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Abstract-We present an algorithm for computing the 
pole-zero representation of descriptor systems whose 
generalized state-space models are described by the 5-tuple 
(E.A. b.c.d), where E may be a singular matrix but 
det (A - AE) ~0. The proposed algorithm uses only 
orthogonal transformations; hence the computed results are 
numeiically reliable. Numerical examples are included to 
illustrate the proposed results. 

In this paper we consider the problem of pole-zero 
representation of linear time-invariant generalized state 
space or descriptor systems (Dervisoglu and Desoer. 1975: 
Luenberger. 1977: Verghese er al., 1981a, b: Bernhard. 1982: 
Cobb. 1984: Lewis. 1986) described by 

+(I) = Ax(r) + bu(r) 

?;(t) = C%(I) + h(I). 

where x(r) c IR”. u(l). y(t) E W and det (AE - A) 10. i.e. the 
pencil (AE -A) is regular. The transfer function of the 
system (I) is G(h) = c(AE - A)-‘b - d. We shall denote the 
above system by the S-tuple (E. A. b. c. d). If the descriptor 
matrix E has full rank. the system in (I) is said to be a 
nonsingular system; otherwise, tt is called a .slngulur system. 

If the system is nonsingular. theoretically. w*e can obtain an 
equivalent state-space realization of (E. A. E. rl) by premul- 
ttplying the state equation by E ’ to get an equivalent 
4-tuple (E ‘A. E ‘b.c. d). Once we have the 4tuple 
(E-IA. E-lb. c. d). we Ican easily obtain its pole-zero 
representation 

fi ,i, (A - A:) 

G(A) =:,p-- (2) 

11 (A - A;) 
I 1 

where A: denotes a zero. A: denotes a pole. )r, and np are 
respectively the numbers of zeros and poles of (E. A. b. c. d). 
and g is the constant gam of the transfer function. Several 
algorithms for obtaining pole-zero representation of the 
4.tuples (E ‘4. E ‘b. c. d). exist (see e.g. Varga and Sims. 
1981: Emami-Naeini and V’an Dooren. 1982: Misra and Patel. 
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1987). Varga and Sima (1981) and Emami-Naemi and Van 
Dooren (1982) compute poles and zeros directly. while Misra 
and Pate1 (1987) computed the transfer function. from which 
the pole-zero representation may be obtained. For 
descriptor systems, Misra (1989) reported a numerically 
reliable way of computing the transfer function, from which 
the pole-zero representation for descriptor systems may be 
obtained. However. obtaining the form in (2) by first 
computing the transfer function of the system in (1) can be 
numerically quite sensitive. A small perturbation in the 
coefficient of the transfer function can lead to significant loss 
of accuracy in numerical computation of poles and/or zeros. 
A pole-zero representation algorithm was proposed by 

Varga (1989). The present approach is different from 
Varga’s. and. as pointed out below, it has several features 
that make it more efficient and reliable. 

Here we develop a numerical algorithm that uses only 
orthogonal transformations to obtain the pole-zero rep- 
resentation of a generalized state-space system. The 
underlying principle is deflation of matrix pencils using 
orthogonal transformations to obtain subpencils with only 
finite generalized eigenvalues. followed by their computation 
using a QZ algorithm. Section 2 contains some relevant 
results from numerical linear algebra that will be used 
extensively in developing the proposed algorithm. The 
algorithm is developed in Section 3. Finally. in Section 4 we 
discuss the issues associated with efficient implementation of 
the algorithm developed in Section 3. and illustrate the 
proposed technique with numerical examples. 

2. Brtckground 
2.1. Generalized Schur decomposition. For an arbitrary 

pencil (F - AG). there exists unitary transformations Q and Z 
yielding the block-triangular decomposition 

[ 

F,-AG, * * 

Q*(F - AG)Z = 0 Ft-AC, * 

I 

> (3) 
0 0 F, - AG, 

where (F, - AG,) has full row rank for all finite A. (F, - AG,) 
has full column rank for all finite A. and G, is Invertible. This 
decomposition is proven in Van Dooren (1979). where an 
algorithm is also given to find such a decomposition. 
Moreover. !he etgenvalues of G;‘F, are the only finite 
points where the rank of F - AG drops below its normal 
value. and hence are the finite zeros of the penci! (F - AC). 

2.2. QZ algorithm and finite zeros. For a square matrix 
pencil (F, - AC,). with det (F, - AGr) f 0. there exist unitary 
matrices Q: and Zr of appropriate dimensions such that 

Q:F,Z, and Q:GrZr are both upper-triangular matrices 
(Moler and Stewart, 1973: Golub and Van Loan. 1989). Let 
.f;, and g,, represent the ith elements along the diagonals of 
the upper-triangular matrices Q:F,Zr and QfG,Z, respec- 
tively then the ratiosf;,/g,, represent the finite eigenvalues (or 
finire zeros) of (Fr - AGr) and also of (F - AG). Note that the 
QZ algorithm that performs this triangularization also works 
for rank-deficient Gr, 

2.3. Orthogonal transformations and column compression. 
Given an arbitrary row vector x of length n. it is always 
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possible to find an orthogonal n X n matrix W such that where. by assumption. det (A - AE) f 0. Equivalently. 

xW=[O 0 0 .Yn]]. (4) 

The matrix W can be obtained using a Householder 
transformation or a sequence of Givens rotations between 
the adjacent elements of the vector x (Golub and Van Loan. 
1989). 

2.4. Compressed representation of matrix pencils. For a 
regular matrix pencil (AE - A). where E and A E iw”‘“. we 
can always find two orthogonal transformation matrices U 
and V E iw”*” such that 

c(AE -A) ‘b-d= 

det L-1 

dct (A ~ AE) 

= G‘(A). (Y) 

Equation (9) shows how to compute the transfer function of 
a generalized statc-space system. Knowing the transfer 
function, one can easily compute the pole-zero representa- 
tion bv finding the roots of the numerator and denominator 
polyn6mials. However. as discussed earlier. this can 
potentially lead to considerable numerical inaccuracy in the 
computed solution. In the rest of this section we discuss how 
the pole-zero representation can be obtained in a 
numerically reliable manner without going through the step 
of computing the transfer function lirst. 

From (9). it 1s easily seen that the normal rank of the 

UTEV = U’AV = [w]. (5) 

Clearly, if E,, e iw”’ has full rank then rank [AZ, Azz] = 
n -r. Note that singular-value decomposition (Bender and 
Laub, 1987) or rank-revealing QR factorization (Chan, 1987) 
can be used to obtain the equivalent pencil representation in 

(5). 
2.5. Observer Hessenberg form of (E, A. b. c, d). Given a 

single-input single-output 5-tuple (E. A, b. c, d), there exist 
orthogonal transformation matrices Q and Z such that in the 
transformed S-tuple 

(E, A. b. c,d) := (QTEZ, QTAZ. QTb. cZ,d) (6) 

E is an upper-triangular matrix. A is an upper Hessenberg 
matrix, b is a general dense vector and c has only its last 
element nonzero. The system has no unobservable finite or 
infinite modes if and only if A is an unreduced upper- 
Hessenberg matrix. i.e. a, f ,,, # 0. If, however. a,, ,,, = 0, for 
some i then the system can be block-triangularly partitioned 
as 

A=[*]. (7) 

c = [O / cz]. 

where the generalized elgenvalues of the pair (E,,, A,,) are 
the unobservable modes of the system. 

A computational algorithm for reducing the given system 
(E. A. b.c.d) to the form in (6) (called the observer 
Hessenberg form) can be easily devised based on the results 
of Van Dooren and Verhaegen (1985). Misra (1989). Varga 
(1989) and Miminis (1993). 

By duality. a similar statement can be made regarding 
uncontrollable modes and the reduction of the system to a 
controller Hessenberg form. A singular system that does not 
have any uncontrollable and/or unobservable finite or 
infinite modes is said to be irreducible (Verghese et al.. 
1YXla. b). 

Remark 2.1. The order of an irreducible system 

(E,A.b.c.d) is equal to the degree of det (AE-A) 
(Verghese et al.. lY81a. b). Note that, owing to the presence 
of poles at infinity. the order of an irreducible generalized 
state-space system is not necessarily equal to the rank of E. 

Remark 2.2. If an nth-order system is controllable and 
observable at infinity then 

E 
rank (E / b] = rank - = n 

[ I c 

(Verghese et al.. lY81a. b; Cobb. 1984). An immediate 
consequence of this observation is that in the observer 
Hessenberg form all the diagonal elements e,,, of the 
matrix E are nonzero. with the possible exception of en,“. 

3. Main results 
It is well known (Kailath, 1980) that, using the Schur 

complement of a matrix. 

det [w] = det (A - AE) [d - c(A - AE)-‘b], (8) 

system matrix [y*] IS n + I if the transfer function 

G(A)#O. Then. from Rosenbrock (1970) and Misra et al. 
(1994). the next result follows. 

Theorem 3.1. For an irreducible single-input single-output 
system (E. A. b. c. d). the finite transmission zeros are those 
complex values of A for which 

rank[%]<n+l 

Proof See Rosenbrock ( lY70) and Misra et al. (1994). 0 

3.1. Computoation of zeros. The intent here is to obtain a 
subpencil (F, - AGr) (G, has full rank) as in (3) from the 
pencil in (10). The zeros of (F, - AG,) correspond to the 
finite transmission zeros of the system. To achieve this. we 

deflate the pencil r-1 until the required subpencil 

is obtained. The deflatron is performed by column 
compression of the row vector [c d] recursively using 
orthogonal transformations. 

Since the rank of matrix pencil is unaffected by orthogonal 
transformations. during the Ith recursion 

= rank 
I 

A” 1) _ A,$,, 11 b” “(A) 
c,l /, 

= rank 1 A”’ ;AE(” ( b;;;;r ‘) 

1, 
U#/’ 

(11) 

where ??‘I is an orthogonal matrix that compresses the 
columns of the vector [c” ” d!,’ ‘I]. By the assumption on 
the normal rank of the matrix pencil in (IO), dc’ is nonzero. 
Hence the pencils in (IO) and (1 I) have identical finite zeros. 
Note that owing to the nature of the transformations, during 
deflation. the constant input vector b in (10) becomes a 
pencil. Hence b is replaced by b(A). 

On compressmg the columns of [cc’ ‘1 d!(-“1, and 
transforming the pencil. the followmg two possibilities may 
arise. 

Case I. EC’) is nonsingulor. In this case the finite zeros of the 
system are the generalized eigenvalues of the pair (E”‘, A”‘). 

Case 2. E’” i, .singu/ar. In this case it will be possible to 
deflate the problem by further partitioning the pencil 
(A”’ ~ AE”‘) as 

where the partitioning conforms to the dimension of the 
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full-rank matrix E:‘,‘. The problem can now be further 
deflated by performmg column compression on the bottom 
row of the pencil in (12). This is illustrated more clearly by 
means of an example. 

Assume that at an intermediate step /. the deflated system 
is of fourth order. Further assume that the system IS m an 
unreduced observer Hessenberg form. Then the matrix 
pencil will have the following structure: 

([y-y - A[$&, 
x x xx Y 

xxxx x 

= [L-L 0 x x x x 

ooxx x 

0 0 ox, x; 1 -A 

XXXX x 

0 x x x x L---l 0 0 x x x 

0 0 0 ca4 x 
0 0 0 0 / 0 

(13) 

To deflate the pencil, the element X, must be reduced to 
zero by a Givens rotation %d4.5 over an appropriate angle e4 
and between columns 4 and 5. The columns of the matrix 
pencil in (13) are updated using the same transformation. 
Note that this transformation does not affect the upper 
Hessenberg structure of A”’ or the upper-triangular structure 
of E’“. 

At this stage. if the element B4 of EC” is nonzero. E”’ has 
full rank. and further deflation is not possible. Otherwise, the 
deflation is continued on the following lower-order pencil: 

Note that the triangular-Hessenberg structure of the pair 
(E,A) is preserved. Hence the procedure for deflation 
described above can be applied to the third order subpencil 
in (14). 

Remark 3.1. Since the system being deflated is assumed 
irreducible, the matrix EC’) cannot have nullity greater than 1. 
Further, at all stages in deflation. the matrices [EC’) 1 b”‘] and El/’ 
[ 1 - &) must have full row and column rank respectively. 

Therefore there can be only one Jordan block with 
eigenvalue at Infinity. In terms of our algorithm. this implies 
that dc’ will all be scalars. 

Once a full-rank matrix E’“’ has been found, the rank 
condition can be rewritten as 

rank 

rank 

On the basis of the above discussion. we can state the 
following. 

Theorem 3.2. If in (15) E “‘) has full rank then the finite zeros 

of the matrix pencil 
P-l+1 

are the generalized 

eigenvalues of the pair (ECU’, A’“‘). 

Proof: The result follows immediately on noting that finite 
zeros of a pencil are unaffected by orthogonal 
transformations. cl 

Further, since the deflated pencil on the right-hand side of 
(15) is obtained using orthogonal transformations on the 

original (square) pencil. 

det r-1 

= dct 

d” ,. J 

= de1 ([E’~‘] ‘A’“’ - AI) det (Et”)) dk’ld:fi d::’ ‘I, (16) 

where det (EC”‘) d!,‘)dF’. dj,“ ‘) is a nonzero constant. and 
the roots of det((E’“‘]-‘A’“‘- Al). or the generalized 
eigenvalues of the pair (E’“‘. a’“‘). are the zeros or the 
transfer function. 

Remark 3.2. The result (16) highlights the major differences 
between the proposed algorithm and that of Varga (1989). 
(1) The present procedure uses only (numerically stable) 

orthogonal transformations to defiate the pencil: 
however. in Varga’s algorithm the pencil is deflated by 
applying state feedback to the transformed system. If the 
element of the input vector used for computing the 
feedback gain (for deflation) has very small magnitude, 
the resulting gains will be large. and applying feedback 
can cause the resulting generalized eigenvalue problem 
to become numerically ill-conditioned. Hence the 
proposed approach is numerically more reliable. 

(2) In the present case the deflated pencil will contain only 
finite zeros of the system. while the deflated pencil in 
Varga (1989) can contain both finite and infinite zeros, 
requiring that the QZ algorithm be applied to a larger 
pencil. Therefore the present approach is computation- 
ally more efficient. 

3.2. Compurarron ofpolrs. Using similar arguments as in 
Section 3.1. we can transform the pencil (A - AE) such that 

det (A -- AE) 

A’“’ - ,,E’L% 

= det 
0 

= det (A’“’ _ A@“‘) dj;) d,‘,f ” 

= det ([E(o)] ‘A(o) - Al) det (E(u)) rl’,;’ djf ” (17) 

where EC”’ is a lull-rank matrix. The poles of the system are 
the roots of the polynomial dct ([E’“‘] ‘A’“‘- AI), or 
equivalently the gencrahzed eigenvalues of the matrix pair 
(E(O). A’fi(‘). and det(E’“‘)dz,‘). .d,:’ ” IS a nonzero 
constant. 

From (16) and (17). it is clear that the coeficrent g in (2) 
may be computed as 

R = (-I)“< ,I,, det (EC”‘) d!,“&r~l dj,” ” 

det (E’“‘) d’,)’ dj: ” 

(18) 

w,here n, and II,, are respectivelv the orders of the 
upper-triangular matrices E’“’ and E’“‘. Knowing the 
coefficient g and the locations of zeros and poles as the 
generalized eigenvalues of the pencils (ECU), A’“)) and 
(ECp’, A’“)) respectively, the desired pole-zero representa- 
tion of the single-input single-output system (E. A, b. e, d) is 
completely determined. 
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Remark 3.3. Computation of the transfer function gain g as 
described above requires approximately 2n scalar multiplica- 
tions. Whereas in Varga (1989) one must solve a triangular 
system of linear algebraic equations, which requires O(nf,) 
operations. where ncO is the order of the irreducible 
subsystem. Here again the proposed algorithm is more 
efficient. 

Remark 3.4. For multivariable systems. the pole-zero 
representation for each element of the transfer function 
matrix can be obtained by selecting the appropriate 
input-output pair. As remarked by Misra (1989) and Varga 
(1989), for maximum computational efficiency, the pole-zero 
representation of the elements of an entire row ( when there 
are more inputs than outputs) or column (when there are 
more outputs than inputs) of the transfer-function matrix 
should be computed successively. By computing the elements 
in this order, the number of irredicible realizations to be 
computed is minimized. 

Remark 3.5. The proposed algorithm is equally applicable to 
standard state-space systems, where the descriptor matrix E 
is an identity matrix. In addition, for systems described by 
the matrix-valued linear differential equation 

(; E,$$(r) = Ax(f) + bu(f), 
(19) 

the preceding algorithm can be used by rewriting the system 
(19jas 

I 

I 

[ “. 
x,(r) 
X2([) d I[ I dr : 

I x,? I(f) 

E, x,(r) 

1 r x’0l x2(0 

-E,_1 

I x,- 1 (r) 
-k, 11 1 x,(r) 

+ du(r) 

where x,(f) = x(r), x2(r) = dx(t)/dt etc 

4. Implementation and examples 
4.1. Implementation of algorthm and operations count. 

Assuming that we have an irreducible S-tuple (E, A, b, c, d), 
then, from the discussion in Section 3, it is clear that the 
main step in computation of zeros and poles (and the 
constant coefficient) is the recursive deflation of the pencils 

FFi-3 and (A - AE) respectively. Obtaining ir- 

reducible realization is already well documented in the 
literature (Van Dooren and Verhaegen 1981; Misra, 1989; 
Varga. 1989; Miminis, 1993). On the basis of the discussion in 
Section 3.1, we next present an efficient implementation of 
the deflation step. Note that the deflation procedure 
presented next is computationally the most efficient one for 
the problem at hand. 

By first eliminating the finite and infinite uncontrollable 
modes and then the unobservable modes, we can ensure that 
the irreducible realization of the system is in an unreduced 
observer Hessenberg form (6). Once the zeros at infinity have 
been eliminated. the finite zeros can be computed by 

applying the QZ algorithm to the finite subpencil. Note that 
the first step of the QZ algorithm is the reduction of the pair 
(E. A) to a triangular-Hessenberg form. Since the irreducible 
system in (6) is already in a triangular-Hessenberg form, it 
will be computationally efficient if the condensed structure 
of the pair (E. A) is preserved. 

The algorithm DEFLATE given below performs deflation 
on a matrix pencil (A - AE), while preserving the condensed 
structure of the pair (E. A). By our assumption, E(O) is an 
upper-triangular matrix and A”’ is an unreduced upper- 
Hessenberg matrix. 

AIgorirhm DEFLATE. 
input (E (‘I, A’“‘. n(‘)), output (EC@, A(a), n(e), A) 
srep-inirialite 

setA=l:I=O 
if rank (EC”) = n(O) then 

go to exit 
else 

sten-1 
i:=r+ 1 
comment: partirion the singular pencil [A(‘-‘) - 
,,,?“-I’] 

L (1-U 
%I I (/-I) J 

(122 

comment: compress columns of 
(0 0 d 
with !#“_ 

c$;‘>, (‘-I ‘] by postmultiplication 

“U iI.,Cl-ii+, 

[O d”‘] = [cc’- ‘) d”-‘)]S,$ ,,,,,, -,)+, 

comment: updare 

,$’ = n(“) - 1; A := A x d(f) 

if eyJ,,n,,, f 0 then 
go to exit 

else 
go to srep-I 

exit 
E(e) E E’“; A’@’ = A(‘); n(e) = n”’ and A = A x det (EC”) 

Using the above algorithm, an algorithm for obtaining 
pole-zero representation of a descriptor system may be 
stated formally as follows. It is again assumed that the system 
(E. A. b. E. d) is irreducible. 

Algorithm POLE-ZERO. 
input (E. A. b, c. d. n), output (z, p,g) 

comment: compure zeros and numerator constam 

set E’“) = f : . [ 1 A(o) = A b [ 1 c d 
and n(O) = n 

[E’“‘, A’“‘, n’-‘, A] = DEFLATE (E(O), A(a), n(O)) 
comment: generalized eigenvalue decomposition 
[E,. A,] = QZ (E’“‘. A’“‘) 
set g, = A: n: = n(O); z, = a,,/e,,, i = 1 :nz 
comment: compure poles and denominator constant 
set EC”) = E, A(o) = A and n(o) = n 

[E(p), Acp’. n(a), A] = DEFLATE (E(O), At’), n(O)) 
comment: generalized eigenvalue decomposition 
[ Er. A,] = QZ (E(P), Ata)) 
set g, = A; np = ntPJ; p, = a,,/e,,, i = 1 :nP 
set g = (-l)(n7-np)gn/gd 

Remark 4.1. Note that, since coalescent poles and zeros 
cancel, the above algorithm will only need to deflate either 
the poles or the zeros at infinity. 
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The total computational cost can be broken down as 
follows: 

(a) 

(b) 

(c) 

Obfaining observer Hessenberg form. The initial 
reduction of E to an upper-triangular matrix requires 
z 3 ?Ji operations using QR factorization and an 
additional n’ operations to update the system matrix. 
Reduction of A to an upper-Hessenberg matrix and 
condensation of the columns of c requires yn”. leading 
to a total of 7n3 operations. The above count assumes 
that the transformations are not stored. 
Defbion. Owing to the triangular-Hessenberg structure 
of the matrix pair (E, A), each deflation of a zero at 3~ 
for the pencil (A - AE) requires approximately 8n(‘j 
operations. where n (‘) is the dimension of the pencil 
during the Ith iteration. Note that the infinite zeros can 
also be deflated using the QZ algorithm; however, the 
latter would require O(n2) operations for each deflation. 
Hence the proposed implementation is considerably 
more efficient. 
QZ decompositions. Starting with triangular-Hessenberg 
structure of the pair (E, A), the computation of zeros 
and poles requires 10(n’“))3 and 10(n’P’)3 operations 
respectively. 

In the worst case, where n’“’ = n(e) = n, the total operations 
count for the algorithm is approximately 27n3. 

It should be pointed out that the entire algorithm 
essentially involves deflation of matrix pencil and two 
separate QZ decompositions using only unitary operations. 
In view of the analysis of numerical properties of the former 
in Van Dooren (1979) and of the latter in Moler and Stewart 
(1973). it is clear that computation of poles and zeros as 
separate entities is numerically backward stable. Unfortun- 
ately, it does not seem possible to attain the same backward 
error for both zeros and poles. 

4.2. Illusrrarive examples. We next provide some examples 
to illustrate the performance of the proposed technique. All 
calculations were performed on a DEC Alpha using Matlab 
4.1. For the sake of presentation, all numerical values have 
been rounded off to four significant decimal places. 

Example 4.1. The first example illustrates the results for a 
singular nonproper system. Since E is singular, clearly the 
system cannot be transformed to the standard state-space 
description by premultiplying the state equation by the 
inverse of descriptor matrix E. The data for this example is 
given by the following matrices (Misra and Patel, 1989): 1 2 2 0 0 

0 1 0 1 I 

E= 00000. 

[ 1 11100 
0 1 0 1 1 

2 2 2 1 0 

-1 -1 -1 0 0 

A= 1 4 

[ 1 300, 

2 3 2 1 1 
1 3 2 1 1 

b=(l 0 1 1 11’. c=[l 5 3 1 21. d=O. 

On applying the algorithm developed in Section 4.1 the 
following pole-zero representation is obtained: 

G(A) = 

(A - 0.1226 + 0.7449i)(A - 0.1226 - 0,7449i)(A - 1.7549) 
(A - l)(A - 1) 

If necessary, from the above pole-zero representation, the 
transfer function can be easily computed as 

A’ - 2A2 + A - 1 
G(A) =- 

A2 - 2A + I 

For this example, the coefficients of the transfer function can 
be obtained analytically. The coefficients computed from the 

pole-zero representation were accurate to 15-16 decimal 
places. 

Example 4.2. This example illustrates a case when inverting 
the descriptor matrix to obtain a 4-tuple of the standard 
state-space system can lead to extremely poor results. The 
parameters of the system (E. A. b, c, d) are as follows: 

1.0 8.7 6.3 9.1 3.2 

0.0 10-l 7.3 8.7 3.2 

E = 0.0 0.0 10-2 7.9 5.9 , 

[ 1 0.0 0.0 0.0 lo-? 0.4 

0.0 0.0 0.0 0.0 lo-4 

7.8 9.2 7.1 1.2 6.3 

2.9 2.7 2.2 5.1 6.7 

A= 

[ 1 5.5 5.9 7.7 6.8 3.3 , 
8.6 8.2 7.2 0.5 7.3 

7.1 4.8 1.7 5.5 3.7 

b = (0.0 6.8 1.8 4.4 9.7]r, 

c= 17.7 3.3 1.2 6.0 7.31, d = 1.0 

For this example, since d = 1, the zeros of the system can be 
computed from the eigenvalues of Em’(A - bd-‘c) using the 
QR algorithm (Golub and Van Loan, 1989). The zeros 
computed using the QR algorithm and the proposed method 
are shown in Table 1. To compare he numerical accuracy of 
the zeros obtained by the two methods, we computed the 

singular values of the matrix [ !*I, by replacing A 

by the zeros computed using the eigenvalues of E-‘(A - 
bd-‘c) and the proposed method. The smallest singular 
values for each case are presented in Table 2. 

It is evident from the above results that, for these data, the 
transformation of the 5-tuple (E, A, b, c,d) to standard 
state-space form leads to incorrect results. 

In a similar manner, the finite poles computed using the 
two approaches are shown in Table 3, and their numerical 
accuracy is compared in Table 4. Of course, in this case the 
singular-value decomposition was performed on the pencil 
(A - AE) by replacing A by the computed finite poles. 

The computed values of poles were considerably closer to 
the actual locations, unlike the zeros. However, the results 
tabulated above clearly indicate a several orders of 

Table 1. Finite transmission zeros in Example 4.2 

Using QR algorithm 

0.27468 
0.53993 

- 1.5335 
20.949 

Using proposed method 

0.41387 
+iO.11672 
- 1.1721 
20.578 

Table 2. Smallest singular values (for zeros) in Example 4.2 

Using QR algorithm 

4.0231 x 10-l 
3.7486 X IO-’ 
1.0489 
9.7264 x lc)-’ 

Using proposed method 

1.9946 x 10_~14 
2.1146 x lo-i4 
1.5360 X lo-l4 
1.4045 x lo-‘= 

Table 3. Finite poles in Example 4.2 

Using QR algorithm 

0.34236 
f iO.088047 
- 0.87699 
25.140 

Using proposed method 

0.34143 
*iO.O51349 
-0.89473 
25.160 
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Table 4. Smallest smgular values (for poles) in Example 4.2 

Using QR algortthm Usrng proposed method 

8.1745 x 10~~’ 1.9741 x 10 IJ 
8.1745 x 10 z 1.8228 X 10 ‘l 
6.7607 x 10 ’ 7.6535 x 10 ” 
4.0443x10 7 1.1 I60 x 10 ” 

magnitude improvement in the accuracy of the computed 
poles using the proposed approach. The results presented in 
Tables l-4 are for finite zeros and poles only. For the sake of 
completeness, the constant coefficient for the pole-zero 
representation was found to be b = -9.848. 

5. Concluding remarks 
In this paper we have presented an algorithm for 

transforming a single-input, single-output generalized state- 
space model (possibly singular) to its pole-zero representa- 
tion using orthogonal transformations only. The results are 
easily modified for state-space systems represented by 
matrix-valued differential equations or standard-state space 
systems where E is an identity matrix of appropriate order. 
The proposed algorithm can also be used for multivariable 
systems by selecting appropriate input-output pairs. 
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