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Abstract

Given a stabilizable linear system Ez = Az + Bu with
SsE — A regular, we analyze the stability robustness of
the closed-loop system (E+BK)i = (A+BF)z+v, ob-
tained by proportional and derivative (PD) state feed-
back u = Fz — K& + v. Our goal is to maximize
the stability radius of the closed-loop system matrix
s(E + BK) — (A + BF) over all stabilizing PD state
feedback control laws. This problem turns out to be
equivalent to a particular H* control problem for a
generalized state-space system and reduces to a sys-
tem of matrix inequalities. Under certain conditions
the problem actually reduces to an LMI system. We
also show how to apply these ideas to higher order dy-
namical systems.

1 Introduction

Subsequently the following notations will be adopted.
By C and C**™ we denote the complex field and the set
of n x m complex matrices, respectively. Further, C~
will stand for the open left part of the complex plane,
ie. {s€C : Res< 0}, whileD={z€C : |z <1}
. denotes the open unit disc.

Let us briefly recall some basic facts concerning stabil-
ity radius theory. Consider a partition of the complex
plane C into two disjoint sets Cy and Cp, C = C, UC,,

such that C, is open and non-empty. Let also E, A €

C™*" such that A(AE — A) C C,, that is, the pencil
AE — A is C,-stable (or, simply, stable). The two re-
gions that are typically considered for C, are C~ and
D. The unstructured complez stability radius of the
pair (E, A) with respect to C, and the perturbation
A= [ Ag Ay ] is

rc(E, A, Cg; A) = Aeig’i:xn{HA”g :3XeCy

s.t. det(A\(E +Ag)~(A+A4) =0}, (1)

i.e, rc is the norm of the smallest perturbation A caus-
ing at least one eigenvalue of A(E + Ag) — (A + Aa)
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to leave the “good” region C, for Cp. Here ||A|2 =
01(A), where o; denotes the largest singular value of
A. Notice also that E is nonsingular since (AF — A)
is stable. We also restrict to perturbations that do not
change the infinite eigenvalues of the pencil, i.e E+Ag
is nonsingular as well.

Remark 1. If AE — A is stable, i.e AAE — A) c C~,
then

re(B, 4,75 8) = [sup | %47 | G- a)1]
i JeE-am2 @

For more details on stability radii of descriptor and
higher order systems see [8], [3].

2 Problem formulation

Consider the generalized continuous-time system
Ei = Az + Bu, (3)

with A,E € C***, B € C™®*™, such that the pen-
cil sE — A is regular and (E, A, B) is stabilizable,
ie. rankfA—-AE B} =nVXe C\C, A fi-
nite, and rank[E B] = n. Equivalently, there exist
Fy, Ko € C™*" guch that the pencil s(E + BKj) —
(A + BF;) has all its eigenvalues in C~. Moreover,
under these conditions, let a,8 € C, not both zero,
be such that «/pB is not an eigenvalue of sE — A and
a/B ¢ C~. Then there exist FF € C™*™ such that
A(s(E + BBF) — (A+ aBF)) C C~. More details on
the generalized eigenvalue assignment problems can be
found in [6]. Consider a proportional and derivative
(PD) state feedback control law

u=Fz - K& +v.
Then the system (3) becomes

Exi = Apz + Bv, @)
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where
Ex:=FE+BK, Ap:=A+BF
and A(sEx — Ar) CC™.
Our goal is to mazimize the complex stability radius

of the pair (Ek, Ar) over all PD stabilizing feedback
matrices (F, K), subject to the perturbation

A= [ Ag Ap Ap ] € Crxntm)
In other words, solve

sup 7rc(Ek,Ar, C7; A). (5)
F,KEC'"X"

The complez stability radius of (Ex, Ar) with respect
to A is defined as

re(Ex, Ar, C7; &) =inf{[|Alls : IX e c\C-
-s.t. det(M(Ea + BaK)— (Aa + BaF)) =0}, (6)
where Ep := E+ Ap, Aar := A+ A4 and
Ba =B+ Ap.
Next we derive a closed formula fof rc(Ek,Ar,C™; A).

Proposition 2. The complex stability radius of
(Ek, AF) with respect to A € C**(2nt™) is giyen by

rc(Ek,Ar, C7; A) =
I(CFr — sGk)(sEk — Ar) M= (7)

where
crm|p | o= k] @

Proof: Since sEx — Ar is stable, it follows that Ex
is nonsingular. Then the eigenvalues of sEx — Ar move
continuously with the perturbations Ag, A4, Ap, and
the eigenvalue “leaving” C~ must actually lie on its
boundary 8C™, i.e. on the jw-axis. Hence

TC(EK)AF1 C-; A) = TC(EK,AF, ac—; A)

- Aei?)fcj (igf{"Allz : det (ME+Ag+(B+Ap)K)

~(A+A4) - (B+Ap)F) = 0})

=, inf_(mf{lala: det(ABx ~ Ar
|
——-[ AE AA AB ] I
—-AK +F

})=0})

(i) —jwl
=) inf (inf{llAHz: det(I — A I
weR 4 —jwK +F

x (jwEx — Ap)~1) = 0}). (9)

The last equality is due to the invertibility of
jwEg — Ar, since A(sEx — Ar) € C™.

For arbitrary w € R one has

—jwl
inf{||All2 : det(I — A I
a —jwK+ F

X (jwEg — AF)_I) =0}

—jwK+ F

= 1] o F | Gk - anst,

—jwl
= | [ I } (jwEk — Ar) )z

therefore

TC(EK,AF, C_; A) =
(—jw+1)I

. . _ —-1ypy-—1
)| G O | B - any 0

Lo G ¥ - anrn]

—s+ 1)1 —1yy—
=1 G | B - any i,
and the proof is complete. » O

By substituting now r¢(-) from (7) into (5), the prob-
lem can be reformulated in the following manner:
Given a stabilizable system (E, A, B), solve

: (~s+1)I s
rdi | o F | e - am

- . _ _ -1 0
prdi ol € = 5G)(Ex = AF) ooy (10)

where Cp and Gk have been defined by (8).

3 Maximizing the stability radius: An LMI
approach

Our aim is to reformulate problem (10) as a convex op-
timization problem, deriving F and G from the solution
of some appropriate LMI’s. The crucial result used in
our development is the LMI version of the Bounded
Real Lemma for generalized state-space systems.
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Theorem 3. Consider the first order descriptor sys-
tem H(s) =D + (C — sG)(sE ~ A)™1B and let v > 0
be given. Then the following two assertions are equiv-
alent:

1. sE — A is stable and || H(s)||oo < 7.
2. There exists Y > 0 such that

D(Y):=—[g]72[0 I]+[g][3' D" ]

[g]Y[E' ¢ ]+[g]Y[A‘ c* ] <o.
(11)
3. There exzists a symmetric matriz Y > 0 such that
Ry :=CYG*+GYC*+DD*—-+%I <0
and the “generalized” Riccati equation
AYE*+EY A*+BB*—(EYC*+AYG*+BD"*)
x Ry! (CYE* +GYA* +DB*) =0
has a stabilizing solution, i.e the matriz pencil
sE — A+ (sG — C)(EYC"® + AYG* + BD*) Ry!
is stable.

Remark 4. The Bounded Real Lemma shows that
[|H{(8)||loo is the global minimum of the following lin-
ear objective minimization problem:

inf v subjectto Y >0, D(Y)<O. (12)
¥, Y=Y"*

According to Remark 4 and by updating formula (11)
to (10) one can express |[|[(Cr — sGk)(sEx — Ar) e
in (10) as the global minimum of

v subjectto Y >0 and D(Y,F,K) <0.
(13)

inf
7>0,Y=Y"

Here

0
D(Y,F,K) = ~ [ I
0

Recall that Ex = F+ BK and Ar = A+ BF. By pre
and post-multiplying D(Y, F, K) by

I 0 -B

U=]|]01 o0 and U™,
00 I

then D(Y, F, K) < 0 reads as

U D(Y, F,K)U* = Dy(B,v) + D1(Y, F, K)

o .
+[ 0 ](FYK*+KYF*)[O 0 I.]<0,

I, '
(15)
where
0 -B
0 I 0
D2(B)7) = I‘n 0 72 [ * * }
o I, -B* 0 I,
I,
+] 0 [[I. 00]
0
and
A
Dy(Y,F,K) = I, Y[E" I, K*]
F

E
+ | L |Y[4a I, F*]+
K

0
—[ 0 ](FYK*+KYF*)[0 0 In].
I,

Assume that M := FYF* + KYK* < al,, for given
a > 0. We relax the matrix inequality (15) to

Dy(B,7) + Di(Y, F, K)

0
+[ 0 ](F+K)Y(F*+K*)[o 0 In]<o0.
In

(16)

Since Y > 0, if (Y, F, K) is feasible for (16) then it is
also feasible for (15). The above relaxation together
with an appropriate change of variables allows us to
rewrite the matrix inequality (16) as a LMI.

Replace F and K in (15) by introducing two new vari-
ables, P := FY € C™*" and @ := KY € C™*", re-
spectively. One also has FYK* = PY~1Q*, KYF* =
QY-1P*. With the above considerations in mind, the
inequalities (15) and (16) become

D2(Bv'Y) +D1(Y3PY'—17Q—1)
0
+[ 0 ](PY"Q"+QY“P')[O 0 In]<o.

Im
an
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and
Da(B,7) + Di(Y, PY~1,QY 1)
0
+[ 0 }(P+Q)Y"(P‘+Q‘)[0 0 In]<0,

I,
(18)
respectively. Furthermore,
M =FYF*+ KYK* < al,, isequivalent to

[P Q][Yo—l Yo_l][g:}—a1<0

-Y o P
= [ 0 -Y I Q ]<0. (19)
P* Q" |-al

Let
D3(l,: P) Q,’Y) = D2(Bi7) + DI(Y1 PY_lv Qy—l)‘
Then, since Y > 0, one also has that (18) rewritten as

Ds3(Y,P,Q) +

0
{ 0 Y7I[0 0 Pr+Q*]<0 (20
P4+Q |

is equivalent to

-Y 00 P+@Q*
0
0 D3(Y,P,Q,7)
P+Q

<0. (21)

Problem (10) can be finally reduced to the following
(relaxed) optimization problem:

Given a stabilizable triple (¥, A, B) and a > 0 solve
v subject to Y > 0and to (19), (21).
' (22)
If v, Y > 0, P and Q are a solution to (22), then
’ F:=PY}, K:=Qvr!

are a solution to the problem (10).

- inf
v>0,Y,P,Q

Note. Rather than relaxing the problem as in (16),
one can also consider PD feedback control laws where
K = BF, such that Re > 0 (or 8 real and positive)
and 1/0 is not a generalized eigenvalue of sE — A. Let
§ > 0, 82 = 2Ref. Replace now Q in the matrix in-
equality (17) by B8P and obtain directly a linear matrix
inequality in Y and P, which is similar to (21)

-Y | 0 0 &P
0
0 | Ds(Y,P,P,)
5P

<0. (23)

These ideas can be applied to more general systems,
like higher order dynamical systems. For sake of sim-
plicity, we concentrate on systems of second order, but
a similar methodology can be employed for higher order
systems.

4 Robust stabilization of second order
dynamical systems

Consider the following second order system
A+ A1z + Aow = B‘U., (24)

where A; € C*** ¢ = 0,1,2, B € C**™, and the
state-feedback control law

u=—F%—~ Fz- Foz +v.
Then, the closed-loop system is given by
(A2 + BF)i + (A1 + BF1)2 + (Ao + BF)z = Bv
and its associated characteristic equation is
det Pr(s) := det (P(s) + BF(s)) =0, (25)
where
P(s) = A38® + Ajs+ Ay, F(s)= P28’ + Fis+ Fo.

Assuming that Pr(s) is stable (i.e all the zeros of (25)
lie in C~), one can now define the stability radius of
Pp with respect to A = [ As, Aa, As, Ap ),

as follows:

re(Pr, C™; A) = Aecﬁiil(x;m){||A||2 :3XeCF

s.t. det(Pp()) + APp()\)) = 0}. (26)
Here

APgp(s) AP(s) + ApF(s)

AAQSZ + Q4,8+ Axs, +AF(s)

It can be shown that (see [3])

re(Pr, €5 8) = 1| %0 | PR, 1)

where d(s) = das® + dis + do. Moreover, for second
order systeins, one gets d2 = do = 1, d; = V/3.

We may now formulate the same kind of synthesis prob-
lem as that given by (10):

Given a stabilizable system (24), maximize the complex
stability radius (27) over all Fy, Fi, F>. Equivalently,
solve .

i d(s)I, -
Fo,Fx,Fu':fEC"‘X" I [ I(;J()s) ] PFI(S)"oo . (28)
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It is easy to see that (27) can be immediately extended

to linear dynamical systems of order k; accordingly,
problem (28) can be also reformulated in an appropri-
ate manner.

Some tedious manipulation yields

-~

[ d(s)I, ] P7Y(s) = (C~sG)(sE - A)'B, (29)

F(s)
where
A= 0 I,
- —(Ao +BFO) —(A1+BFy) |’
= I, 0 5_| 0
E=[0 A2+BF2]’B—.[L“]’

5 [0 —dlI, ~ [ doln il
a=[8 ), wa oo 4]

Using the same methodology as before, by updating
formula (11) to (28) and by invoking Remark 4, one
obtains the equivalent problem

~ subjectto Z >0 and D(Z,F)<0.

(30)

inf
v>0, Z=2*

Clearly, D(Z,F) is D(Y) in (11) updated to (29) and
Z. Let us pre and post-multiply now D(Z, F) by

Ve k=]

and T*.

OO O M~
QO ~NO
ON~NMO O
~ o

Then D(Z, F) < 0 is equivalent to

0
I,

D(Z, Fo,Fl,Fz) = 0

[0 I, 0 0]+

0 0
0 B | [0 0 I, o
| o 7[03* 0 Im}
0 In
0 I,
. -4 -4 [Zn 212]
dol, &I, || 28 Zs
Fo B
I, 0 0 0
[o Ay —dol, —F.;]

0
Ay [ Zu Zis ]

ojo o

+ —do I VACRPAY
_F2
0 —-A} dol. | Fg
X[In A ar || <0 6

One can recognize now (31) as a “second order” coun-
terpart of inequality (15). While the role of F in (15)
is taken over by the block matrix [ Fo Fy ] in (31),
K is retrieved in [ 0 F; |. If F = 0 (which means
that we restrict our analysis to control laws of the form
u = —~F1& — Foz 4 v), then one can follow the method-
ology proposed in Section 3. If F> # 0, an additional
constraint must be imposed on K, and hence on its as-
sociated variable Q. This problem is object of further
research and will be addressed separately.

5 Final remarks

Several aspects are worthwhile to be emphasized. Max-
imizing the complez stability radius via state feedback
is equivalent solving an appropriate state-feedback H>
control problem. Such problems have been solved for
instance in [1] (LMI approach) or in [4] (Riccati equa-
tion approach). A similar development can be em-
ployed to treat the discrete-time case as well.

To our knowledge, a problem which is still open is to
maximize the real stability radius. We also mention
that the related numerical aspects concerning the solu-
tion of the above mentioned (linear) matrix inequalities
are under investigation.
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