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1. Introduction

In this paper, we consider the problem of pole-zero representation of linear
time-invariant generalized state space or descriptor systems (Luenberger,
1977, Verghese et al., 1981) described by:

E%z(t) = Ax(l) + bu(t)

y(t) = ca(t) + du(t)

where #(t) € R", u(t), ¥(t) € R and det(AE — A) # 0, i.e., the pencil
(AE — A) is regular. The transfer function of the system (1.1) is G(})
= c¢(AE — A)~'b + d. We will denote the above system by the S-tuple
(£, A,b,c,d). If the descriptor matrix (E) has full rank, the system in
(1.1) is said to be a nonsinguiar system, otherwise it is called a singular
system,

y leIf the system is nonsingular, theoretically, we can obtain an equivalent
state space realization of (E, A, b, c, d) by premultiplying the state equa-
tion by E~! to get an equivalent 4-tuple (E~' A, E~'b, ¢,d). Once we
have the 4-tuple (E~' A, E~'b, c. d), we can easily obtain its pole-zero

representation .
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where A denotes a zero, A} denotes a pole, n, and n,, are respectively the
number of zeros and polesof (E, A, b, ¢, d)and g is the constant gain of the
transfer function. Several algorithms for obtaining pole-zero representation
of the 4-tuples (E~' A, E~1b, c, d), exist e.g., see Varga and Sima (1981),
Emami-Naeini and Van Dooren (1982), Misra and Patel (1987). In Varga
and Sima (1981) and Emami-Naeini and Van Dooren (1982), poles and zeros
are computed directly, while in Misra and Patel (1987), the transfer function
is computed from where the pole-zero (l:%resemauon may be obtained.
For descriptor systems, a numerically reliable way of computing transfer
function is reported in (Misra, 1989) from where pole-zero representation
for descriptor systems may be obtained. However, obtaining the form in
Equation (1.2) by first computing the transfer function of the system in (1.1)
can be numerically quite sensitive. A small perturbation in coefficient of
the transfer function can lead to significant loss of accuracy in numerical
computation of poles and/or zeros. A pole-zero representation algorithm
was proi)osed by Varga (1989). The present h is different from
(Varga, 1989) and as pointed out in the sequel, 1t has several features that
make it more efficient and reliable.
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2. Main Results
Observer Hessenberg formof (E, A, b, c,d)
Given a single input single output 5-tuple (E, A, b, c, d), there exist or-
thogonal transformation matrices @ and Z such that in the transformed
S-tuple,

(E,A,b,c,d):=(Q"EZ,QTAZ,Q"b,cZ,d), @1
E is an upper triangular matrix, A is an upper Hessenberg matrix, b is a
general dense vector and ¢ has only its last element nonzero. The system
has no unobservable finite or infinite modes if and only if A is an unreduced
upper Hessenberg matrix, i.e., a;41; # 0. If, however, ai 41 ; = 0, for some
i, then the system can be block triangularly partitioned as:

_[Eu|Ep _[LAn | A _[b _
E=| lEzz]’A‘[ \An]‘bA{_bz_]'cAlolczl
2.2)
where the generalized cigenvalues of the pair ( E)q, A;, ) are the unobserv-
able modcs of the system.

A computational algorithm for reducing the given system (E, A, b, ¢, d)
to the form 1n (2.1) {called the observer Hessenberg form) can easily devised
ll)sssegd on the results in (Van Dooren and Verhaegen 1985, Misra 1989, Varga

y duality, a similar statement can be made regarding uncontrollable
modes and the reduction of the system to a controller Hesxenbergbfarm. A
singular system that does not have any uncontrollable and/or unobservable
fintte or infinite modes is said to be irreducible (Verghese et al., 1981).
Remark 2.1. If an n-th order system is controllable/observable at infinity,
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then rank{E |b] = rank [%] = n (Verghese ez al., 1981). An immediate

consequence of this observation is that in the observer Hessenberg form, all
the diagonal ¢lements e; ; of the matrix E are nonzero; with the possible
exception of e, .

Next, we develop the computational procedure. It is well known that if
det(A — AE) # 0, then

A-)E|b
cOE—- Ay 'b+d= ﬂ-_c—] =G(\).

det[A - A\E]

Equation (2.3) shows how to compute the transfer function of a generalized
state space system. In the rest of this section, we discuss how the pole-zero
representation can be obtained in a numerically reliable manner without
gonnWéh the step of computing the transfer function first.

m (2.3) it is easily seen that the n rank of the system matrix

A _CAE b ] = n + 1 if the transfer function G()) # 0. Then, from

Rosenbrock (1970) and Misra et al. (1994), the next result follows:
Theorem 2.1. For an irreducible single input single output system
(E, A,b,c,d), the finite transmission zeros are those complex values of

23

A for which
rm\k[““cw "]<n+1. @4
Proof. See Rosenbrock (1970), Misra et al. (1994). ]

2.1. Computation of Zeros

The intent here is to obtain a subpencil (Fy — AG; ), (G; has full rank),
from the pencil in Equation (2.4). The zeros of (F; — AG) correspond
to the finite transmission zeros of the system. To achieve this, we deflate

the pencil [ A _c’\E b ] until the required subpencil is obtained. The

deflation is performed by column compression of the row vector [¢ d]
recursively using orthogonal transformations.

Since, the rank of matrix pencil is unaffected by orthogonal transfor-
mations, during {£)-th recursion

AT AET [ MY
4 cl—l

£—1
dy

Al _AEH | bl_l(,\) .
| @

A - AE' | BN
P
) dé

where G() is an orthogonal matrix that compresses the columns of the
vector [~ d{!~"). By the assumption on the normal rank of the matrix
pencil in Equation (2.4), diy” is nonzero. Hence, the pencil above and the
one in Equation (2.4) have identical finitc zcros. Note that duc to the nature
of the transformations, during deflation, the constant input vector b in (2.4)
becomes a pencil. Hence b is replaced by b(A).
On compressing the columns of (¢t~ d% ™"}, and transforming the

pencil, following two possibilitics may occur:

Case 1: E'Y) is non-singular. In this case finite zeros of the system are the
generalized cigenvalues of the pair (E¢), A(9),

Case 2: E'9 is singular. In this case it will be possible to deflate the
problem by further partitioning the pencil [A9) — AE(®)] as

aof A AEL b))
< |
where the partitioning conforms to the dimension of the full rank matrix

E!“. The problem can now be further deflated by performing column
compression on the bottom row of the pencil in Equation (2.5). This is
illustrated more clearly by means of an example.

Remark 2.2. Since the system being deflated is assumed irreducible, the
matrix E‘¢’ can not have nullity greater than 1. Further, at all stages in

cI—-l

Al ~)E{, | af())

[A* - AEY =

¢ ¢
) L3

(0
deflation, the matrices [ E( | b9 | and [—137?] must have full row

and column rank respectively. Therefore, there can be only one Jordan
block with eigenvalue at infinity. In terms of our algorithm, this implies

that '’ will all be scalars.



Once a full rank matrix E'*) is found, rank condition can be rewritten as
A® = AE~ | *

de? * S %
A-)E b »
p{ﬂ}:p [¢] N
. d:ll
Based on the above discussion can we can state the following:
Theorem 2.2. If in above equation, E'® has full rank, then finite zeros of
the matrix pencil [

pair (E(*) Al®)).
Proof. On noting that finite zeros of a pencil are unaffected by orthogonal
[m]

transformations, the result foliows immediately.

Further, since the deflated pencil on the right hand side in above equation is
obtained using orthogonal transformations on the original (square) pencil,

< 7| are the generalized eigenvalues of the

A — \E° | .
det | A_AE| b | =det o

=det{A® — AE*)d), -- .42}
=det([E®] ' A° — AI)det(E®)d), ---d27!

n

da! *
do—?

gl

(2.6)
where, det( E(@))d{d?’ ... 2~ is a nonzero constant and generalized
cigenvalues of the pair (E'*), A{®), are the zeros of the transfer function.

Remark 2.3. The result in Equation (2.6) highlights the major differences
between the proposed algorithm and the onc by Varga (1989). (1) The
present procedure uses only (numerically stable) orthogonal transformations
to deflate the pencil; however, in the latter, the [iencil is deflated by applying
state fcedback to the transformed system. If the element of the input
vector used for computing the feedback %ajn (for deflation) has very small
magnitude, the resulting gains will be large and applying feedback can
cause the resulting generalized eigenvalue problem to become numerically
ill-conditioned. Hence the proposed approach is numerically more reliable.
(2) In the present case, the dellated pencil will contain only finite zcros of
the system, while the deflated pencil'in Varga (1989) can contain both finite
as well as infinite zeros, requiring that QZ algorithm be applied to a larger
pencil. Therefore the present approach 1s computationally more efficient.

2.2. Computation of Poles .
Using similar arguments as in Section 2.1, we can transform the pencil
(A — AE) such that
A _\EW | +
(-1
diyv

* *

det[A — AE] =det 4y

a
:dcl(A(ﬁ) _ /\E(m)d&]) .. -d&ﬁ_”
=det([EP) 1 A® — D de(E@)d) - 70
@7
where E(® is a full rank matrix. Poles of the system are the roots of
the polynomial det([E(®]~1 A(®) — AT} or equivalently, the generalized
eigenvalues of the matrix pair (E), A()) and det(E®)d<" ... d{’ "V is
a non-zero constant.
From Equations (2.6) and (2.7), it is clear that the coefficient g in (1.2)
may be computed as

(=1)™ " det( E()dD) ... 4oV
= ) (=
det( E)d}) ... gt~y

e I e T &
H"p YN 5 dﬁ;)

=10 i=1
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where n, and n, are respectively the orders of the upper triangular matrices
E(*) and E®), Knowing the coefficient ¢ and the locations of zeros
and poles as the generalized eigenvalues of the pencils (E(®), A(®)) and
(E{#), A®)) respectively, the desired pole-zero representation of the single
input single output system (E, A, b, ¢, d) is completely determined.

3. Example

Example 3.1, This example illustrates a case when inverting the descriptor
imatrix to obtain 4-tuple of standard state space system can lead to extremely
poor results. The parameters of the system (E, A, b, ¢, d) are given below:

1005
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5.9 ,
0.4

1.0e7*
7.1
22
7.7
72
1.7
33 1.2 6.0

For this example, since d = 1, the zcros of the system can be computed by
eigenvalues of E~}(A — bd~'¢) using QR algorithm (Golub, Van Loan,
1989). The zeros computed using QR algorithm and the proposed method
arc tabulated in Table 1. To comparc the numerical accuracy cf zeros
obtaincd by the two methods we computed the singular values of the matrix
{ A - )\E
I (&

of E~'(A~bd~!c)and the proposed method. The smallest singular values
for each case are presented in Table 2.

|77

} , by replacing A by the zeros computed using eigenvalucs

TABLE 1 TABLE 2
Finite transmission zeros Smallest sing. values (zeros)

QR Proposed QR Proposed
2.7468¢ ™% 4.1387¢™% 40231e™ 1.9946¢ 1%
5.3993¢ % +i1.1672¢ ™ 3.7486¢ =" 2.1146¢ 71

—~1.5335¢® ~1.1721¢*® 1.0489¢ ™ 1.5360¢ '
2.0949¢ 2.0578¢ 4% 9.7264¢ % 1.4045¢ 712

It is evident from these results that for this data, the transformation of the
S-tuple (E. A, b, ¢, d)to standard state space form leads to incorrect results.

Inasimilar manner, the finite poles computed using the two approaches
are tabulated in Table 3 and their numerical accuracy is compared in Table
4. Of course, in this case, singular value decomposition was performed on
the pencil {A — AE) by replacing A by the computed finite poles.

TABLE 3 TABLE 4
Finite poles Smallest sing. values (poles)
QR Proposed QR Proposed
3.4236¢ 3414377 8.1745¢ =% 197417
+i8.8047¢ % +15.1349¢ "% 8.1745¢~% 1.8228¢7
~8.7699¢ = —8.9473¢™% 6.7607e =% 7.6535¢ 71
2.5140¢* 2.5160e*% 4.0443¢~% 1.1160e ™2

The computed values of poles were considerably closer to the actual loca-
tions, unlike zeros, Yet, the results tabulated above clearly indicate several
orders of magnitude improvement in accn_lraff'y of computed poles using pro-
posed approach. The results presented in Tables 1 — 4 are for finite zeros
and poles only. For the sake of completeness, the constant coefficient for
the pole-zero representation was found to be g = —9.848.
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