ci) := (W[ Ax Vi, W[ By, Gk V).

This follows from filling in the state approximation x;, &~ VX, for k=k; +1, ..., kg in (1) to obtain:

Vg1 X1 = Ak ViXe + By,
Vi = C ViXy.

Notice that Vj, can be chosen arbitrarily since xi, is known (X, r, = 0). Multiplying the top equation by WkT then yields

Ty, & T = T
Wi Vig1Xk+1 = Wi AV + W Biug,
Yk = Ci Vi

This is essentially identical to the interpolation result that was obtained for the time-invariant case.
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The production of these projectors, in turn, suggests a relaxation iteration, similar to that used for the time-invariant
case, to produce a series of reduced order models

Sy = (Ak,r)» Bk,ay> Ck,y), 7=0,1,2,...

that converge to a fixed point defining the final reduced order model. The simplest relaxation schedule keeps the matrices

defining §(r) fixed while computing the next set of Xy and Yy for k=k;, ..., ks and then applying the associated projectors
to compute
(Ak,ar+1)> Bk, r+1)> Ch,r41)),  fork=ki, ... k¢

to define the next reduced order model §(r+1).
The resulting algorithm is given by

Initialize 3'\(0) = (Zk(o), Ek,(O)’ 6/(,(0)) and r=0
repeat until convergence
Set Xy, =0, Pk _0 and compute for k_k,,.. kf —1
Xk+1 = AkaAk " T BkBk @ and Pk+] Ak (r)PkAk " T Bk (T)Bk .
Set Yy, =0, Qkf =0 and compute for k_kf,.. k, +1
Yk 1= Ak ) YkAk r — C Ck ) and Qk 1= k ") QkAk @+ Ck ) Ck ()
Comptﬁe projectors Wy and Vk and S(r+1) = (Ak,<r+l>, Bk,(rﬂ), Ck,(rﬂ))
Place S¢4+1) in an appropriate coordinate system (see Remarks below)
and compare to S\(r) to check convergence
r<r+1
end repeat

Remarks.

1. It appears from the definition (17) that the cost function is independent of the coordinate systems used for the state
models for (A, By, Cr) and (Ak,ﬁk,’C\k), but clearly the gradients do depend on this coordi}gatg\ system. In order to check
convergence, one therefore has to use a unique coherent coordinate system for all iterates (A, Bg, Cx). In our experiments,
we used a form of balanced realization for the reduced order system. This choice removes the degrees of freedom related
to the choice of coordinate system in which to describe the reduced order system.

2. Notice that, just as for the LTI case [9], there is no proof of convergence for this iteration and that there may be
several local minima for the cost function we try to minimize. Nevertheless, in practice we observe linear convergence to a
local minimum, which is presumed to yield a reasonable approximation of the global minimum.

3. The rank of the matrices P, and Q.  increase linearly at each step of their recurrences (15)-(16) until saturation
since their initial condition is zero. If the number of state variables of the reduced order model is kept constant, the
stationary conditions on the linear time varying Hy norm remains compatible. For instance, the projectors can be computed
using the generalized inverse of the low rank Gramians of the reduced order model. But in that case, the inner product
WkT Vi1 is rank deficient instead of equal to the identity matrix. Alternatively, it is possible to choose the number of state
variables equal to the rank of the Gramians of S.. Hence, it increases linearly at both extremities of the time interval [k;, k].

Also note that one can run the recurrences (21)-(22) forward and backward and compute at the same time the gradients
for corrections to the reduced order model. These can be used to define various gradient-related optimization algorithms
that would probably converge faster than the simple relaxation-based approach above.

3. Time-invariant versus time-varying

In this section we compare the time-invariant H; approximation problem with the finite horizon approximation problem
described in this paper. It is clear from the similarities between all the formulas that there should be a relation between
the two cases. We make this more precise in this section. For this we consider a time-invariant system {A, B, C} over a
finite horizon (of length £ =kf —k;) and apply our time-varying method to it. The first result relates the norms used in
both approaches.

Theorem 3.1. The Frobenius norm squared of the matrix with ¢ block rows

CB 0
S= E .', )
CA*"'B ... CB
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associated with a stable LTI system {A, B, C} for a finite horizon tends to the H; norm squared of the infinite horizon system multiplied
by ¢, ie.,

1
lim —||S|lr=|H( .
n —=ISE = [HO Ly,
Proof. The following semi-infinite matrix with ¢ block rows
CA’B CAB CB 0
SOO = ... ’ ° . ’ : . ’ ° . 9

CA%B CAB CB

has bounded Frobenius norm squared which is exactly equal to the , norm squared multiplied by ¢ of the infinite horizon
system:

1 P 2
7 l1Seoll = [HO) 5,

since the nonzero part of each block-row can be written as
CC:=C[--- A’B AB B],

which has Frobenius norm squared equal to tr CCCTCT =trCPCT, with P the solution of the Stein equation P = APAT +
BBT. We thus need to show that 1(||50<>||F ||S||%) tends to zero as £ goes to infinity. But the portions of the block rows

of Sy not in S can be written as CAIC fori=1,...,¢ and hence we have that

14
2 1 1 1 i T
[HO3, = 5 1SIE =5 (ISl = I1SI1F) = ZtrC(} ATPA! )cT

i=1
which for £ — oo tends to zero as 1/¢, since the summation remains bounded for a stable matrix A. O

If we know that the norms are becoming the same as the window size increases, one can expect that the time-varying fi-
nite horizon approximation {Ak, Bk, Ck} of an LTI system {A, B, C} will also converge to a time-invariant system, but because
of the boundary effects at the borders of the interval, this can only be expected near the center of the interval. This can be
expected also from the equations for the time-varying Gramians P, and Qj of the large scale system. Clearly P tends to P
for increasing k and Qj tends to Q for decreasing k. Near the middle of the approximation interval, we are thus working
with essentially a time-invariant linear system and one can expect the optimal approximation to be nearly time-invariant
as well. Moreover, the difference between the approximation errors of both approaches, will tend to disappear. We illustrate
this phenomenon in our test results.

4. Results

In this section, we give a simple example to show the effectiveness of the algorithm. We take a linear time-invariant
system (rather than a time-varying one) where A has spectral radius equal to 0.98 and then applied our algorithm for a
time interval of 50 samples (the example is a 3x2 MIMO system of order 9 taken from [13]). The reduced order model is
nevertheless time-varying since we are solving a finite horizon problem. But since the system is also relatively damped, the
finite horizon reduced order model will tend to be close to the time-invariant infinite horizon problem. In Fig. 1 we show
the convergence of the error and its gradients with respect to Ay, Ek and f,<. One can see that the error function converges
to a steady state value in a few steps for a reduced order model of degree 3. The gradient, on the other hand, continues
to decrease in a linear fashion, which is to be expected since it is a fixed point iteration. Moreover this convergence was
similar to that of the infinite horizon time-invariant problem (not shown in this paper). In dashed line, we also indicated the
finite horizon error level obtained for a linear time-invariant reduced order model and one can see that the finite horizon
time-invariant model behaves indeed better. This is of course to be expected since the time-varying reduced order model
minimizes the correct criterion. The fixed point iteration is initialized using the balanced truncation of Sj,, for the reduced
order model at each time k.

Using this method, the reduced model of order n=1,...,7 can be computed. The corresponding values of 7 are shown
in Fig. 2. Since the curve is monotonically decreasing and reaches machine precision for n = 7, it tends to indicate that each
fixed point is the global minimum of this criterion.

Theorem 3.1 suggests that, in the middle of the time interval, the time-varying reduced order model of a time-invariant
system converges to the time-invariant reduced order model when the length of the time window increases. In Fig. 3,
we show that the difference between their eigenvalues after a quarter of the time interval and at the middle decreases
accordingly.

The advantage of this model reduction scheme for linear time-varying systems, compared to computing the optimal H;
model corresponding to a time-invariant approximation of the initial one, is shown in [12].
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Fig. 1. Convergence of 7 and its gradients for third order approximation, normalized by Jp the H; norm of the initial model.
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Fig. 2. Convergence of 7 for reduced model of order n =1 to 7, normalized by Jy the H; norm of the initial model.
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Fig. 3. Convergence of the difference between the eigenvalues of the third order time-invariant reduced order model and the time-varying reduced order
model after a quarter of the time interval and at the middle.
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5. Conclusion

The contribution of this paper is the extension of the 7, problem to time-varying discrete-time systems, including the
characterization of the stationary points of 7 based on Stein-like recurrences. Unlike the methods in [5,11] and [14], we
base our reduced order model’s construction on the minimization of a well-defined error criterion.

Like the work in [5], we predicate the development of our approach on the requirement of a computationally efficient
algorithm based on the parameters of the model. However, in our case, the characterization of a stationary point of the error
criterion provides the fixed point iteration algorithm, evaluated here, and the basis for more sophisticated gradient-based
algorithms that allow us to reduce the error criterion to required values in an efficient manner.

There are several areas of interest for future work on this topic. These include assessing the effectiveness of more rapidly
converging minimization algorithms and interval selection. Perhaps the most important, however, is investigating scaling
the algorithms to systems with much larger dimension, N, and longer time intervals, ultimately addressing infinite horizon
problems. Systems with matrices of moderate dimension such as the numerical tests included in this paper and the related
references are state-of-the-art for model reduction algorithms that produce a time-varying reduced order model via explicit
construction of its sequence of defining matrices. Unlike methods based on PODs or the more sophisticated DEIM that
compress information about the behavior of large systems over large time intervals into one or two projectors, the methods
of interest here must determine a set of parameters with cardinality proportional to N and the size of the time interval
defining the finite horizon. As a result, exploitation of structure in the problem, e.g., sparsity and properties of the manner
in which the coefficients defining the full system evolve, is crucial and is under investigation. The effectiveness of the scaled
up algorithms will be assessed on more substantial application problems.
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