On the QR algorithm and updating the SVD
and URV decomposition in Parallel

Marc Moonen
ESAT Katholieke Universiteit Leuven
K.Mercierlaan 94, 3001 Heverlee, Belgium

moonen@esat.kuleuven.ac.be

Paul Van Dooren
University of Illinois at Urbana-Champaign
1101 West Springfield Avenue
Urbana, Il 61801, USA

vandooren@uicsl.csl.uiuc.edu

Filiep Vanpoucke
ESAT Katholieke Universiteit Leuven
K.Mercierlaan 94, 3001 Heverlee, Belgium

vpoucke@esat.kuleuven.ac.be

Abstract

A Jacobi-type updating algorithm for the SVD or URV decomposition is de-
veloped, which is related to the QR algorithm for the symmetric eigenvalue
problem. The algorithm employs one-sided transformations, and therefore
provides a cheap alternative to earlier developed updating algorithms based
on two-sided transformations. The present algorithm as well as the corre-
sponding systolic implementation is therefore roughly twice as fast, com-
pared to the former method, while the tracking properties are preserved.
The algorithm is also extended to the 2-matrix QSVD or QURV case. Fi-
nally, the differences are discussed with a number of closely related algo-
rithms that have recently been proposed.

I. Introduction

In an earlier report [16], an adaptive algorithm has been developed for track-
ing the singular value decomposition of a data matrix, when new observa-
tions (rows) are added continuously. The algorithm may be organized such
that it provides at each time a certain approximation for the exact singu-
lar value decomposition. It combines a Jacobi-type diagonalization scheme,

based on two-sided orthogonal transformations [12], with QR updates. A
systolic implementation for this algorithm is described in [17].

Here, we improve upon these results. An alternative algorithm is de-
scribed, which employs only one-sided transformations. Row and column
transformations are applied in an alternating fashion. The algorithm is
therefore roughly twice as fast, whereas its tracking properties are the same
as for the two-sided method. The corresponding systolic implementation is
roughly the same, but also twice as fast.

The algorithmic development starts from a square root version of the
QR algorithm for the symmetric eigenvalue problem [7, 15], section III.
This algorithm is turned into a Jacobi-type algorithm, based on 2 X 2 trans-
formations, by supplementing it with a permutation scheme, section I'V. The
resulting algorithm may then be interlaced with a QR update, whenever a
new row has to be worked in, such that an adaptive scheme is obtained,
section V. As the algorithm is operated without shifts of the origin, it is
particularly suitable to isolate a cluster of small singular values. This is pre-
cisely the aim of a URV decomposition [21]. Thus, at each time, either an
exact SVD may be computed or a URV-type approximate decomposition. In
section VI, the algorithm is extended to the 2-matrix QSVD or QURYV case.
In contrast to the QURV method proposed in [4], no preliminary extraction
of a triangular factor is performed here. Moreover, a systolic array imple-
mentation is simpler with the present version. Some of these differences are
explained in the last section on related work by others.

I1I. Preliminaries

The starting point here is a real ' data matrix A, which is assumed to be
tall and thin, i.e. with more rows than columns. The aim is to compute its
singular value decomposition

A=U- -3 -VT

—— LN Ny s
Nxm Nxm mxm mxm

with UTU = VTV = I and X a diagonal matrix. In real time applications,
A is defined in a recursive manner, i.e. A at time k equals A at time k — 1
plus one additional new observation (row)

Ay = Aki;]
L g
Mostly, exponential forgetting is applied with a forget factor A < 1, i.e.
[AA
- [] |

''We consider real arithmetic, for simplicity. The complex case is similar.

Very often, SVD is used for so-called ‘subspace tracking’ applications. The
matrix A, is then supposed to have a clear gap in the singular value spec-
trum. The larger singular values correspond to the so-called ‘signal sub-
space’, the smaller singular values correspond to the so-called ‘noise sub-
space’. The SVD may be written as

1=l] [P

——_—————
U

D VT
where 3., contains the larger ‘signal singular values’, and 3., contains the
smaller ‘noise singular values’. The aim is not so much to compute the
complete singular value decomposition, rather to compute a good estimate
for the subspaces V' and V.. Therefore, it is not necessary to have an exact
diagonal matrix in the middle. An ‘approximate decomposition’, with e.g.
a triangular matrix R in the middle as follows

- Rs Rsn ‘Z;T
S e}
o —_—————— ——

A:[Us

R VT

also reveals good estimates for the subspaces, as long as the ‘cross term’
[| Rsn||F is small, such that R, resp. R, has roughly the same singular values
as Y, resp. ¥,. In [16], this is called (somewhat loosely) an ‘approximate
SVD’, whereas in [21] this is termed ‘URV decomposition’, referring to the
separate factors.

In subspace tracking applications, the aim is to have a good estimate for
the subspace V. or V.I' at each time instant k. The ‘tracking error’, which
may be defined in terms of the angles between the exact and approximate
subspaces V. and VI [16], should be small at all time. Our aim is to develop
efficient adaptive and parallel algorithms for this.

II1. Square root QR

In this section, we focus on computing the SVD of a fixed matrix A. It is
shown how a Jacobi-type algorithm may be derived from the QR algorithm
for the symmetric eigenvalue problem.

The SVD of the matrix A may be computed in two steps. First, a QR
decomposition is computed, resulting in

A = - R
vgf-‘/\f}/

Nxm Nxm mXm

where QL Q4 = I and R, is upper triangular. This is done in a finite num-
ber of time steps, e.g. with a sequence of Givens transformations [11]. Then
an iterative procedure is applied to the triangular factor R 4, transforming it
into a diagonal matrix. This diagonalization procedure consists in applying
a sequence of plane transformations as follows, see [12, 13] for details:

R < Ry,
U < 1
V <« 1T
FOR k=1, ... ,00
FORi=1, ... ,m—1
Boe Ul B Vi
U <« UU[ZJ{]
V = V.*[“{]
END
END

The parameter 1 is called the pivot index. The matrices U[i,k] and ‘7/[“{]
represent orthogonal transformations in the {i, i+1}-plane. U[i,k] differs from
the identity only in the entries (i,7) = (¢ + 1,14+ 1) = cos ¥, (i,i+ 1) =sind
and (i + 1,1) = —sin @. Similarly Vj; 4y differs from the identity only in the
entries (i,1) = (i+1,i+1) = cos ¢, (i,1+ 1) =sin ¢ and (i+ 1,7) = —sin ¢.
The angles ¢ and 8 are chosen such that applying U[i,k] and V[i’k] to R results
in a zero (1,14 1)-entry in R, while R still remains in upper triangular form.
Among the two possible solutions one chooses the so-called outer rotations
closest to a 2 X 2 permutation [13]. Each iteration thus essentially reduces
to performing a particular 2 x 2 SVD on the main diagonal. At each stage

we have
R,=U-R-VT.

Furthermore, each rotation reduces the norm of the off-diagonal part in R.
Under mild conditions [8], one shows that the off-diagonal part converges to
zero and hence, R converges to a diagonal matrix, resulting in the required

SVD :

A = Qi By
f— -7. .7T
= QUL
U rovT

If these conditions are not satisfied, one easily modifies the standard al-
gorithm to ensure global convergence to a diagonal matrix [8]. This SVD

4

algorithm is simple, amenable to parallel implementation [13], and may be
turned into an adaptive algorithm [16].

In a way, the above algorithm may be viewed as a so-called ‘square
root’ version of the original Jacobi algorithm for the symmetric eigenvalue
problem, applied to ATA = RTR [11]. What is remarkable now, is that
another popular algorithm for the symmetric eigenvalue problem, namely
the QR algorithm, may be turned into a Jacobi-type square root algorithm,
too.

The original QR algorithm, applied to AT A, works as follows [11] :

X, « ATA
FOR k=10, ... ,00

Xk_|_1 = Rk * Qk
END

In each iteration, a QR factorization of X, is computed. Then the next
iterate Xy, is obtained by reversing the order of Q, and R, and carrying
out the multiplication. It is proved that -except for contrived examples- X,
converges to a diagonal matrix with the eigenvalues of AT A ordered along
the diagonal, i.e. X, = ¥°.

A square root version of this algorithm has been derived in [7, 5, 9, 15]

(see also [6] for a related result). With A = QaR4, one has

XO = R£ . RA
- =~
lower UpPPer

d:ef Rg) Ro

The QR factorization of X, (cfr. first iteration) is obtained from the QR
factorization of RY
Ry
—_——
Xy = QouRou Ry
= Qou 'Rou'Ro-
— ——
Qo Ro

The next iterate is then obtained as

X1 — Ro . Qo
- Rou . Ro : Qou
= Roﬁ . R/gﬁ
S N

Upper jower

Finally, the original factorization (lower times upper) is restored, by com-
puting and substituting the QR factorization of Rgﬁ

Roy Rgﬁ
Xy = ROTQOT 'QOTROT
= Rg’r - Roy
def
e Rf - R,

The above process is then repeated to compute similar factorizations for
X,, X3, ete. One can verify that, with tidied up notation ?, a square root
algorithm is obtained as follows :

Ro = RA

FOR k=0, ... ,00
Lk = Rk . Qkﬁ
—~— —~— —~—
lower UPPEr orthogonal
Ry <= QZT - Ly
S—— N~ had
upper orthogonal lower

END

It is seen that column and row transformations are applied in an alternating
fashion, wherewith an upper triangular factor is turned into a lower triangu-
lar factor and vice versa. Here, one easily verifies that -except for contrived
examples- R, = 3, such that indeed RT, - R, = X, = ¥°.

The above QQ R-type algorithm is operated without shifts of the origin [11].
Therefore, convergence to the complete singular value decomposition is likely
to be very slow. On the other hand, with the zero shift, this algorithm is
particularly suitable to isolate a cluster of small (close to zero) singular val-
ues. This is typically the case when dealing with a tracking problem with
a reasonable signal to noise ratio. Therefore, the above algorithm rapidly
converges to the URV form, as given in the previous section, and thus may
be called a ‘URV algorithm’, too. Notice that if the signal to noise ratio
is poor, convergence of this scheme may be poor, but one can then expect
difficulties as well with the URV approach. For more details on how this
algorithm relates to (the refinement step in) the URV algorithm of [21], we
refer to [15] and to Section VII.

2L, instead of Rfu and Ry instead of Ryt

IV. Jacobi QR

The next step is to turn the above algorithm into a Jacobi-type algorithm,
based on 2 x 2 transformations. First we add a permutation matrix in the
above algorithm, given as 3

0 1

1 0

The algorithm then works with upper triangular matrices only.

Ry <« R,
FOR k=0, ...,

ML < T - R, - Qull
~—~

upper UPPEr orthogonal

Ripi < QUIT - TILIL - 1

upper upper
orthogonal

END

The first part may be viewed as applying a row permutation 11, and mean-
while preserving the upper triangular structure by applying orthogonal col-
umn transformations. Similarly, the second part may be viewed as applying
a column permutation 1l, and meanwhile preserving the upper triangular
structure by applying orthogonal row transformations. To obtain a Jacobi-
type algorithm, it suffices to split up these transformations into a sequence
of 2 x 2 transformations. We consider the case here where m is even *. It
is well known that Il can be split up with a so-called ‘odd-even ordering’ as
follows

IT= (1_[1|2H3|4 .- ~Hm—1|m : 1_[2|3H4|5 .- ~Hm—2|m—1)%

‘odd’ ‘even’

where 11;j;11 differs from an identity matrix only in the entries (i,1) = (i +
L,i+1) =0 and (i + 1,7) = (i,i+ 1) = 1. Fach time a row (column)
permutation Il;, 41 is applied, a corresponding column (row) transformation
restores the upper triangular structure. This is very similar to inserting

3Note that TIT = TI.

4Similar formulas apply for the case where m is odd.

appropriate permutations in the Kogbetliantz algorithm for computing the
SV D of a triangular matrix [13] in order to maintain the upper triangular
form at each step. With this, we finally obtain the Jacobi-type square root
QR algorithm (with odd-even ordering) :

R < Ry,
U < 1
V « I
FOR k=10,...,00
FOR j=1,..., 5
FORi=1,3,...,m—1,2,4,...,m—2
Odd even
R <= iy - B-Vyjx
U < U-Myip
Vo= V'V[uk]
END
END
FOR j=1,...,%
FORi=1,3,...,m—1,2,4,...,m—2
Odd even
R < Ulq R -Tyip
U « U'U[iyjyk]
V & V- Mg
END
END
END

Again, U ;4 and Vi ;g represent orthogonal transformations in the
{1,714 1}-plane, with rotation angles such that Uy ;) or Vj; j) restores the
upper triangular form after the column or row permutation. At each stage

we have

R,=U-R-V"T
and again, each iteration reduces the norm of the off-diagonal part in R.
In other words, R converges to a diagonal matrix, resulting in the required

SVD :

A = Qa-Ra
f— .7. .7T
= QUL
U o vT

V. Parallel and adaptive SVD /URV updating

The above SVD/URV algorithm is also simple, and directly amenable to
parallel implementation. The array of [13] may be used here, see FIGURE 1.
Dots correspond to matrix entries, 2 X 2 frames may be thought of as pro-
cessors. The triangular part stores the matrix R, while V is stored in the
upper square part. Matrix U is not stored, as we will not need it in the adap-
tive case, see below. The ‘odd transformations’ (i = 1,3,...) are computed
in parallel on the main diagonal, Figure 1.a, and then propagated to the
blocks next outward (column transformations are propagated upwards, row
transformations are propagated to the right). In Figure 1.c, this first set of
transformations has moved far enough to allow the next set to be generated
(‘even transformations’, this time). After Figure 1.d comes Figure 1.a again,
etc. The only difference with [13] is that each 2 X 2 block now only performs
either row or column transformations (plus permutations), instead 2-sided
transformations. The array will thus operate roughly twice as fast.

Let us now return to the recursive case, with

AAL_
Ak - T ;

ay

and turn the algorithm of the previous section into an adaptive algorithm.
In [17], it is shown how a Jacobi-type process may be interlaced with QR up-
dates, whenever new observations have to be worked in. The main difficulty
of the systolic implementation is the fact that two computational “flows”
travel in opposite direction : one flow is associated with the SVD/URV
computations on a triangular matrix and updating the corresponding col-
umn transformation matrix in a square array, and another flow is associated
with applying this transformation matrix to the new incoming observation
vectors. The crux of the implementation is to patch up the flows as they
cross each other in different direction. It is instructive to look at the sys-
tolic implementation first, and then derive the corresponding algorithmic
description :

FIGURE 2 is similar to Figure 1, only the interlaced updates are added. The
data vectors a; are fed in into the upper V-array in a skewed fashion as
indicated with the w’s, and propagated to the right, in between two trans-
formation fronts (frames). The first step is to compute the matrix-vector
product @f = al -V, to put the new vector in the same ‘basis’ as the cur-
rent R matrix. This is computed on the fly, with intermediate results being
passed on upwards. The resulting vector a, becomes available at the top
end of the square array, and is then reflected and propagated downwards,
towards the triangular array, indicated with the «’s. While going down-
wards, the ag-vector crosses upgoing transformations. These should then

be applied to the a;-vector too, in order to obtain consistent results. The
@ R-updating is performed in the triangular part, much like in the conven-
tional Gentleman-Kung array [10], but the pipelining is somewhat different
here (compatible with the Jacobi-type algorithm). Rotations are generated
on the main diagonal, and propagated to the right. In each 2 X 2 frame,
column and row transformations corresponding to the SVD/URV scheme
are performed first, while in a second step, only row transformations are
performed corresponding to the () R-updating (affecting the ay-components
and the upper part of the 2 x 2 -blocks). For further details concerning this
array, we refer to [17].

An algorithmic description of this systolic implementation is given as
follows :

V <= ILnm
R < Opnxm
FOR k=1, ... ,00

input new observation vector aj,
1. Matriz-vector multiplication

-7 T
a, < a, -V

2. QR updating

3] - a [

k
3. SVD/URV steps
FORt=1, ... ,m—1
[1F 2k + 14 (mod 2n) < n
R <« Hi|i+1'R'V[i,k]

V <« V . ‘7[2'7/{]
ELSE
R < Uy BT
| V <: V * Hi|i+1
END

END

Again, U[i,k] and V[i’k] represent orthogonal transformations in the {i, i+
1}-plane, with rotation angles such that Uy) or Vi x) restores the upper
triangular form after the column or row permutation.

10

The backbone of the algorithm is the SVD/URV process. Whenever a
new vector a;, has to be worked in, the process is interlaced with a QR up-
date (step 2) with al = al'V (step 1). To have an algorithm with a fixed
number of operations per loop, only one sequence of transformations for
i=1,2,...,m — 1 is performed in step 3 °. Here we make use of the well
known fact that an odd-even ordering can be re-organized into sequences of
transformations, where in each sequence we havei =1,2,...,m—1 (up to a
different start-up phase). One then only has to be careful with the compu-
tation of the transformations, i.e. the decision whether the permutation has
to be applied to the left or to the right. This is done with the ‘if ... then...’
statement, which is explained as follows. In Figure 2.a it is seen that the
2 X 2 blocks on the diagonal correspond to diflerent updates, namely k = 2
and k =1 (one could also add k = 0 and k = —1). The sum 2k + i is then
indeed constant along the diagonal. In other words, the decision whether to
perform a row premutation or a column permutation, should only depend
on 2k +1. On the other hand, one should switch from row permutations to
column permutations, or the other way around, after each %-th update (for
a fixed value of 7).

The above algorithm has an O(m?*) computational complexity per update
(per loop). At each time, an approximate (URV-type) decomposition is
available. The performance analysis of [16] straightforwardly carries over
to this algorithm. This means that the tracking error (see section II) is
bounded by the time variation in m time steps, see [16] for details. The
tracking experiments of [16] may be repeated here, revealing much the same
results. Finally, with a systolic array with O(m?) processors (see Figure 2),
an O(m°) throughput is achieved, which means that new vectors can be fed
in at a rate which is independent of the problem size m.

VI. QSVD and QURYV updating

The above updating algorithm/array is readily extended to generalized de-
compositions for matrix pairs, viz. the quotient singular value decomposition
(QSVD) or a similar QURV. Apart from the data matrix A (N x m), a sec-
ond matrix B (p X m) is given, which for most applications corresponds to
an error covariance matrix BT B. The idea is then mostly to replace meth-
ods which are based on the SVD or URV decomposition of A, by methods
which are based on decompositions of ARp', where Rg is, e.g., an m X m
triangular factor of B (B = QgRp). The post-multiplication with Rp' rep-

5From then on, the algorithm will only provide an approximate decomposition. An
exact diagonalization is only obtained with a possibly infinite number of SVD steps after
each update.

11

resents a pre-whitening operation. The key point is that ARp' should never
be computed explicitly, because both the inverse and the multiplication may
introduce additional errors, or Rg may not be invertible at all. The QSVD
of the matrix pair {A, B} or {A, Rg}, which is given as follows

A = Qa-Us-(Z4R)-Q7
R4
B = Qp-Up-(XpR)-Q"

Rp

reveals the SVD of ARy' in an implicit way. Here ¥, and X are diagonal
matrices, R is upper triangular, and UTU, = UFUp = QTQ = I. For
details, the reader is referred to [20].

Starting from the square triangular factors R4 and Rg, the QSVD may
be computed with an iterative procedure, similar to the SVD procedure :

R, <« Ry,
R, < Rp
Uys <« T
Ug < 1
Q <« I
FOR k=1, ... ,00
FOR ¢ =1, ,m—1
[R, <= UA[Ti,k] - Ry 'Q[i,k]
R, < UiB[Ti,k] - Ry 'Q[i,k]
Uy < Uy- UA[i,k]
Up <« Up- UB[i,k]
L Q < Q 'Q[i,k]
END
END

The matrices Ry and R, then converge to Y4 R and YXgR. The matrices
UiA[ivk],UiB[ivk] and Q[i,k] again represent orthogonal transformations in the
{i,1+ 1}-plane. These transformations correspond to a 2 x 2 QSVD with
[R1]; i1 and [Rs)i i1, i-e. the submatrices on the intersection of rows i, i1+ 1
and columns 1,71+ 1 in Ry and Rs [14]. The key point is that (if R, is
invertible)

[Riliigr - [Rz]zz'l-u =[Ry- R

12

Computing the transformations in a numerically reliable way is a problem
here, see e.g. [3, 2, 1]. Again, the above QSVD algorithm may be turned
into an adaptive and parallel updating algorithm, where new rows may be
appended to either one or both of the matrices A and B [18].

Qur aim is now to develop a QR-type QSVD algorithm, similar to what
we had for the 1-matrix case. This is straightforward. The algorithm below
is readily seen to be a square root version of algorithm 8.6-1 of [11] for the
symmetric generalized eigenvalue problem.

R, < Ry,
R, < Rpg
Q «
Uyp = 1
Usg < 1
FOR k=0,...,00
FOR j=1,...,%
FOR 1 =1,3,....m—1,2,4,...,m— 2
odd even
[R <= g - Ry 'Q[i,j,k]
R, <« UB[TZ:]'J{] - R, 'Q[i,j,k]
Q <~ Q'Q[i,j,k]
Uy < UA'Hi|i+1
_UB ~ UB'UB[i,j,k]
END
END
FOR j=1,...,%

FORt=1,3,....m—1,2,4,....m—2

odd even

[Ry <= i - R 'Q[i,j,k]
R, <« UiA[Ti,j,k] - Ry 'Q[i,j,k]
Q <= Q-Qujn
Ui < Uy- UA[i,j,k]
L Up <« Up A4
END
END

13

END

Unlike in the first QSVD algorithm, computing the transformations is simple
here. In the first loop, a row permutation is applied to Ry, and then Q[i,j,k]
is computed to upper triangularize R, again. Finally, UB[i,j,k] is computed
to upper triangularize RoQy; ; x- The second loop starts with a permutation
on Ry, ete. With the above algorithm, Ry Ry (if R, is invertible) converges
to the URV form first, and then further on to diagonal form.

Finally, when the rows of A and B are both updated with time, an adap-
tive updating algorithm is straightforwardly obtained as follows. Only the
orthogonal matrix Q) is stored now.

Q < Lnxm
Rl = Omxm
RZ = Omxm

FOR k=1, ... ,00
input new observation vectors ay, by,

1. Matriz-vector multiplication

iT = al-Q
o= i7Q

2. QR updating

R1 T A'Rl
[0] o [i
R2 T A.RZ
[0] - [i

3. SVD/URYV steps
FORi=1, ... , m—1

[IF 2k + 1 (mod 2n) < n

Ry < - By 'Q[i,k]
R, ~ U3£i+1 - R, 'Q[i,k]
Q < Q 'Q[i,k]
ELSE
Ry, < 1Lt - R 'Q[i,k]
R, < Unjigr - B Qpa
Q < Q 'Q[i,k]

14

END
END

The corresponding systolic array is again given in Figure 2. The square part
stores and updates (), while the triangular part stores and updates R, and
R, overlaid. The w’s also correspond to overlaid data vectors a; and by,.
The rest is similar to the 1-matrix case.

In some applications one has that only A is updated, while B remains
constant (but not the identity). It is clear that this is just a special case of
the above scheme. One trivially skips the (Q R-updating (with windowing)
of Ry, and one obtains still an eflicient implementation of this simpler case.

VII. Relation to other work

The decompositions discussed in this paper and related references [4, 7, 15,
16, 21, 22] all compute an ‘approximate decomposition’ of a matrix A with
a triangular matrix in the middle as follows :

- Rs Rsn ‘Z;T
R LRl

whereby Opmar(R,) = 1 and 0y4.(Rs,) = € are small, and 0,,;,(R;) = 0
is reasonably larger than n and €. As a result, the singular values of R,

A:[Us

approximate well the large singular values of A. Those of R, are good
approximations of the small singular values of A only if ¢ << 7. The desired
ordering is thus § > 17 >> e.

— In [16], this was called an ‘approximate SVD’. When one or more
sweeps of a Kogbetliantz-type SVD algorithm are applied to the triangular
array, quadratic convergence was observed for the off-diagonal part R,,, even
when the required adjacency of close singular values was not respected. With
one SVD sweep one reduces the norm of Ry, from € to € /(6 — 7).

— In [22] a ‘URV decomposition’ approach was proposed based on esti-
mating small singular values of a matrix A and deflating them to the R,
block (hence ordering is obtained). An adaptive version of this for matri-
ces Aj, was then proposed in [21]. Finally, a refinement idea of such URV
decompositions was proposed and analysed in [7, 22]. One refinement step
essentially amounts to a QR decomposition and has the similar effect to
reduce the norm of R,, from € to ¢; = €¢/(§ — 1), but also flips around
the matrix to a (block) lower triangular one. Therefore [22] recommends a
second step to flip it over again to upper triangular form and hence reduc-
ing the norm of Ry, further to €2/(6 —n) = €*/(8 — n)>. Notice that the

15

number of operations of one SV D sweep is roughly equal to that of two QR
refinement steps. An analysis of the related QR flipping is also given in [5].

— In this paper we show that similar refinement steps can in fact be
performed while preserving the upper triangular form at no extra cost. So,
instead of having an improved decomposition at the same cost of an SV D
sweep, we propose a cheaper procedure with the same refinement property
as an SVD sweep. Moreover, the parallel implementation fits nicely on
the same array as the SVD updating scheme. Another difference with the
URV approach is that no rank test is really needed at any stage. This
follows the philosophy of the GSVD algorithm of Paige [19] (versus earlier
versions as e.g. [20]), where rank decisions are deferred if possible. Of
course, when identifying the noise subspace a rank decision is required, but
it is not needed in the recursive update of the decomposition. Therefore
rank decisions at each step are independent of each other, which is not the
case in the URV approach. We rely here on the self ordering property of the
QR algorithm to expect that in the adaptive case smaller singular values
will automatically cluster. This of course can only be expected if the noise
subspace corresponding to these small singular values does not change too
much with each time step k.

Extensions to updating the implicit decomposition for two matrices A
and B can be found in [18] (GSVD) and [4] (GURV). The approach chosen
by [4] is to extend the work of [22] to the case of an implicit decomposition.
This first requires a joint QR decomposition of the matrices A and B in
order to extract the common null space and triangular factor R g. The re-
sulting matrices ()4 and (Qp then have a joint decomposition known as the
C'S decomposition, which can be updated adaptively as new observations
are being collected [4]. Two weaknesses of this approach are the preliminary
rank determination of the joint QR factorization of A and B, and the two
stage updating required when new observations are being processed. The
main advantage of the method is that the rank revealing part of the QURV
decomposition is now concentrated in the matrix () 4. In the present paper
we focused on the parallel implementation of the QURV decomposition and
chose for this reason not to perform the preliminary extraction of the trian-
gular factor R 5. The resulting algorithm is again easy to implement on the
SVD array of [17] and does not require the double flipping of the URV as
in [22]. The algorithm is then very close to the one presented for the single
matrix case and earlier remarks apply here again when the matrix B is not
too badly conditioned.

16

Acknowledgement

This research was partially sponsored by ESPRIT Basic Research Action
Nr. 3280. Marc Moonen is a senior research assistant with the Belgian
N.F.W.0. (National Fund for Scientific Research). Paul Van Dooren was
partially supported by the Research Board of the University of Illinois at
Urbana-Champaign (Grant P 1-2-68114) and by the National Science Foun-
dation (Grant CCR 9209349). Filiep Vanpoucke is a research assistant with
the Belgian N.F.W.O.

Part of this research was done while the first two authors were visiting the
Institute of Mathematics and Applications, Minneapolis, USA. The Insti-
tute’s financial support is gratefully acknowledged.

References

[1] G.E. Adams, A.W. Bojanczyk and F.T. Luk, ‘Computing the PSVD
of two 2 X 2 triangular matrices’, submitted to STAM .J. Matriz Anal.

Appl.

[2] Z. Bai and J. Demmel, ‘Computing the generalized singular value de-
composition’, Report No. UCB/CSD 91/645, Computer Science Divi-
sion, Univ. of California, Berkeley, August 1991, submitted to STAM .J.
Sei. Stat. Comp.

[3] A.W. Bojanczyk, L.M. Ewerbring, F.T. Luk, P. Van Dooren, ‘An ac-
curate product SVD algorithm’, Signal Processing, Vol 25 (1991), pp
189-202.

[4] A. Bojanczyk, F.T. Luk and S. Qiao, ‘Generalizing the URV decompo-
sition for Adaptive Signal Parameter Estimation’, Proceedings of the
IMA Workshop on Linear Algebra in Signal Processing, April 6-10,
1992, Minneapolis, Minnesota, to appear.

[5] S. Chandrasekaran, 1. Ipsen, ‘Analysis of a QR algorithm for computing
singular values’, Res. Rept. YALEU/DCS/RR-917, Dept. Comp. Sc.,
Yale Univ., Aug. 1992.

[6] J.-M. Delosme, I. Ipsen, ‘From Bareiss’ Algorithm to the Stable Compu-
tation of Partial Correlations’, Journal of Computational and Applied
Mathematics, vol 27, pp 53-91 (1989)

[7] E.M. Dowling, L.P. Ammann, R.D. DeGroat, ‘A TQR-iteration based
adaptive SVD for real time angle and frequency tracking’, Technical
Report, Erik Jonsson School of Engineering and Computer Science,
University of Texas at Dallas.

17

[8] V. Fernando, ‘Linear convergence of the row cyclic Jacobi and Kog-
betliantz methods’, Numer. Math., Vol. 56, pp 71-91, 1989.

[9] V. Fernando, B. Parlett, ‘Accurate singular values and differential QD
algorithms’, Report No. UCB/PAM-554, Center for Pure and Applied
Mathematics, Univ. of California, Berkeley, July 1992.,

[10] W.M. Gentleman, H.T. Kung, ‘Matrix triangularization by systolic ar-
rays’, in Real-Time Signal Processing IV, Proc. SPIE, Vol. 298 (1982),
pp 19-26.

[11] G.H. Golub, C.F. Van Loan, Matriz computations, North Oxford Aca-
demic Publishing Co., Johns Hopkins Press, 1988.

[12] E. Kogbetliantz, ‘Solution of linear equations by diagonalization of co-
efficient matrices’, Quart. Appl. Math., 13 (1955), pp 123-132.

[13] F.T. Luk, ‘A triangular processor array for computing singular values’,
Lin. Alg. Appl., 77 (1986), pp 259-273.

[14] F.T. Luk. ‘A parallel method for computing the GSVD’, Int. .J. Parallel
& Distr. Comp., 2, pp 250-260, 1985.

[15] R. Mathias, G.W. Stewart, ‘A block QR algorithm and the singular
value decomposition’, Technical Report CS-TR 2626, Dept. of Com-
puter Science, University of Maryland, 1992.

[16] M. Moonen, P. Van Dooren, J. Vandewalle, ‘An SVD updat-
ing algorithm for subspace tracking’, Internal Report K.U. Leuven,
ESAT/SISTA 1989-13, to appear in SIAM J. Matriz Anal. Appl., 13
(1992),

[17] M. Moonen, P. Van Dooren, .J. Vandewalle, ‘A systolic array for SVD
updating’, Internal Report K.U. Leuven, ESAT/SISTA 1990-18, to ap-
pear in STAM J. Matriz Anal. Appl.

[18] M. Moonen, P. Van Dooren, .J. Vandewalle, ‘A systolic algorithm for
QSVD updating’, Signal Processing, Vol 25 (1991), pp 203-213.

[19] C.C. Paige, ‘Computing the generalized singular value decomposition’,
SIAM J. Stat. & Sci. Comp., Vol. 7, pp 1126-1146, 1986.

[20] C.C. Paige and M. Saunders. ‘Towards a generalized singular value
decomposition’, SIAM .J. Numer. Anal., Vol. 18, pp 398-405, 1981.

[21] G.W. Stewart, ‘An updating algorithm for subspace tracking’, Tech-
nical Report CS-TR 2494, Dept. of Computer Science, University of
Maryland, 1990. To appear in IFEF Trans. on Signal Processing.

18

[22] G.W. Stewart, ‘On an algorithm for refining a rank-revealing URV de-
composition’, Technical Report CS-TR 2626, Dept. of Computer Sci-
ence, University of Maryland, 1991. To appear in Lin. Alg. Appl.

19

Figure a Figure b Figure ¢ Figure d
.IT. ..

[= ol i = aENE
|§_§:§§ ::::E [t
|
-]

[

F::ff:: [k
]y el F

I

e

+
=B

|_|_|_E

I

T
e R e
L]

FIGURE 1

Figure a Figure b Figure ¢ Figure d
[| c o |ml -]
. quﬂ.'I;
.'iii"j
M I |

ol ol il [© °
alm
|'__'.|J'i
pai=s
i"iii
JUEE

FIGURE 2

20

