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Abstract for solution of linear systems of equations. The bounds are fur-

In this paper, we present an algorithm for computing the
characteristic polynomial of the pencil (A — sE). It is shown
that after a preliminary reduction of the matrices A and E to,
respectively, an upper Hessenberg and an upper triangular ma-
trix, the problem of computing the characteristic polynomial
is transformed to the solution of certain triangular systems of
linear algebraic equations. We show that the computed charac-
teristic polynomial corresponds exactly to perturbed matrices
A+ AA and E + AF and we derive bounds for AA and AE.
We also suggest how to improve on this backward error via
iterative refinement.

1. Introduction

In severalengineering problems e.g., computation of trans-
fer functions of linear dynamical systems [8] and applied math-
ematical problems e.g., computation of functions of a matrix
[1], one needs to compute the characteristic polynomial of a ma-
trix, det(A — sI) or that of a matrix pair, det(A — s E'). Some of
the common methods currently in use for computing the charac-
teristic polynomial of a matrix include: reduction to Frobenius
canonical form, use of Hyman’s method for computing the
determinant of a Hessenberg matrix [16], Faddeev-LeVerrier
recursion [3], finding the polynomial by first computing the
eigenvalues of the matrix, etc. Most of these methods have
also been extended to computing the characteristic polynomial
of matrix pairs.

Unfortunately, none of the above techniques has been
proved to be numerically stable in a strict sense. While it
is true that the computation of the eigenvalues of a matrix is
numerically stable, forming the characteristic polynomial from
them is not. The purpose of this note is to develop a numer-
ically reliable technique for the computation of det(A — sE).
We would like to emphasize here that if the eventual aim is to
compute the eigenvalues of a matrix or the zeros of a matrix
pencil, then the use of the Q R or QZ algorithms, respectively,
is advocated due to its numerical reliability. However, if the
characteristic polynomial is explicitly required, then the algo-
rithm in the sequel will provide a faster and reliable mean to
determine it.

The layout of this paper is as follows: In Section 2, we
present the numerical algorithm for computation of det(A—sE)
by reducing the problem to solution of triangular systems of
equations. In Section 3, we derive the backward error bounds
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ther refined by taking into accountthe structure of the problem
discussed in Section 2. Numerical results for several experi-
ments with large size problems are presented in Section 4.

2. Computation of Characteristic Polynomial
Hessenberg Triangular Reduction

Given a matrix pair (£, A), E, A € R™®, there exist
orthogonal matrices @ and Z € R®*®, such that £ := QTEZ
is an upper triangular matrix (e; ; = 0,i{ > j)and A:= QTAZ
is an upper Hessenberg matrix (a; ; = 0,1 > j + 1) [4].

Further, it can be assumed without any loss of generality
that A is an unreduced upper Hessenberg matrix (a; ;—1 # 0,
t = 2,...,n). If indeed A is not unreduced, then the problem
of computing the characteristic polynomial can be decomposed
into smaller problems.

Hyman's Method for Computing the Determinant of A
Given an unreduced upper Hessenberg matrix A € R™™", it is

always possible to find an elementary transformation matrix T
such that

an O3z d1n-1 Oin
g Gn dzn-1 O

A:=AT = a3 Ba-1 0| @)
Gn,n—1 0

Then, the determinant of A is given by

det(4) = (-1)""lay, ﬁ Gii-1

=2

The above result was used in [9], [10] to compute the
characteristic polynomial det(4 — sE). This was achieved by
determining a unimodular transformation matrix 7'(s) (with
determinant normalized to 1) such that

A(s) = (A-sE)T(s)
[ou(s) an(s) a1,n-1(8) d(s)
an a.n(s) az,,._;(s) 0
= a3 a3,n—l(3) 0
Gp,n-1 0
22)




where E is an upper triangular matrix and A is an unreduced
upper Hessenberg matrix. Similar to (2.1), the characteristic
polynomial det(A — sE)is given by (—1)"~1d(s)} [T\, ai i-1.
Note that, in (2.2) T(s) can be chosen as follows

! 1(s) ]

T(s) = [ e
where t(s) = [t;(s) t2(s) -+ ta—1(s) 1 ). For the ac-
tual computation of the characteristic polynomial of the matrix
A(s), one only needs to compute the vector ¢(s). Equation
{2.2) then simplifies to

d(s)
(A - sE)t(s) = 3)
0
In (2.3), since t,(3) is assumed to be 1, the polynomial vector

#(s) can be determined completely by solving the following
systems (of polynomial equations)

ayn ax(3) a2,n-1(5) a2,n(8)7 [t1(s) ]
app - a3n-1(8) asa(s) | | (s) _|o
Gn,n~1 an,;(s) 1 0

2.4) +

subsequently, d(3) is computed as the product

d(s) := [au(s) a12(s) G1,n-1(8) O1n (3)] t(s)
2.5)

Using the fact that ¢,, (s) = 1, Equations (2.4) and (2.5) canbe
rewritten as

-1 ayu(s) 81,n-1(3) d(s) }
ag o Gge-1(9) t1(s)
Gy n—1 ta—1 (3)-
a1,n(9) €1,n G1n ]
azn(3) €2n az.n
= . =s] . - .- (@28)
Gn,n (3) €nmn Bp,n 4

Notice that it follows from this triangular system that
deg (tn~i(s)) < i. By equating the like powers of s on both
sides, Equation (2.6) can be expanded to the following block
bidiagonal matrix vector equation

F -G T )
F -G Zn—-i o
SRS = @7
F -G z1 In
F Zo —'fn
where,

-1 an G1,n-1 G1,n

21 G2n-1 2n

F= . 1yJn = .
Gn,n—t Gn,n

0 ey €1,n-1 €1n
0 PN 32, -1 ezl
G= = ] and @8)
0 €nn

[d(s) (t(3))7]" = 6" + 8" Tuey + o + 571 + 20,

Remark 2.1 Due to the assumpiion that A is an unreduced
upper Hessenberg matrix, the matrix F' is upper triangular with
all diagonal terms nonzero. Therefore, (2.7) represents a block
bidiagonal system of linear aigebraic equations, 7z = b, with
its diagonal blocks in upper triangular form.

Remark 2.2 Nawrally, if implemented as represented in (2.7),
the algorithm would require an inordinate amount of memory.
However, itis easy to see that Equation (2.7) can be equivalently
solved using the following recursion:

F"EO=—'fn

Fzy = Gzp + gn
Fz; = Ggi—y,

29

t=2,...,n

which requires (n+1) solutions of n-th order triangular system
of equations and n matrix-vector multiplications of n-th order
triangular matrices, requiring ©(n?) operations. It is possible
to reduce this cost further by exploiting the fact that the last
i — 1 components of the vectors z;,1 = 2,...,n will be zero.
Therefore, the size of the matrices in the previous recursion
decreases from the second step by 1 at each step and the cost
of the algorithm can be reduced to ©@(n?/4) operations.

3. Backward Error Bounds

In this section and, unless otherwise stated, A4, and £ will
be any general n x n matrices. Besides, ® will stand for the
Kronecker product and vec will be the vector operator which
stacks the columns of a matrix in a vector. We first recall some
classical results about componentwise error analysis (see [11],

[12)).

Theorem 3.1 The normwise backward error
ne,s(¥) = min{e: (A4+AA)y =b+Ab,
lAA]l < el £, Habll < ellflI}
is given by

el
2.5 W) = BT+ 7 @

where r = b — Ay. If e]| AY|||| E}l < 1 the following bound

le—gll e .
Tl T=aiA-TyEy o (4:2)

is attainable to first order in € and the associated condition
number is

(3.2)

Al
Ewilhi %)

kE,5(4,2) = el T A=t 2N
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Theorem 3.2 The componentwise backward error
we,s(y) = minfe: (A+AA)y=b+Ab,
|AA| < €E, |Ab] < ef}

where E and | have now nonnegative entries (note that the
inequalities on this definition should be considered componen-
twise) is givenby

Iril

wg,f (y) = m'ax m (34)
If €|l |A™!| E|| < 1 the following bound
Iz — ylloo €

= — condg (4,2 (3.5)
Tl Tl lA-T] E] o354 (42)

is attainable to first order in ¢ and the associated condition
number is now ’

AT Bzl + A7 1] loo
zlloo

condz,¢(4,z) = (3.6)

Similar results also hold for normwise errors. For triangu-
lar systems of equations, the following result holds (see [6]).

Theorem 3.3 Let the triangular system Tz = b, where T €
R s nonsingular, be solved by back substitution, with any
ordering. Then the computed solution y satisfies

(T+AT)y=b, AT|< wIT|, 185 < wmlbl (.7

where v, = mu/(1 — mu), m is the bandwidth of the system
and u is the unit roundoff of the machine.

From this backward error bound, one obtains (see also
(13D:

Z ~ Ylloo

cond (T, 2) v
Z]leo < T—cond (T)Vm cond (T, z)
_ 1 |T"1| [T 2] oo
Z|l oo ’
where, cond (T') = || |T~} |T| |o. As a direct consequence
of Theorem 3.3, the solution of the block bidiagonal matrix
vector equation in (2.7) and, therefore, the coefficients of the
characteristic polynomial, are computed in a backward stable
manner. However, this neglects an important fact: the structure
exhibited by system (2.7). In [15], [2], [5]), it is shown that the
structure can affect both the conditioning and the stability of
many problems and thus it has to be taken into account.

Error Bounds due 1o the Structure of the Problem

In [5], [15], definitions for the structured componentwise
backward error and the structured condition number axe pre-
sented. We make use of these results-and apply them to our
particular problem. Consider the linear system A,z = b, 4,
€ R™®, 2, b € R® where the structured matrix A, belongs
to a set S whose members depend on t real parameters i.e.,
A, = A,[p]. The following theorem from [5] defines the
. Structured backward error for this linear system.

Theorem 3.4 Assume that
Ap = Dyv, Dy = diag (yl')r Ab = Dyw, D, = diag (ft'))
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where g € R' and [ € R® are nonnegative vectors of toler-
ances. Then, with A, + AA, = A,[p + Ap), the structured
componentwise backward error is defined as

o oo waf][ 2]

llapl = Dyv, ||Ab = Dzw} .

1 (A, +AA,)y=b+Ab,

It is important to note that this constrained nonlinear mini-
mization problem has no closed solution in general. Therefore,
the results provided in [5] only apply to the special case where
S is a linear subspace of R®*®, This happens to be the case
for Toeplitz matrices [15], which is what we need here. It is
possible to compute the vector [v7 wT] from the minimal
co-solution of the system

[(Ta ®yT)BD1,—D2] [ ; ] =b-A,y =Cz=r (3.8)

where B satisfies vec(AAT) = BAp. If C is rank-deficient,
then there may be no solution to the system (3.8) and the
structured componentwise backward error can be regarded as
being infinite. Otherwise, this system has to be solved in the
co-norm sense, It is also possible to obtain an approximate
solution by minimizing in the 2-norm. Moreover, the bound

< lrllalic*, = Al 39
#(3) < Il = - T 39
explicitly states the relation between the structured componen-
twise backward error and the conditioning of the matrix C.
From the definition in (3.4) the following forward exror bound
is derived

Iz~ lleo < € cond o (4,, 2) + O(€?)
llzlloo

where the structured condition number satisfies
AT X Bl gll + 11 1ATY] flleo

Tlleo

80(A,,2)

A7 XD+ 147 Do,
=l

(3.10)

cond o (A,, )

IA

Error Bounds for the Proposed Algorithm

Consider the system 7z = b in (2.7) and let y denote the
computed solution. From Theorem 3.3,

(T +AT,)y = (3+4b,), IAT.| < 1alT], Abe] < 2alT].
The residual of the computed solution is given by
r=b-Ty=(T +AT, )y~ Ab, ~ Ty =AT,y — Ab,.
Therefore,
Irl < AT, iyl + 1Abu| < vau (1T 1l + 1b1),

. and the same result holds for any vector norm and its corre-

sponding subordinate matrix norm. In particular, for the vector




2-norm,

fI#4l2

IA

£l < % U7 W29l + 1B )

o ([ § ]| vt 1)

Yn ((IGH: + W FUDNSI + 1BM)

tnC G + PO + 1ol + Nl

Vi (VIGI + Pl 19l
Hfalle + lnl):

IAN A

1A

Consider now the structure of the matrices F and G where,
to avoid confusions, we will denote the matrices of the pencil
by (A — sE). The previous bound can be simplified if a few
conditions are satisfied. Assume that ||A]|; > 1 and |§]|; > 1
(this can be obtained by proper scaling of the original pencil),
then

IE N9l + 1 fallx (WFIl + 1 Ea /N0l N8l
flAlLll91
| A2 iolla-
Using the same idea, if ||§||; > 1 then
NGBl + llgallr < nll £ )81}z,

and the bound for the 2-norm of the residual can be expressed
in function of the data of the original pencil as

I#ll2 < nzn (1All2 + I El2) + I8ll2).-

Finally, from (3.9)
By) < IALICHI

= n%n (1l + 1 £1l2) + lgl)IC* |2,

where C is constructed for our problem according to (3.8).
This inequality gives a bound for the structured componentwise
backward error. This bound will be small if the condition
number of C is small. This fact agrees with the intuitive idea
thatin such case, the structured componentwise backwarderror
will also be small.

IA A

We believe that a few steps of iterative refinement applied
on the solution will lead to a smaller structured backwarderror.
This would be based on computing the structured backward er-
ror using (3.8) and then using this in the first order perturbation
of equation (2.8). If this process can be shown to be convergent,
the backward stability of the algorithm would be guaranteed,
{7}, [14]. Since these are linear equations we expect this to
converge if u - u(y) < 1 (see [16]).

4. Numerical results
We present the results of several experiments carried out
on a SUN Sparc-10, using MATLAB and double precision
(u ™ 1.11 X 107%), The matrix pairs (£, A) were generated
using a random uniform distribution [0,1]. ‘The infinite matrix
norm and infinite vector norm are used unless otherwise stated.

Table 4.1 shows the normwise and componentwise relative
backward exror when solving the system Tz = b of (2.7) for
three large-size problems. In the same table, the normwise
and componentwise condition number are also presented. The
relative backward errors and relative condition numbers are

n | w7 m(y) | wrpei(y) | sage | cond
50 [ 7.192¢™8 | 1.266¢"16 | 1.067¢* | 5.064¢!
100 | 2.663e18 | 1.664¢716 | 3.109¢* | 9.260¢!
150 | 4.168e™18 | 1527716 | 4.122¢4 | 1.127¢2

Table 4.1: Comparison of the normwise and componen-
twise backward relative errors and condition
numbers for large-size, generalized problems
(£, 4), mpapp = K1ap0(T,y) condjryppy =
Condm,m('f, ¥).

n | mrs(y) | ore(v) ALy cond I7L
50 | 7.298¢~ 1.523¢~ 2.047 3.583¢
100 | 1.432¢717 | 1.835¢716 | 9.350¢* 8.403¢!
150 | 8.371e¢718 | 2.508¢~16 | 2.227¢* 1.392¢2

Table 4.2: Comparison of the normwise and com-
ponentwise backward relative errors and
condition numbers for large-size problems
(Ins &), ®1ag o) = Kpapo (T, y) cond 1y =
cond {TI,lbI(T: ).

obtained from equations (3.1), (3.3), (3.4) and (3.6) for £ =
T, f=1|blandz = y.

In Table 4.2, the same experiments are repeated for the
matrix pair (I,, A). In this case the computed characteristic
polynomial will be that of the matrix 4.

In Table 4.3 the normwise, componentwise and structured
componentwise relative backward error for small-size prob-
lems are shown. The computation of the structured parameters
requires the construction of the coefficient matrix described in
(3.8) which is a time-consuming process in MATLAB. Mem-
ory restrictions also appear for moderately large problems. Yet,
one should be able to exploit the sparsity of this system to derive
efficient solutions. This will be crucial especially when going
to iterative refinement based on this system of equations. The
structured componentwise relative backward error was approx-
imated by the minimum 2-norm solution of (3.8) considering

nl mrmy) Wiy, e () s(y)
5 1.204e=17 4.254e17 1.824¢° 15
10 | 8.820e~18 1.255¢% 5.716e7%%
K141 l(T,y) | cond 7y (171, [9]) | oo (171, [6])
5 80.461 8.391 6.193
10 514476 11.774 11.395

Table 4.3: Comparison of the backward relative errors and
the condition numbers for small-size, general-
ized problems (£, A).
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g = vecgo([lA], |E])T) and f = |b]. The required operator
vecyo stacks by columns in a long vector only the nonzero en-
tries of a matrix. Thus, the tolerance vector g of Theorem 3.4
only stores those nonzero elements of the matrix pair (£, 4).
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