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Abstract

In this paper, we study the structural invariants of a
generalized state space model described by the matrix 5-
tuple (E, A, B,C, D), where E may be a singular matrix but
det(4 — AE) # 0. The characterization of these zeros is
based on the system matrix of the corresponding 5-tuple and
is an extension of equivalent results for state space models
described by the 4-tuples (4, B,C, D).

1. Introduction

A linear multivariable system can always be represented by
the following polynomial set of equations:

T(N)z(t)
y(t) =

where z(t) € F”, u(t) € F™ and y(t) € FP. T(\), U(A), V(A)
and W()) are polynomial matrices in A and have dimensions
{n x n), (n x m), (p x n) and (p X m), respectively. T(}) is
assumed regular (i.e., det(T(/\)) # 0) [15).

U(N)u(t)
V(N)z(t) + W(A)u(t) (1.1)

From this representation one can define the system ma-
triz of (1.1) as:
_ [ =T | U
500 = { UOREASEE (1.2)

The transfer function matrix of the system in (1.1) is given
by R()\) = V(MT(N)~IU(\) + W(A). Note that if T(\) =
(AE - A),U(X\) = B, V()\) = C and W(X) = D, we get the
state space model

A\Ez(t) =
(1)

If E = I in (1.3), we get the standard state model for which
numerous analysis and design methods exist. In recent years,
there has been considerable interest in the study of the case
where E # I may even be singular (see e.g., [1]-[11], etc. The
systems described by (1.3) are referred to as generalized state
space (GSS) systems or descriptor systems. For the sake of
conciseness, in the sequel we will denote the system (1.3) by
its parameters in the 5-tuple (E, A, B,C, D).

Az(t) + Bu(t)
Cz(t) + Du(t). (1.3)

Definition and properties of the zeros of a standard state
space system are well understood [12] and a numerically sta-
ble algorithm for their computation was proposed by Emami-
Naeini and Van Dooren [13]. In this paper, we extend the
results to generalized state space systems and also illustrate
how the order of zeros at infinity and row and column mini-
mal indices of the system matrix can be found.
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2. Background Material

2.1. Zeros of Rational and Polynomial Matrices

It is well known that any (p X m) rational matrix R(}) can
be reduced by means of unimodular transformations to its
Smith-McMillan form given by

MO)R(MN(N) = G(A), (2.1)

where M(\) and N(\) are (p x p) and (m X m) polyno-
mial matrices respectively, with constant non-zero deter-
minants (i.e., unimodular matrices). The matrix G(A) is
diag(dii(A)/¥ii(N)), ¢ = 1,...,4. Further, éiildit1,it1,
Yit1,it1|¥ii, ¢ = 1,...,(¢€ — 1). The normal rank of R()\)
is £, which clearly is the rank of R()) for almost all values
of A\. The finite zeros of R()\) are defined as the zeros of
the numerator polynomials of R(}), i.e., the values of A for
which R(\) has rank lower than £ [15]. For a polynomial ma-
trix P()) essentially the same decomposition applies except
that G(A) will then also be polynomial matrix and hence all
Yii = 1. The above form then is called the Smith form of the
polynomial matrix P(}).

Tt was shown by Rosenbrock [15] that the polynomial ma-~
trix description {1.1) reduces this problem to one involving
only the polynomial matrix S(\), provided that the quadru-
ple {T(X),U{)\),V()\),W())} has the property that the poly-
nomial matrices

~T(A) ] (2.2)

[ -Tv vk ], [—V(A)

have no finite zeros. This is equivalent to requiring that both
matrices in (2.2) have full rank n where n is the dimension
of the square invertible matrix T(A). These conditions are
also called minimality conditions of the corresponding poly-
nomial matrix description. Notice that for a standard state
space model these conditions correspond to the system be-
ing controllable and observable. This connection was used
by Emami-Naeini and Van Dooren {13] to compute the zeros
of a proper R()) from a minimal standard state space real-
ization of R(A) as the points where the rank of S(\) drops
below its normal rank n + 4. When §(A) corresponds to a
minimal order system, the points (A € F) for which

A- )\, | B

rank (S())) =rank{ o Fa) ] < n+d, (2.3)

are indeed the McMillan zeros of the transfer function matrix

R()).

In order to define infinite zeros of rational and polyno-
mial matrices one merely needs to perform the change of
variables A = 1/u, which maps the point A = oo to u = 0
and then use the new Smith-McMillan decomposition of the

3548



transformed rational matrix R(1/u) to extract its zeros at
# = 0. Notice that the new unimodular matrices M and N
in (2.1) and polynomials ¢ and ¢ wiil be different. The rela-
tion with the standard state space system matrix now fails to
hold, even if R{}) is proper, and one needs to use instead the
concept of generalized state space systems and generalized
eigenvalues.

2.2. Generalized Eigenvalue Problems
In this section we review some basic facts about first order
polynomial matrices or matriz pencils.

Singular pencils and:the Kronecker canonical form

Given an arbitrary pencil (F — AG), there exist invertible
transformations S and T yielding a block diagonal decompo-
sition

S(F~ AT = diag {M—Js, 1 = Neo,

T T
LegoooosDeg LY, oo L)

where J; and Jo are in Jordan form (with Jeo nilpotent) and
describe the finite and infinite eigenvalues, respectively. The
matrix Ly, is a bidiagonal matrix of dimension (k x (k + 1)),
with elements {;; = ~\ and {; j+1 = 1. Further, the index
sets {e;,1 = 1,...,5} and {n;,5 = 1,...,t} are the left and
right minimal indices of (F' — AG) [19]. The relationship of
this canonical form to the Smith form of the first order poly-
nomial matrix (F ~ \G) may be found in {10]. The connec-
tions in {10] indicate that the problem of finding the eigen-
structure of a first order polynomial matrix reduces to the
computation of the Kronecker structure of the corresponding
pencil.

Generalized Schur decomposition

For an arbitrary pencil (F'— AG), there exist unitary transfor-
mations Q and Z yielding the block triangular decomposition

QHF - \G)Z =
Fr —~ MGy * *
4] T -Gt . , (2.4)
g o Fo — AGe

where Fy. — A\G, has full row rank for all finite X, F, —~ AG, has
full column rank for all finite )\, and Gy is invertible. This
decomposition is proven in [17] where an algorithm is also
given to find such a decomposition. Moreover the eigenvalues
of G;l F are the only finite points where the rank of (F -

AG) drops below its normal value, and hence are the finite
zeros of (F — AG).

QZ algorithm and finite zeros

Given a square matrix pencil (Fy — AGy), with det(F; —
AGy¢) # 0, there exist unitary matrices Q; and Zg of ap-
propriate dimension such that Q}Fy Zs and Q;G 14y are
both upper triangular matrices [18]. Let fi; and g;; represent
the i-th elements along the diagonals of the upper triangu-
lar matrices Q;F 'Z; and Q }G 72y, vespectively, then the
ratio’s fii/gii represent the finite eigenvalues (or finite ze-
ros) of (Fy —AGy) and also of (F ~ AG). Note that the QZ
algorithm which performs this triangularization, also works
for rank deficient Gy. However, this was not required here
because of the preliminary reduction (2.4).

Minimal indices and infinite zeros

In the matrix decomposition (2.4}, one may choose @* and
Z such that the subpencils (Fr — AGy) and (F; — AG.) have

the special forms:

Fxr,i F!r,k - )‘G;,k
F. - \Gr = , (2.5)
Fx

where the diagonal matrices FI"‘ have full row rank j;, and
the principal super diagonal matrices G{’ i+ have full column
rank 41, and

ch,j e ch,l - ’\G;;,l
Fe— AGe = : (2.6)
iy

where the matrices Fi'i‘. have full column rank y;, and the
principal super diagonal matrices G i have full row rank
7i41. It is clear that these rank conditions guarantee the
full rank properties of (Fy ~ AGy) and (F; — AG.) for all
finite A, but in addition to this it was shown in Van Dooren
(1979) that the minimal indices and infinite zero structure of
(G — AF) can be derived from this as well. We show later
how they relate to the index sets {fii}, {#}, {#:} and {n;}.
3. Characterization of System Zeros
In this section, we define different types of zeros of a singular
system described by (E, A, B,C, D) where the n x n pencil
(A ~ AE) is non-singular (i.e. det(A — AE) # 0). In the
sequel we will always refer to both finite and infinite zeros as
defined in SECTION 2 via the Smith-McMillan and Kronecker
canonical forms.

Definition 3.1. The zeros of the pencils [A — \E, B] and
[“l ] are called the input and output decoupling zeros of

the system (E, A, B,C, D) respectively.

Definition 3.2. If the system (E, A, B,C, D) has no output
and no input decoupling zeros, then the zeros of the system
matriz S(A) = [ A"C*E 5

the system (&, A, B,C, D).

are called the transmission zeros of

We will be making extensive use of transformations of the

kind,
b 5 ot -
[ U(A~AE)V | UBZ ] (3.1)
WoV | WDZ

which we will refer to as generalized state space transforma-
tions. The matrices U, V, W and Z are invertible [14].

Theorem 3.1. The zeros of the generalized state space sys-
tem (1.3) are invariant under generalized state space trans-
formations.

One special case of such transformations consists in choosing
U/ and V such that the matrix UEV has the following form

O O ]
where E}1 is invertible. This can be achieved with the singu-
lar value decomposition. Transforming and partitioning the
matrices A, B and C conformably yields a new generalized
state space system with special properties.

UEV = [ (3.2)
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Definition 3.3. Let the system (E, A, B,C, D) have a sin-
gular E matriz and let U and V yield a SVD of E. Then

from
o ] [ -

_Au - ABn 1‘.@.1_?_1__
Agy Ay | Ba (3.3)
Cy t Cy | D

we define a “compressed generalized state space system” with
Er of full vank, given by

}\Eui‘(i) = Aui‘(i) +[A]2 Bllft(t) (3.‘})

ity = ['é?;}i(t)+[/g; %]ﬁ(t)'

This leads to the following theorem [14].

Theorem 3.2. If the system (E, A4, B,C,D) has no input
or vutput decoupling zeros them neither does the compressed
system (3.4). Moreover their {ransmission zevos are then
equal.

Notice that we can derive a compressed system as well for
the triples (£, 4, B) and (E, A, C), which in both cases will
yield 5-tuples if £ is singular :

[ A~ AEn | Aie B

(3.5)

Az | Az2

(3.6)

Since the zeros of these pencils are not affected by the trans-
formation, we have the following obvious but useful result.

Corollary 3.1. The zeros of the pencils {A ~ NE B] and
[A 2] (i.e. the input and output decoupling zevos of the
system (E,A, B,C, D)) are those of the compressed system
matrices (3.5) and (3.8), respectively, given above.

These results can also be applied to any non-degenerate pen-
cil (A — AE) whence the compressed form will yield a 5-tuple
similar to (3.4) as shown below

Ay = AEy; | A ]
U(A- AE)V =: [ 3.7
( ) T A (3.7)
Again, since the zeros of matrix pencils are unaffected by the
compressions, we can state the following

Corollary 3.2. The zeros of the pencil (A — AE) (i.e.
the finite poles and the poles at infinily of the system
(F,A,B,C,D)) are those of the compressed system matriz
given in (3.7).

4. Transmission Zeros and Structure at co
In this section, we develop a deflation technique for the com-
putation of transmission zeros, orders of infinite zeros and
left and right minimal indices of singular systems. The pro-
cedure uses unitary transformation matrices to obtain matrix
pencils (A — AEy) and (Aco ~ ABc), where the general-
ized eigenvalues of the former are the transmission zeros of

the given singular system and the latter contains informa-
tion about the orders of zeros at infinity and left and right
minimal indices. Note that for finite transmission zeros, the
pencil is given by

(4.1)

Src(/\)z [ Arc = MErc | Bre 1

Cre Dye

where Ey. and Dy are square invertible matrices. Once the
reduced order system matrix (4.1) is obtained, the transmis-
sion zeros of the systein can be computed as the generalized
eigenvalues of the pencil (Arc — Br D7l Cre - AEyc) using
the QZ algorithm [19]. It will be shown later that the gener-
alized eigenvalues can be obtained without explicitly forming
the inverse of Dy

In principle, the reduction procedure corresponds to
transforming the variables z(t), u(t) and y{t) to #(t) =
V *2(t), 4(t) = Z *u(t), 9(1) = Wy(t), premultiplication of
the state cquation with the matrix U and deflation. The
four matrices U, V, W and Z are chosen to be unitary and
are constructed recursively as described in the rest of this
section.

Before starting the reduction procedure, we first trans-
form the system to its compressed coordinates. To achieve
this, we compute unitary matrices U and V as in (3.3)-(3.4).
This transformation performs a rank revealing factorization
on the descriptor matrix £ such that now Ei; has full rank
» and is upper triangular. Next, we partition the matrices
UAV,UB and CV conformably to UEV in (3.2) and redefine
the system matrix as

e [ A“CAE g ] (4.2)

where, E = By, A = A, B = [A12 Bi], &= [ ‘23‘1 ]
and D = [“Clg? ‘i)?] . Clearly, E is now an invertible upper
trianguler matrix and by premultiplication of state equation
with £ leads to an r-th order standard state space system,
whose transmission zeros can be easily determined. However,
conversion to a standard state space system to determine
transmission zeros should be avoided for reasons of numerical
stability. Instead, the recursive deflation technique described
in the rest of this section may be used.

For notational convenience, it is assumed that the de-
scriptor matrix is already a full rank upper triangular ma-
trix i.e., (B, A, B,C, D) := (£, A, B,C, D), where the latter
is defined as in (4.2). Further, let m := n—7 4 m, p :=
n—7r+pandn:=r.

4.1. Structure at oo and Row Minimal Indices
The i-th iteration performs the following operations on the
system matrix: The rows of D are compressed by computing

a unitary matrix W% such that W{)D is row compresscd
ie.,
W(i)D = [%‘] , D e lF(p---‘r;)xmY 0 e Frixm, (4’3)

Next, the matrix W) is partitioned into Cy and Csa, where
the number of rows in C; is the same as that in Dy,

Wi = [8] ¢ e FPmIXn 0y e BFTXT (4.4)

and a unitary V(%) is determined such that C; V() is column
compressed:

CoV) =[O Capl, Cap € BT XHi, (4.5)
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Note that the operation in (4.5) will destroy the diagonal or
upper triangular stracture of E, therefore it is necessary to
perform a column compression and at the same time maintain
the triangular structiire of E. This is done by simultaneously
determining 7¢) su¢h that UGOEVE) is upper triangular.
Details for achieving|this can be found in in [14].

Next, partition the descriptor F matrix as:

I € Flr=rax(n—u)
(4.6)

below

U | A-)E| B vi) | _
) ] | -
_ A= ’:7_13_1_/_‘_12_:}{3_1_2_{_13_1__
,421 ! Azg - /\]222 B2 (4 7)
Gl G 1Dy i
' Coy | o

@ be performed on the reduced order
, D) defined as:

(4.8)

where A, E g F(npdx(n=wi) B g Fr-m)xm ¢ g
Fp=ritui)x(n—1i) apd D € FP=THridXm  Further, for
notational conveniencg, we define Af; = C22. Since, p; <
7;, therefore, p — (7; - i) < p and n = yu; < n, i.e., the
dimension of state as ywell as output vectors in (4.8) are less
than or equal to the corresponding dimensions in the system
from previous recursion.

Note that the new descriptor matrix F is a full rank
upper triangular matrix. The reduction can therefore be re-
peated until a full row|rank D matrix (i.e., i = 0) or a zero
rank C matrix (i.e., [g; = 0) is cncounteled As long as
this is not the case, the state dimension n is decreased to
noi=no— g at. each step and the number of outputs to p :=

— (7 = pi).

Once a full row rapk matrix D := D, is found, at step
(7+1), the transformed system (up to a column permutation)
has the followmg structure:

[U ,\E
[ ! \ - ILV ] =P()) (49)
1
where \
L Y x
P.(\) = i Cr !
\ [ Ac—XE*©
_ Al‘ — A% , X
= [ | o presvoul (4.10)
and [A¢ — AE] has the following structure
A;',] Aj")‘lc_ A ]9’1__1 A’]‘ 1 1\5-';1
A]'_.,L]'_P AS_11 = MBSy,
| .
\\ A
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Dy has full row rank (r,4; = 0), Ef,, ; has full row rank

Ti4+1 and A" has full column rank u,

The pencil (A1 = AE}) contains the finite transmission
zeros and the information on the right nullspace of the corre-
sponding system matrix. The pencii (A4, — \E>) contains the
information on the orders of infinite zeros and left nullspace
of the system matrix. This result is essentially the same
as proven by Svaricek [16] for standard state space systems.
The only difference resides in the matrix E which is invert-
ible, because of the use of a compressed state space system.
Therefore the same reasoning as in Svaricek’s paper applies
here as well and we e quote the next result from [17] without
proof.,

Lemma 4.1. From the structure of the pencil (A2 — NE3),
we can state that

1. There are d, = p; — Tit1 infinite elementary divisors of
degree ¢, (1 =1,...,7)

2. There are r;
(i-1),(=1...j)

i — g Kronecker row indices of size

Which leads to the following theorem [14] and [16].

Theorem 4.1. The orders of the infinite elementary divi-
sors of (A2 — AE2) are equal to the orders of infinite zeros
of the system (E,A,B,C, D).

4.2. Finite Zeros and Column Minimal Indices

After a full row rank D, matrix is found, the deflation

procedure defined by (4.3)- (4.8) is repeated on the per-

transposed (i.e. transposed over the anti-diagonal) system
AP _ g

Camcam

3
Dy is found. The resulting transformed pencil becomes

[Ul ][CfIAf—AEf][Imlv.~]=1=m(,\)

until an invertible input output matrix

[wi|pri BF
(4.11)
where
_Bre i Are = MEre | X
Prc(l\) = Drc ! Cre ‘
[0 | — \E"
_ Ay = 2B | X Y
= [ syl (4.12)
and Az — ME» is given by
A;,k Ai,k_l - ’\Eﬁ,k—l Al’e, - ’\Lk 1
A::—l,k-—l Alrc—l',i - ’\Ek—l,l
ATy

Dy is a square invertible matrix, E':'_H has full row rank

(= #i41) and A]; has full column rank (12:)-

Lemma 4.2, From the structure of the pencil (Ay — AE»)
and with #;, fii as defined above, ¢; = F—fi;, 1 = 1,...,k arc
the Kronecker column indices of size (i ~ 1) for the system.

The following result provides a numerical way to compute
the finite transmission zeros of the system [14].



Theorem 4.2. The finite transmission zeros of the system
are the generalized eigenvalues of the jmzte structure penctl
(As — \Ey) where Ay and Ef are defincd as:

A * 1 Are’| Bre ,
[ 2] { D, } {(;',c Do ]”
E * E.. 10
[ ({ { 5 } = { 510 ] W, (4.13)

and W is unitary.

5. Concluding Remarks

In this paper, we presented a state space characterization of
the transmission zeros of singular lincar multivariable sys-
tems that is analogous to that of standard systems. It was
shown that from the given singular system, using unitary co-
ordinate transformations, we can obtain a non-singular sub-
system whose transmission zeros are identical to the trans-
mission zeros of the original singular system.

It should, perhaps, be emphasized that an algorithmsuch
as proposed in this paper can be viewed as an (almost) uni-
versal analysis tool for linear time-invariant systems. Prop-
erties such as stability, controllability, observability, stabiliz-
ability or detectability, row and column minimal indices of
the corresponding system matrix, ete. can be easily obtained
by computing zeros of appropriate system matrices (forp.= 0
and/or m = 0).
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