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ABSTRACT
We define a compact local Smith–McMillan form of a rational
matrix R(λ) as the diagonal matrix whose diagonal elements are the
nonzero entries of a local Smith-McMillan form of R(λ). We show that
a recursive rank search procedure, applied to a block-Toeplitz matrix
built on the Laurent expansion of R(λ) around an arbitrary complex
point λ0, allows us to compute a compact local Smith-McMillan form
of that rational matrix R(λ) at the point λ0, provided we keep track
of the transformation matrices used in the rank search. It also allows
us to recover the root polynomials of a polynomial matrix and root
vectors of a rational matrix, at an expansion point λ0. Numerical tests
illustrate the promising performance of the resulting algorithm.
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1. Introduction

Finding poles and zeros of a rational matrix R(λ) ∈ C(λ)m×n with coefficients in the field
of complex numbersC is one of the basic problems in linear system theory. Such a rational
matrix describes the input/output behaviour of a general systemof differential or difference
equations [1,2]. Its poles correspond to the natural frequencies of the dynamical system,
while its zeros correspond to the frequencies that are blocked by the system [3]. When
R(λ) does not have full row or column rank over the field C(λ) of rational functions, the
rational matrix R(λ) has also a non trivial left (respectively, right) null space [4], which
yields additional information on the initial conditions and degrees of freedom related to
the response of the system [1–4]. A rational matrix can have multiple poles and zeros in
a point λ0 ∈ C and even coalescent poles and zeros. The finer structure of the response
of the dynamical system at the frequency λ0 that is such a pole/zero is then described by
the local Smith–McMillan form of the rational matrix. The latter is a diagonal matrix that
associates with each pole/zero a number of structural indices that reflect the structure of
the response of the system at that frequency.

Finding poles and zeros and their structural indices is therefore an important problem
in the analysis of a dynamical system. However, the response of the system also depends on
particular directions. These are input vectors that either excite one of the system’s poles or
are blocked by one of the system’s zeros, of a particularmultiplicity given by each structural
index. In the latter case, these root vectors [5–10] arise naturally when onewants to describe
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2 V. NOFERINI AND P. VAN DOOREN

the solution set of particular matrix equations involving rational matrices [1,11] or appear
as expansion vectors in tangential interpolation problems of high order [12]. Root vectors
can be viewed as a generalization of an eigenvector for a first order system of differential
or difference equations modelled by the eigenvalue problem λx − Ax = 0. The structural
indices at that zero are then linked to its Jordan structure. In this paper we show how
to compute such a local Smith–McMillan form at a pole/zero λ0 of R(λ) by applying the
Toeplitz rank search algorithm [13, Section IV] to a block Toeplitz matrix built on the Lau-
rent expansion of R(λ) around λ0 ∈ C. We also link this method to the calculation of root
polynomials of a polynomial matrix, or root vectors of a rational matrix, at an expansion
point λ0 [5,8–10].

The paper is organized as follows. In Section 2, we recall the basic definitions and
background material for the rest of the paper and we introduce the compact local
Smith–McMillan form. In Section 3, we recall the rank properties of triangular Toeplitz
matrices defined from the Laurent expansion at a point λ0 ∈ C and show their relation
to the computation of the structural indices of a rational matrix. Section 3 contains the
main new results of the paper: it shows that the Toeplitz rank search also constructs a
local Smith form of a polynomial matrix and a local Smith–McMillan form of a rational
matrix. In Section 4, we show some numerical experiments indicating that the accu-
racy of the algorithm is very satisfactory. Finally, we give some concluding remarks in
Section 5.

2. Background and definitions

2.1. The local Smith–McMillan form

We denote the field of rational functions with complex coefficients by C(λ) and the ring
of polynomials with complex coefficients by C[λ]. The structure at a finite point λ0 ∈ C

which is a pole or a zero of an m × n rational matrix R(λ) ∈ C(λ)m×n is defined via its
local Smith–McMillan form at the point λ0 ∈ C [14]:

M(λ)R(λ)N(λ) :=

⎡
⎢⎢⎢⎣

(λ − λ0)
σ1 0

. . .
0 (λ − λ0)

σr

0m−r,n−r

⎤
⎥⎥⎥⎦ , (1)

where M(λ)∈ C(λ)m×m and N(λ)∈ C(λ)n×n are rational, invertible over the field C(λ),
and in particular such thatM(λ0), N(λ0) are defined and invertible (that is, λ0 is neither a
zero nor a pole of M(λ),N(λ)), r is the normal rank of R(λ), i.e. the rank of R(λ) over
the field C(λ), and the integers σi are called structural indices of R(λ) at the point λ0,
and are ordered non-decreasingly, i.e. σ1 ≤ . . . ≤ σr. The negative indices refer to poles
of the transfer function and the positive indices refer to zeros of the transfer function. An
index σj = 0 is not associated with any dynamical behaviour and corresponds to neither
a pole nor a zero. The standard Smith–McMillan form has the same structure, but the
transformationmatricesM(λ) andN(λ) are then unimodular, i.e. they are polynomial and
have a polynomial inverse. The diagonal elements are then the so-called invariant factors
ei(λ)/fi(λ) ∈ C(λ) where the polynomials ei(λ) ∈ C[λ] and fi(λ) ∈ C[λ] are monic and
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satisfy the divisibility chains

e1(λ)|e2(λ)| . . . |er(λ), and fr(λ)| . . . |f2(λ)|f1(λ)

(see e.g. [14]). We point out that the local form can be derived from the standard
Smith–McMillan form via a one-sided extraction of the factors (λ − λ0)

σi from the invari-
ant factors ei(λ)/fi(λ), which implies that we can choose one of the twomatricesM(λ) and
N(λ) in the local form (1) to be polynomial and unimodular. The classical computation
of the standard Smith–McMillan decomposition is based on the Euclidean algorithm and
Gaussian elimination over the ring of polynomials, which precludes numerical pivoting
techniques and is therefore numerically unreliable [13, Section I]. For this reason it has
been suggested as a better alternative to compute it via linearizations [9,10]. In this paper
we show that the local decomposition can also be obtained from the Laurent expansion
around the point λ0.

2.2. Null spaces and their minimal indices

When defining the structure of a generalm × n rational matrix, one typically includes the
structure of its right null space kerR(λ) and left null space kerR(λ)T , which are rational
vector spaces over the field C(λ). Their characterization is based on particular polynomial
bases, for which we need the following definition.

Definition 2.1: A matrix polynomial N(λ) ∈ C[λ]n×p of normal rank p is called a mini-
mal polynomial basis if the sum of the degrees of its columns, called the order of the basis,
is minimal among all polynomial bases of the range of N(λ), i.e. the vector space of all
C(λ)-linear combinations of the columns of N(λ). Its ordered column degrees are called
the minimal indices of the basis.

It is known [4] that the ordered list of indices is independent of the choice of minimal
basis of the space. One can define the right null space kerR(λ) and left null space kerR(λ)T

of an m × n rational matrix R(λ) of normal rank r as the vector spaces of rational vectors
x(λ) and y(λ) annihilated by R(λ) on the respective sides:

kerR(λ) := {x(λ) |R(λ)x(λ) = 0}, kerR(λ)T := {y(λ) | yT(λ)R(λ) = 0}.

Then, the minimal indices of any minimal polynomial basis for these spaces, are called
the right and left minimal indices of R(λ). The dimensions of kerR(λ) and kerR(λ)T are,
respectively, n−r andm−r and the right and left minimal indices are denoted by

{ε1, . . . , εn−r}, {η1, . . . , ηm−r}.

It is known [4] that for anyminimal basisN(λ), the constant matrixN(λ0) has full column
rank for allλ0 ∈ C and the highest columndegreematrix ofN(λ) also has full column rank.
Here, following [4], the highest column degree matrix of N(λ) is defined as the constant
matrix whose columns contains the coefficients of the highest-degree monomials in the
corresponding columns of N(λ).
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2.3. The compact local Smith–McMillan form and the compact local Smith form

The local Smith–McMillan form not only contains information on the structural indices
σi, i = 1, . . . , r, but the invertible matricesM(λ) andN(λ) in (1) also contain bases for the
left and right null spaces of the rational matrix R(λ). It follows indeed from (1) that

kerR(λ) = Im
(
N(λ)

[
0

In−r

])
, ker[R(λ)]T = Im

(
[M(λ)]T

[
0

Im−r

])
.

These block columns are invertible bases, in the sense of [7], of the modules kerR(λ) ∩
C[λ] and ker[R(λ)]T ∩ C[λ], respectively, because they have full column rank for all finite
λ = λ0 ∈ C (see [7, Corollary 4.2] for an analogous argument in the case of analyticmatrix
functions), but they are not necessarily minimal polynomial bases.

The following more compact equation discards the information of the null spaces and
focuses only on the structural indices at λ0. We call the diagonal matrix containing the
nonzero local invariant factors a compact local Smith–McMillan form, in analogy to the
compact SVD of a matrix A, which also discards the singular values and vectors related to
the left and right null space of the constant matrix A. We say that a rational matrix R(λ)

is left (resp. right) invertible at λ0 if λ0 is not a pole and the constant matrix R(λ0) is left
(resp. right) invertible.

Theorem 2.2: Every rational matrix R(λ) ∈ C
m×n(λ) of normal rank r satisfies the follow-

ing equations revealing its compact local Smith–McMillan form:

R(λ)Nr(λ) = M̂r(λ)

⎡
⎢⎣

(λ − λ0)
σ1 0

. . .
0 (λ − λ0)

σr

⎤
⎥⎦ , (2)

where σ1, . . . , σr are the structural indices of R(λ) at λ0, Nr(λ) ∈ C[λ]n×r has a polynomial
left inverse and M̂r(λ) ∈ C(λ)m×r is left invertible at λ0, and

M�(λ)R(λ) =
⎡
⎢⎣

(λ − λ0)
σ1 0

. . .
0 (λ − λ0)

σr

⎤
⎥⎦ N̂�(λ) (3)

where σ1, . . . , σr are the structural indices of R(λ) at λ0, M�(λ) ∈ C[λ]r×m has a polynomial
right inverse and N̂�(λ) ∈ C(λ)r×n is right invertible at λ0.

Proof: We only give a proof for the first form (2) since the form (3) is dual to it. We start
from the decomposition (1) where we can make the choice that N(λ) is unimodular, and
M(λ) is rational and such that M(λ0) is invertible. If we then multiply it on the left with
M̂(λ) := M−1(λ) and define

Nr(λ) := N(λ)

[
Ir
0

]
, M̂r(λ) = M̂(λ)

[
Ir
0

]
,

then the result follows, since the property ofNr(λ) follows from the unimodularity ofN(λ),
and the existence and left invertibility of M̂r(λ0) follows from the invertiblity ofM(λ0). �
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If R(λ) happens to be polynomial, then M̂r(λ) and N̂�(λ) can also be chosen to be
polynomial, which then yields a compact local Smith form, as stated in the following
theorem.

Theorem 2.3: Every polynomial matrix P(λ) ∈ C
m×n[λ] of normal rank r satisfies the

following equations revealing its compact local Smith form:

P(λ)Nr(λ) = M̂r(λ)

⎡
⎢⎣

(λ − λ0)
σ1 0

. . .
0 (λ − λ0)

σr

⎤
⎥⎦ , (4)

where σ1, . . . , σr are the structural indices of P(λ) at λ0, Nr(λ) ∈ C[λ]n×r has a polynomial
left inverse and M̂r(λ) ∈ C[λ]m×r is left invertible at λ0, and

M�(λ)P(λ) =
⎡
⎢⎣

(λ − λ0)
σ1 0

. . .
0 (λ − λ0)

σr

⎤
⎥⎦ N̂�(λ) (5)

where σ1, . . . , σr are the structural indices of P(λ) at λ0, M�(λ) ∈ C[λ]r×m has a polynomial
right inverse and N̂�(λ) ∈ C[λ]m×r is right invertible at λ0.

2.4. Connectionwith root vectors and root polynomials

The Smith form and the Smith–McMillan form, respectively, are closely related to the con-
cepts of (left and right) root polynomials of a polynomial matrix [5,6,8,10] and (left and
right) root vectors of a general rational matrix [9]. We recall below the formal definition of
root polynomials of a polynomial matrix taken from [5, Definition 2.11], slightly modified
by taking into account the remarks in [7]. The definition of root vectors of a rationalmatrix
is analogous, see [9, Definition 3.4].

Definition 2.4: Let P(λ) ∈ C[λ]m×n be a polynomial matrix, and let N(λ) ∈ C[λ]n×p be
an invertible basis [7] for ker P(λ). Then, r(λ) ∈ C[λ]n is a root polynomial of order � ≥ 1
at λ0 ∈ C for P(λ) if

(1) r(λ0) �∈ kerλ0 P(λ) := span N(λ0);
(2) P(λ)r(λ) = (λ − λ0)

�w(λ) for some w(λ) ∈ C[λ]m s.t. w(λ0) �= 0.

The definition above refers to what was called an invertible basis, i.e. a basis of a pure
free submodule, in [7]. Crucially, even though it may not be a minimal basis, an invertible
basis nevertheless has full rank upon evaluation at any finite point [7, Theorem 15]. For
instance, N(λ)

[ 0
In−r

]
, where N(λ) is as in (1), is an invertible basis. It is then useful to

introduce some notation to denote those column vectors of the matricesNr(λ) and M̂r(λ),
in Theorems 2.2 and 2.3, that correspond to the positive structural indices:

j := min(i | σi ≥ 1), xi(λ) := Nr(λ)ei, j ≤ i ≤ r, vi(λ) := M̂r(λ)ei, j ≤ i ≤ r,
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where ei is the ith vector in the canonical basis. The following properties of the vectors xi(λ)

follow from the compact local Smith form at the zero λ0 of a polynomial matrix P(λ). The
vectors xi(λ) satisfy the equations

P(λ)xi(λ) = vi(λ)(λ − λ0)
σi ,

kerP(λ0) = Im
([

N(λ0)

[
0

In−r

]
xj(λ0) . . . xr(λ0)

])

where the matrices[
N(λ0)

[
0

In−r

]
xj(λ0) . . . xr(λ0)

]
and

[
vj(λ0) . . . vr(λ0)

]
(6)

have full column rank; in particular the rank of the matrix on the left of (6) is equal to
dim kerP(λ0). In particular, comparing with Definition 2.4, it is clear that xi(λ) are all
root polynomials of P(λ) at λ0. Even more can be said, namely, the properties above of the
vectors xi(λ) are precisely the defining properties of a complete set of root polynomials of
P(λ) at λ0, and they follow directly from the local compact Smith form at λ0. Moreover,
one can also show that such vectors are maximal sets of root polynomials [5].

For a rational matrix R(λ), one again looks only at the positive structural indices σi ≥ 1
and the same definition holds for the column vectors xi(λ) and vi(λ), and again we have

R(λ)xi(λ) = vi(λ)(λ − λ0)
σi ,

kerR(λ0) = Im
([

N(λ0)

[
0

In−r

]
xj(λ0) . . . xr(λ0)

])

where still the full rank conditions of (6) hold. These properties also follow directly from
the compact local Smith–McMillan form. Again, one can show that the xi(λ) are maximal
sets of root vectors, see [9]. We point out in particular that kerR(λ0) can still be defined
even when λ0 is a pole [9, Definition 3.8], and it does not contain the directions in which
R(λ) tends to infinity when λ → λ0.

The link with root polynomials and root vectors is one of the main motivations to con-
struct a compact Smith–McMillan form. While in the proof of Theorem 2.2 Nr(λ) and
M̂r(λ) were constructed starting from a full local Smith–McMillan form, algorithmically
it is more efficient to compute a compact local Smith–McMillan form directly, as opposed
to computing the full one and only later discard some columns. This leads to the ques-
tion of whether for a matrixNr(λ) satisfying (2), its columns corresponding to the positive
structural indices are still a complete set of root vectors, i.e. satisfy the rank condition in (6).
The following Lemma implies that they do.

Lemma 2.5: Let R(λ)Nr(λ) = M̂r(λ)�(λ) where �(λ) := diag((λ − λ0)
σ1 , . . . , (λ −

λ0)
σr) is a compact local Smith–McMillan form as defined in Theorem 2.2. Let Ñ(λ) ∈

C[λ]m×(n−r) be any completion of Nr(λ) such that U(λ) := [Nr(λ), Ñ(λ)] is unimodular.
Then, there exists a polynomialmatrix Y(λ) such that a polynomial basis for kerR(λ) is given
byB(λ) := Ñ(λ) − Nr(λ)Y(λ).Moreover, B(λ0) spans the same space asN(λ0)

[ 0
In−r

]
in (6).

Proof: Without loss of generality, let us suppose R(λ) �= 0. Let π(λ) be any nonzero scalar
polynomial such that π(λ)R(λ) is polynomial; for example, we can take π(λ) = f1(λ), the
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denominator of the (1, 1) element in the Smith–McMillan form of R(λ). By assumption,
π(λ)R(λ)U(λ) is unimodularly equivalent over C[λ] with [ π(λ)R(λ)Nr(λ) 0 ]. We can then
invoke Theorem A.2, whose statement and proof we postpone to the Appendix, to con-
clude that π(λ)R(λ)Ñ(λ) = π(λ)R(λ)Nr(λ)Y(λ) for some polynomial matrix Y(λ). On
the other hand, B(λ) = U(λ)

[ −Y(λ)
In−r

]
, and hence rankB(λ) = n − r and therefore B(λ)

is a basis for kerR(λ) = kerπ(λ)R(λ). Finally, to prove the last statement, define N̂(λ) =
N(λ)

[ 0
In−r

]
where N(λ) is the unimodular matrix appearing in (6). Then, both B(λ) and

N̂(λ) are invertible polynomial bases [7] for the same C[λ]-module, i.e. kerR(λ) ∩ C[λ].
This implies that N̂(λ0) and B(λ0) are both full rank. We conclude that B(λ0) and N̂(λ0)

span the same C-vector subspace, i.e. kerλ0 R(λ) as defined in [5,8,9]. �

In particular, it follows from Lemma 2.5 that the first of the rank conditions (6)
holds whenever the vectors xi(λ) are the rightmost columns of a matrix Nr(λ) satisfy-
ing Theorem 2.2. The second rank condition then follows from the first by properties of
maximal sets of root vectors [9].

To conclude this section, we note that one can give definitions for the left root vectors or
root polynomials that are dual to those of the right vectors, and use the left compact local
decompositions instead. Details are therefore left out.

3. Constructing a compact local Smith–McMillan form

In this section, we describe an algorithm to compute the compact local Smith–McMillan
form as in Theorem 2.2.

3.1. Retrieving the structural indices

We first recall here an important connection between the structural indices {σi, i =
1, . . . , r} of a pole/zero λ0 ∈ C of a general rational matrix R(λ) and its Laurent expan-
sion around that point [13, Section III]. Let us assume that the pole λ0 is of order �, and
that it is possibly also a zero. Then R(λ) has a Laurent expansion about the point λ0, with
leading coefficient R−� :

R(λ) := R−�(λ − λ0)
−� + R−�+1(λ − λ0)

−�+1 + R−�+2(λ − λ0)
−�+2

+ R−�+3(λ − λ0)
−�+3 + . . . (7)

The following theorem derives the structural indices at λ0 from the expansion (7).

Theorem 3.1 ([13] Section III): Using the coefficients of the Laurent expansion (7), let us
define for k ≥ −�, the block Toeplitz matrices

Tλ0,k(R) :=

⎡
⎢⎢⎢⎢⎣

R−� R−�+1 . . . Rk

R−�
. . .

...
. . . R−�+1

R−�

⎤
⎥⎥⎥⎥⎦ ∈ C

m(k+�+1)×n(k+�+1).
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Let their ranks and rank increments be denoted by rk := rankTλ0,k(R), and ρk := rk − rk−1,
where we set rk = 0 for k < −�. Then the number ei of indices σj that are equal to i, is given
by

ei := #{σj = i} = ρi − ρi−1 = ri − 2ri−1 + ri−2.

Moreover, the rank increments ρk form a non-decreasing sequence

0 ≤ ρ−� ≤ . . . ≤ ρd′ = r

and d′ := maxi(σi) is the smallest index k for which ρk = r, the normal rank of R(λ).

For simplicity, when no ambiguity arises, we will denote the Toeplitz matrices Tλ0,k(R)

by just Tk(R) or Tk. It follows from the above theorem that one only has to compute the
ranks of the sequence {Tk,−� ≤ k ≤ d′}, and hence, one only needs to know the coeffi-
cients {Rk,−� ≤ k ≤ d′} of the expansion. If d′ = maxi σi is not known in advance, we will
see that this index is also discovered by the algorithm, provided the normal rank of R(λ)

is known. The latter can be estimated, for example, by evaluating the rank of the transfer
function in some randomly generated points.

3.2. Toeplitz rank search

In [13, Section IV] a Toeplitz rank search algorithm was proposed to compute the rank
increments of Theorem 3.1, while exploiting the block Toeplitz structure of the matri-
ces Tk(R). In this paper we slightly modify this algorithm so that it also constructs
a compact local Smith–McMillan decomposition, by keeping track of the intermediate
transformations.

To simplify the derivation, we first consider the case where R(λ) does not have a pole at
the finite point λ0 but only a zero. Then R(λ) has a Taylor expansion at that point

R(λ) := R0 + R1(λ − λ0) + R2(λ − λ0)
2 + R3(λ − λ0)

3 + . . .

and the corresponding Toeplitz matrices then have the leading coefficient R0 on the main
diagonal

Tk :=

⎡
⎢⎢⎢⎢⎣

R0 R1 . . . Rk

R0
. . .

...
. . . R1

R0

⎤
⎥⎥⎥⎥⎦ , rk := rankTk for k ≥ 0. (8)

Note that polynomial matrices are a special case of such rational matrices having no poles
at λ0, since all their poles are at infinity. Moreover, according to Theorem 3.1, the Toeplitz
rank search for the polynomial matrix P(λ) obtained by truncating the Taylor expansion
of the rational matrix R(λ) after its first d′ + 1 coefficients {Ri, 0 ≤ i ≤ d′}, produces the
same structural indices for both P(λ) and R(λ). We therefore focus first on polynomial
matrices.
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We recall the algorithm derived in [13, Section IV] for computing the structural indices
of a rational matrix in a pole/zero at λ0 from its Laurent expansion. We apply it here to the
expansion about (λ − λ0) of a polynomial matrix

P(λ) = P0 + P1(λ − λ0) + . . . + Pd(λ − λ0)
d.

To simplify our notation, we will assume in this section that λ0 = 0. This does not affect
the generality of the results. This algorithm computes a rank factorization of the Toeplitz
matrices Tk given in (8). It operates on the stacked array of coefficients Pi using a sequence
of invertible transformations, followed by shifts of sub-blocks:⎡

⎢⎢⎢⎢⎢⎢⎣

L(0)
d R(0)

d
L(0)
d−1 R(0)

d−1
...

...
L(0)
1 R(0)

1
L(0)
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

:=

⎡
⎢⎢⎢⎢⎢⎣

Pd
Pd−1
...
P1
P0

⎤
⎥⎥⎥⎥⎥⎦N0,

⎡
⎢⎢⎢⎢⎢⎢⎣

P(0)
d

P(0)
d−1
...

P(0)
1

P(0)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

:=

⎡
⎢⎢⎢⎢⎢⎢⎣

L(0)
d 0

L(0)
d−1 R(0)

d
...

...
L(0)
1 R(0)

2
L(0)
0 R(0)

1

⎤
⎥⎥⎥⎥⎥⎥⎦

where N0 is an invertible transformation compressing the columns of P0 to P0N0 =
[L(0)

0 R(0)
0 ] where L(0)

0 ∈ C
m×ρ0 has full column rank r0 = ρ0, and R(0)

0 ∈ C
m×ν0 is zero,

indicating that P0 has nullity n0 = ν0 := n − ρ0.
If we apply the same invertible transformation to the block columns of the Toeplitz

matrix Td then we obtain⎡
⎢⎢⎢⎢⎣

L(0)
0 0 L(0)

1 R(0)
1 . . . L(0)

d R(0)
d

L(0)
0 0

. . .
...

...
. . . L(0)

1 R(0)
1

L(0)
0 0

⎤
⎥⎥⎥⎥⎦

:=

⎡
⎢⎢⎢⎢⎣

P0 P1 . . . Pd

P0
. . .

...
. . . P1

P0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

N0
N0

. . .
N0

⎤
⎥⎥⎥⎦ ,

where L(0)
i ∈ C

m×ρ0 and R(0)
i ∈ C

m×ν0 , and after permuting the [L(0)
i R(0)

i ] pairs to
[R(0)

i L(0)
i ] pairs for 0 ≤ i ≤ d, this becomes⎡

⎢⎢⎢⎢⎣
0 P(0)

0 . . . P(0)
d−1 L(0)

d
. . .

...
...

P(0)
0 L(0)

1
L(0)
0

⎤
⎥⎥⎥⎥⎦ :=

⎡
⎢⎢⎢⎢⎣

0 L(0)
0 R(0)

1 L(0)
1 . . . R(0)

d L(0)
d

0 L(0)
0

. . .
...

...
. . . R(0)

1 L(0)
1

0 L(0)
0

⎤
⎥⎥⎥⎥⎦ . (9)

This shows that rankTd(P) = ρ0 + rankTd−1(P(0)), where

P(0)(λ) :=
d−1∑
i=0

P(0)
i λi,
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and is the basis of a recursive computation of the successive ranks of a block Toeplitzmatrix
Td and its submatrices.We repeat this on the polynomialmatrixP(0)(λ) and its correspond-
ing ToeplitzmatrixTd−1(P(0))which turns out to be a submatrix of the left hand side of (9).
This induction step is repeated on the subsequent polynomial matrices P(k)(λ), and shows
that we finally compress the column space of Td by induction using an invertible transfor-
mationN that is a product of the individual invertible block-diagonal transformations and
permutations:⎡

⎢⎢⎢⎢⎣
P0 P1 . . . Pd

P0
. . .

...
. . . P1

P0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 L(d)
0 L(d−1)

1 . . . L(0)
d

L(d−1)
0

...
. . . L(0)

1
L(0)
0

⎤
⎥⎥⎥⎥⎦ · N,

where the suffixes (i) refer to the iteration step i of the Toeplitz rank search. Here each
“diagonal” block L(i)

0 has rank ρi and

0 ≤ ρ0 ≤ ρ1 ≤ . . . ≤ ρd.

These rank inequalities follow easily from the above algorithmic construction since L(i+1)
0

is a column compression of the compound matrix [L(i)
0 ,R(i)

1 ]. It also follows from this that

rankTk(P) =
k∑

i=0
ρi

and it was shown in [13, Section III] that ρi = #{σj ≤ i} and ei := ρi − ρi−1 = #{σj = i}.
In order to link this to a compact local Smith form, we write these operations as a

polynomial matrix equation (i.e. where P(0)(λ) is polynomial as well):

P(λ)N0 = P(0)(λ)�0(λ), where �0(λ) :=
[

Iρ0 0
0 λIν0

]
. (10)

We will show that the first ρ0 columns of the matrix P(0)(λ)�0(λ) already match those
of the compact local Smith form. Let us now look at the factorization after the next step,
yielding

P(0)(λ)N1 = P(1)(λ)�1(λ), where �1(λ) :=
[

Iρ1 0
0 λIν1

]
(11)

It follows from (10) and (11) that

P(λ)N0�
−1
0 (λ)N1�0(λ) = P(1)(λ)�0(λ)�1(λ),

where �0(λ)�1(λ) =
⎡
⎣ Iρ0

λIρ1−ρ0

λ2Iν1

⎤
⎦ .

This clearly goes in the right direction, provided the matrix �−1
0 (λ)N1�0(λ) is uni-

modular. In [13, Section IV] the Toeplitz rank search was implemented with unitary
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transformationsNi in order to guarantee good numerical stability properties. This allowed
to reconstruct the partial multiplicities σj at the considered root, but if one also wants to
reconstruct a compact local Smith form, then one also needs to satisfy the different condi-
tions described in Theorems 2.2 and 2.3. Therefore one needs to constrain the rank search
to a special set of transformations, as explained below. The column rank compression[

L(i−1)
0 R(i−1)

1

]
Ni =

[
L(i−1)
0 L(i−1)

0+ 0
]

=:
[
L(i)
0 0

]

where L(i−1)
0 has full rank ρi−1 and L(i)

0 := [L(i−1)
0 L(i−1)

0+ ] has full rank ρi ≥ ρi−1, can be
implemented as a factored transformation with a simple inverse

Ni =
[

Iρi−1 Zi
0 Iνi−1

] [
Iρi−1 0
0 Qi

]
=

[
Iρi−1 ZiQi
0 Qi

]
, N−1

i =
[

Iρi−1 −Zi
0 Q∗

i

]
,

(12)

where Zi = −L(i−1)
0

†
R(i−1)
1 is the least squares solution of L(i−1)

0 Zi = −R(i−1)
1 and Qi is

a unitary transformation compressing the columns of (Iνi−1 − L(i−1)
0 L(i−1)

0
†
)R(i−1)

1 to the
(ρi − ρi−1) independent columns of L(i)

0+ that, by construction, are also independent from
those of L(i)

0 . If the matrix R(i−1)
1 lies in the span of L(i−1)

0 , then ρi = ρi−1 and the matrix
Qi = Iνi−1 . Note also that in the special case i = 0 the equations also hold with R(−1)

1 =
P0, ρ−1 = 0 and ν−1 = n. For this particular choice of transformations, we now have the
following result.

Theorem 3.2: The choice of transformations Ni given in (12) for the Toeplitz rank search
algorithm produces the factorization

P(λ)N(λ) = P(d′)(λ)�(λ), �(λ) := �0 · · · �d′ ,

N(λ) := N0�
−1
0 N1�

−1
1 · · ·Nd′�−1

d′ �(λ) (13)

where N(λ) is unimodular,

�(λ) = diag(Ie0 , λIe1 , . . . , λ
d′−1Ied′−1 , λ

d′
Iνd′ ),

ei := ρi − ρi−1 for i ≥ 0, and the constantmatrix P(d′)(0) = [L(d′)
0 , 0 ] has rank r and nullity

n−r.

Proof: It follows from the recursive rank search algorithm that it stops as soon as

P(λ)N0�
−1
0 N1�

−1
1 · · ·Nd′�−1

d′ = P(d′)(λ).

with P(d′)(0) = [L(d′)
0 , 0 ] having rank r. If we multiply both sides with �(λ), then we also

obtain

P(λ)N0N̂1(λ) · · · N̂d′(λ) = P(d′)(λ)�(λ),
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where for i>0, the matrices N̂i(λ) := (�0 · · · �i−1)
−1Ni(�0 · · · �i−1) are unimodular,

since

(�0 · · · �i−1)
−1

[
Iρi−1 Zi
0 Iνi−1

] [
Iρi−1 0
0 Qi

]
(�0 · · · �i−1)

= (�0 · · · �i−1)
−1

[
Iρi−1 Zi
0 Iνi−1

]
(�0 · · · �i−1)

[
Iρi−1 0
0 Qi

]
.

�

3.3. Extracting compact decompositions

It is now easy to see that if we discard the last n−r columns of the factorization (13) and
replace again λ by (λ − λ0) then we obtain the form

P(λ)Nr(λ) = M̂r(λ)�(r)(λ), �(r)(λ) = diag(Ie0 , (λ − λ0)Ie1 , . . . , (λ − λ0)
d′
Ied′ ),

where Nr(λ) = N(λ)
[ Ir
0
]
is a submatrix of a unimodular matrix, M̂r(λ) = P(d′)(λ)

[ Ir
0
]
is

a polynomial matrix, and the constant matrix M̃r(λ0) = L(d′)
0 has full rank r. This is the

desired compact local Smith form described in Theorem 2.3.
If we apply the Toeplitz rank search algorithm to a rational matrix R(λ) ∈ C(λ)m×n

without any poles at λ0 and hence with a Taylor expansion

R(λ) = R0 + R1(λ − λ0)
1 + R2(λ − λ0)

2 + R3(λ − λ0)
3 + . . .

then we only need the leading terms R0, . . . ,Rd′ of the expansion to obtain the same
factorization as in (13) except that the polynomial matrix P(d′)(λ) is now replaced by a
rationalmatrixR(d′)(λ)whoseTaylor expansion startswith the constantmatrixR(d′)(λ0) =
[L(d′)

0 , 0 ]. This leads to the following decomposition for a rational matrix R(λ) which has
zeros at λ0 but no poles:

R(λ)Nr(λ) = M̂r(λ)�(r)(λ), �(r)(λ) = diag(Ie0 , (λ − λ0)Ie1 , . . . , (λ − λ0)
d′
Ied′ ),

where Nr(λ) = N(λ)
[ Ir
0
]
is a submatrix of a unimodular matrix, M̂r(λ) = R(d′)(λ)

[ Ir
0
]
is

a rationalmatrix, and the constantmatrix M̃r(λ0) = L(d′)
0 has full rank r. This is the desired

compact local Smith–McMillan form described in Theorem 2.2 for a rational matrix with
a zero at λ0 which is not a pole.

We finally consider the case of a coalescent pole/zero. As pointed out in Theorem 3.1,
the Toeplitz matrices Tλ0,k(R) constructed with the coefficients of the Laurent expansion
around the point λ0

R(λ) := R−�(λ − λ0)
−� + R−�+1(λ − λ0)

−�+1 + R−�+2(λ − λ0)
−�+2

+ R−�+3(λ − λ0)
−�+3 + . . .

yields the structural indices σi, i = 1, . . . , r of R(λ) at the pole/zero λ0. The way to reduce
this to the rational case without a pole at λ0 is to consider the scaled rationalmatrix R̂(λ) :=
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(λ − λ0)
�R(λ). It is obvious that the structural indices σ̂i, i = 1, . . . , r of R̂(λ) and σi, i =

1, . . . , r of R(λ) are related by a constant shift

σ̂i = σi + � ≥ 0, i = 1, . . . , r.

The Toeplitz rank search applied to R̂(λ) then becomes a Taylor expansion of R̂(λ), to
which we can apply the results of the previous sections. After dividing R̂(λ) and �̂(r)(λ)

again by (λ − λ0)
�, this leads to the following local decomposition for a general rational

matrix R(λ):

R(λ)Nr(λ) = M̂r(λ)�(r)(λ), �(r)(λ) = diag((λ − λ0)
−�Ie−� , . . . , (λ − λ0)

d′
Ied′ ),

where Nr(λ) = N(λ)
[ Ir
0
]
is a submatrix of a unimodular matrix, M̂r(λ) = R(d′)(λ)

[ Ir
0
]
is

a rationalmatrix, and the constantmatrix M̃r(λ0) = L(d′)
0 has full rank r. This is the desired

compact local Smith–McMillan form described in Theorem 2.2 for a general rational
matrix with a pole/zero at λ0.

4. Numerical examples

In this section we give a number of numerical results for the computation of the compact
local Smith form at the eigenvalue λ0 = 0, computed using the algorithm1 described in
Section 3. The test matrices were polynomial matrices of dimensions 4 × 5 of normal rank
3 and with given invariant factors λ0, λ1, λ3 at the eigenvalue 0. The matrices were then
constructed using the product

P(λ) = M(λ)

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 λ 0 0 0
0 0 λ3 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦N(λ),

where M(λ) and N(λ) are random polynomial matrices of respective dimensions 4 × 4
and 5 × 5, and of degree 2, which implies that the polynomial matrix P(λ) has degree 7.
The coefficients of the matrices M(λ) and N(λ) were generated using the i-th power of
randn, the random generator of Matlab with normal distribution. As a consequence, the
dynamical range of the coefficients is growing and the norm of the matrix P(λ) is typically
growing as well with the power i.We used the Frobenius norm of a polynomial matrix P(λ)

of degree d, which is defined as follows:

‖P(λ)‖ := ‖[P0,P1, . . . ,Pd]‖F .
In Table 1, we show the results of our algorithm applied to the polynomial matrices P(λ)

generated for the powers i going from 1 to 10.
Column 2 and 4 give the Frobenius norms of the polynomial matrix P(λ) and the

unimodular matrix N(λ). The accuracy of the computations is then verified using the
Frobenius norm of the residual equation

ResP(λ) = P(λ)Nr(λ) − M̂r(λ)�(r).
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Table 1. Recovery of the local Smith form for increasing powers i of the random elements.

i ‖P‖ ‖ResP‖/‖P‖ ‖N‖
1 2.5771e+01 2.5834e-16 4.2134e+00
2 5.3985e+01 4.8614e-16 6.0850e+00
3 4.0056e+02 1.0542e-15 5.9805e+01
4 1.8805e+03 5.2413e-15 7.6625e+01
5 5.6940e+03 2.9466e-15 3.6432e+01
6 1.2067e+04 2.0221e-16 3.9821e+00
7 2.4400e+04 2.4857e-15 2.7510e+01
8 2.1014e+05 2.8026e-11 3.7109e+03
9 2.5845e+05 1.6973e-13 5.1576e+03
10 1.7714e+06 8.6854e-12 1.0296e+05

Table 2. Recovery of the local Smith form for increasing degrees of P(λ).

k ‖P‖ ‖ResP‖/‖P‖ ‖N‖
1 7.1558e+01 2.7897e-16 3.0163e+00
2 7.5268e+01 3.4156e-16 2.5936e+00
3 7.6952e+01 2.0202e-16 1.8877e+00
4 7.9385e+01 9.2658e-16 5.2263e+00
5 7.9653e+01 2.6356e-16 2.1519e+00
6 8.0100e+01 5.1580e-16 2.8901e+00
7 8.1521e+01 6.5986e-16 4.5883e+00
8 8.6119e+01 6.7279e-15 6.4173e+01
9 8.7700e+01 5.8009e-16 3.7989e+00
10 8.8879e+01 4.3347e-16 2.9266e+00

Column 3 gives the relative norm ‖ResP‖/‖P‖. The structural indices were recovered cor-
rectly for all the test examples. It can be observed from these results that the accuracy of the
algorithm is quite satisfactory, even for matrices with large dynamical range in the coeffi-
cients. The loss of accuracy, observed in some cases, is probably due to the non-orthogonal
Gram-Schmidt elimination step of our algorithm. But this could perhaps be improved by
a single step of iterative refinement [15].

In the second experiment, we check the robustness of our algorithm against polynomial
matrices and Smith forms of high degree. We generated 10 matrices with local Smith form

P(λ) = M(λ)

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 λk+1 0 0 0
0 0 λk+2 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦N(λ),

for k = 1:10, and transformation matricesM(λ) and N(λ) of degree 10. The degree of the
polynomial matrices is therefore 22+ k. The relative precision of the obtained decompo-
sition is again verified using the ratio ‖ResP‖/‖P‖ of the Frobenius norm of the residual
equation and the Frobenius norm of the matrix P(λ). The structural indices were again
recovered correctly for all the test examples. This experiment shows that the method has
remarkable stability properties, even for large degree polynomial matrices (Table 2).

5. Conclusions

In this paper we revisited the Toeplitz rank search algorithm developed in [13, Section
IV] and showed that an appropriately modified variant also constructs a compact local
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Smith–McMillan decomposition at a given expansion point λ0 that is a pole/zero of a ratio-
nal matrix R(λ). In this process we construct a unimodular transformation matrix whose
columns are root polynomials introduced in [6] for regular polynomial matrices, refined
in [5] for singular polynomial matrices, and extended in [9] to rational matrices. As a con-
sequence, the degree of the constructed unimodular transformation matrix, is of minimal
degree. We also showed that, when applied to a polynomial matrix P(λ), this decompo-
sition is a compact local Smith form of P(λ). The special type of transformation matrices
used in this paper are not orthogonal, but aremore related to a Gram-Schmidt orthogonal-
ization procedure. This is reassuring since there exist numerically reliable implementations
of the classical Gram-Schmidt procedure [15], which might also apply to the Toeplitz rank
search algorithm explained in this paper.

Note

1. A MATLAB implementation of the algorithm we used is freely avaliable from github at the link
https://github.com/VanDoorenPaul/Compact-local-Smith-form.
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Appendix 1

Theorem A.1: Fix an elementary divisor domain R and let F be the field of fractions of R. Let L ∈
Rr×r be invertible over F, and let X ∈ Rr×(n−r). Then the following are equivalent

(1) [ L X ] isR-unimodularly equivalent to [ L 0 ]
(2)

[ L X
0 0

]
isR-unimodularly equivalent to

[ L 0
0 0

]
;

(3) X = LY for some Y ∈ Rr×(n−r).

Proof: 1 ⇒ 2 There exist unimodular U, V such that U [ L X ] = [ L 0 ]V , then

(U ⊕ I)
[
L X
0 0

]
=

[
L 0
0 0

]
V .

2 ⇒ 3 It holds

[
U1 U2
U3 U4

] [
L X
0 0

]
=

[
L 0
0 0

] [
V1 V2
V3 V4

]
⇒

⎧⎪⎨
⎪⎩
U3L = 0 = U3X;
LV1 = U1L;
LV2 = U1X

,

where the matrices whose blocks are Ui and Vi are both unimodular. But U3L = 0 ⇒ U3 = 0
because L is invertible over F. Thus U1 must be unimodular, whence X = U−1

1 LV2. On the other
hand V1 = L−1U1L must be unimodular since det(V1) = det(L)−1 det(U1) det(L) = det(U1) is a
unit and U−1

1 L = LV−1
1 . Defining Y = V−1

1 V2 we then have X = LY, as sought.
3 ⇒ 1 We have [

L X
] = [

L 0
] [

I Y
0 I

]
.

�

Theorem A.2: LetR be an elementary divisor domain with field of fractions F, and suppose that the
Smith forms over R of [ N C ] and [ N 0 ] are the same where N ∈ Rm×r has full column rank and
C ∈ Rm×(n−r). Then, C = NY for some Y ∈ Rr×(n−r).

Proof: SinceN has full column rank we can write it asN = U
[ T
0
]
whereU ∈ Rm×m is unimodular

and T ∈ Rr×r (e.g. using the Hermite normal form [16]). Moreover, T is invertible over F because
rank(T) = rank(N) = r. Hence,

U−1 [
N C

] =
[
T C0
0 C1

]
;

https://doi.org/10.1016/j.laa.2022.10.025
https://doi.org/10.1016/0024-3795(94)90371-9
https://doi.org/10.1137/S0895479803423925
https://doi.org/10.1109/TCS.1979.1084628
https://doi.org/10.1002/bltj.1952.31.issue-3
https://doi.org/10.1007/BF01939404
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but then r ≥ rank(T) + rank(C1) ⇒ C1 = 0. By Lemma A.1, this implies in turn that C0 = TY for
some Y ∈ Rr×(n−r). However,[

N C
] = U

[
T TY
0 0

]
⇒ C = NY .

�

Lemma 2.5 then follows by applying Theorem A.2 to the matrix [ π(λ)R(λ)Nr(λ) π(λ)R(λ)Ñ(λ) ].
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