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Abstract

In this paper we propose a new recursive algorithm for
computing the staircase form of a matrix pencil, and
implicitly its Kronecker structure. The algorithm com-
pares favorably to existing ones in terms of elegance,
versatility, and complexity. In particular, the algorithm
without any modification yields the structural invari-
ants associated with a generalized state—space system
and its system pencil. Two related geometric aspects
are also discussed: we show that an appropriate choice
of a set of nested spaces related to the pencil leads di-
rectly to the staircase form; we extend the notion of
deflating subspace to the singular pencil case.

1 Introduction

The paper is organized as follows. In this section we
briefly recall several notions related to matrix pencils
[6] and show how one can easily retrieve the staircase
form of an arbitrary pencil [4] by constructing unitary
basis for an appropriate pair of sequences of nested sub-
spaces. Section 2 ig dedicated to the extension of the
notion of deflating subspace to the singular pencil case.
It turns out that the deflating subspace contains as spe-
cial cases both the reducing subspace [3] and the proper
deflating subspace [11], [12] previously introduced in
connection with various factorization problems [5] and
singular Riccati theory [12], [7], [8]. The new algorithm
for computing the staircase form of a pencil — called
the system pencil staircase algorithm — is presented in
Section 3. In particular, it applies to the computation
of the invariants associated to a system in generalized
state—space form. A brief discussion of its advantages
over existing algorithms is also given in Section 3. Fi-
nally, we draw some conclusions in Section 4.

Let A — AE, with A, E,€ C™*™ be a matrix pencil.
If m = n and det(A — AE) #Z 0 the pencil is called
regular, otherwise it is called singular. Two matrix
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pencils A — AE and A — ME are (strictly) equivalent if
there exist two invertible constant matrices @ and Z
such that ~

Q(A-AE)Z =A - )\E. (1)

A pencil is equivalent to a (unique) Kronecker canoni-
cal form (KCF), i.e. there exist two matrices Q and Z
such that the right-hand term in (1) takes the form

A—)\E
o Ley L%y Ly, T T = ML T =AM}

(2)
where L, denotes the bidiagonal k x (k + 1) pencil
-2 1

= diag{L.,,--

. . More specifically,
-A 1
1. The €; X €41 blocks L.,, i =1,...,v,, are the right
elementary Kronecker blocks, v, is the number of right

Kronecker blocks and ¢; > 0 are called the right (or
column) Kronecker indices.

2. The n;41 X n; blocks Ln].T, j=1,..,v, are the left
elementary Kronecker blocks, v; is the number of left
Kronecker blocks and 7; > 0 are called the left (or row)
Kronecker indices.

3. The ny X ny matrix J is in the Jordan canonical
form and ny is the number of finite eigenvalues.

4. The ne, XN matrix M is a block diagonal nilpotent,
matrix, each block being an elementary Jordan block
(consisting of ones placed on the first upper diagonal
and zeroes everywhere else), and ny, is the number of
infinite eigenvalues.

The Kronecker indices ¢; and 7; completely character-
ize the singularity of the pencil. The regular part of the
pencil is determined by finite elementary divisors (the
elementary Jordan blocks of Al — J which determine
the finite spectrum), also called the finite eigenstruc-
ture and infinite elementary divisors (the elementary



nilpotent blocks of M), also called the infinite eigen-
structure. We denote by A(E, A) the set of finite and
infinite eigenvalues of the pencil A — AE and by A(A)
the set of eigenvalues of a square matrix A. With
ny = Y7 € and ny = 30, 7; we have that the
rank of A — AE seen as a polynomial matrix equals
Ny + 1+ nf + N < min(m,n).

From a numerical viewpoint, the computation of the
KCF (2) is untractable [1] and one aims to compute,
by using unitary transformations @ and Z, a gquasi-
canonical Kronecker form from where all the relevant
structural information contained in the KCF can be
retrieved. The main step of an algorithm for computing
the Kronecker-like form is to bring the pencil to the
so—called staircase form [4]. We show below how one
can retrieve the staircase form by using a particular
sequence of nested spaces defined in terms of image
and preimage of A and E.

For an arbitrary (possibly singular) pencil A— AE con-
sider the following sequence of spaces:
Zy = {0} { Z; E_lgi—la (Z =1 )
Q2 = {0} Qi AZ;. o
3)
Here by E~' we denote the preimage of E. These
spaces are nested and remain invariant after a finite
number of steps, more specifically,

{0} = ZcCczZCc2C
{0} = GC@iC@C

I

C 2k = Zi41,

C Ok = Qgy1.
4)

where k is the smallest index for which dim2Z; =

dim Z4;. The proof follows by induction. Notice that

the first equality Qi = Q41 may occur for k' = k—1

or for k' = k. Define now the index sets

8§ = dim Qi — dim Qi—l, _
t; = dimZ; —dimZ2Z;_q, "’ ((=1,....k)
(5)
and X
Sk+1 = M- Zizl S (6)
k
tk+1 = n- Zi:l t;
Construct the unitary matrices
Q = [@Q]Q2].-- Qx| Qs ], 7)
Z = Z Z2|...|Zk|Zk+1
such that
2,00, = Im@ .
Z62Z., = ImZ, (t=1,...,k), (8
and
C*o Qk = Im Qk+1> (9)
C'o 2, = ImZpy.

Proposition 1 (a) The dimension increments s,

(i =1,...,k) satisfy

1 >822t >8>0 > 5 >0 (10)

(b) In the new coordinate system defined by Q and Z
the pencil A — \E is in the staircase form

Q*(A-)\E)Z — Ae,oo—AEe,oo X

0 Afm — AEsq
A1n ALk = 2By AL k41 — APy g }s1
o Ag jp — ABg A2 k41 ~ 2Bg k41 }s2
o : Ak Ap k41 = B k41 Yon
o o o) App1 — ABria Yop1
t1 tp teg1

{11)
with Agy1 — AEryy := Ag, — AEy , and where

1. Ejy; has full column rank,
2. the blocks A;; have full row rank s;, (i = 1,...,k),

3. the blocks F;_;; have full column rank t;, ( =
2,...,k).

(c) The index sets {s;} and {¢;}, (i = 1,...,k), com-
pletely determine the column Kronecker indices and
infinite elementary divisors of the pencil.

2 Deflating subspaces

We introduce now a novel characterization of deflat-
ing subspace which extends as well to the singular case.
Moreover, it generalizes the notion of invariant sub-
space of a square matrix. Let

C=C,uUC, (12)

be a partition of the closed complex plane in two dis-
joint sets (however, we admit also the partition CU @
or pUC).

Definition 2 A subspace V C C™ of dimension v is
called a right deflating subspace if

EVS = AVT (13)

where V € C™*7" is any basis matriz for V, and S,T €
C™ 7 are two appropriate matrices such that the pencil
S — AT is reqular. The subspace V is called a Cy right
deflating subspace if in addition A(T,S) C Cy. Similar
definitions hold for left deflating subspaces.

Since all the results for left or right deflating subspaces
are similar, we only treat hereafter the case of right
deflating subspaces and call them briefly deflating sub-
spaces.

The following Proposition gives a complete characteri-
zation of deflating subspaces.
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Proposition 3 Let A(E, A) = AiUA; be a split of the
spectrum of the pencil according to (12), i.e. Ay C Cq
and Ay C Co. Let ny and ny be the number of elements
(multiplicity counted) in Ay and Ay, respectively. Then:

(a) The dimension of a C; deflating subspace satisfies
dimV <n,+v+ny, =rc,. (14)

(b) Cy deflating subspaces are closed under addition
and there ezists o uniqgue mazimal Ci deflating sub-
space of dimension rc, .

(c) For a mazimal Cy deflating subspace A(T,S) is
such that ny elements coincide with the elements of Ay
and the rest of v, + n, elements can assume arbitrary
values (in Cy).

Remark 4 (a) Notice the two extreme cases:
(i) C = # and n; =0,
(i) C; = Candn; = g+ Noo-

(b) Let V be a maximal C; deflating subspaces and
define X := V and YV := EX + AX. One can prove
that (X,)) is the (unique) pair of reducing subspaces
(for reducing subspaces see [3]) that induce the split
A3 UA; in the spectrum of A — AE. Notice that in the
two extreme cases indicated at (a) one gets the minimal
and maximal reducing subspace, respectively.

(c) In particular, for T = I and imposing the addi-
tional constraint to EV to be of full column rank one
retrieves for V = ImV the definition of C; proper de-
flating subspace [11] that plays an instrumental role in
the singular Riccati theory [12], 7], [8]. In this case one
can easily see that not even the maximal C; proper de-
flating subspace Vs is unique, yet EV;s is. In fact one
shows (see [12]) that Vi C & and EVy = ), where
(X,Y) is the (unique) pair of reducing subspaces that
induce the split A; U Ay in the spectrum of the pencil.

3 The system-pencil staircase algorithm

In this section we describe the new system—pencil stair-
case algorithm which efficiently reduces an arbitrary
pencil to the staircase form (11). Our starting pencil
is a system pencil

A | A1 = ABE | }os

Ag | Ags tm - pE
(15)

where E5 is square and invertible. However, our algo-

rithm applies as well for a general system pencil (where

E;y» is not invertible but Ai2 — AE;» is regular [10]),

or even to an arbitrary pencil Ag — AEy which is first

S(\) = A—\E =
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brought to the form (15) by a two sided rank reveal-
ing decomposition of Ey, such that the resulting E;5 is
square and invertible. As was proved in [10], there is a
one to one correspondence between different structural
invariants of a system in generalized state-space form
and the Kronecker structure of the system pencil (or
some of the subpencils in the system pencil). There-
fore, we focus hereafter on constructing the staircase
form of a system pencil from where the information
about the Kronecker structure can be retrieved.

Below we show how we can efficiently determine uni-
tary left and right transformations such that the stair-
case form (11) is recursively constructed and at each
step the system pencil form (15) is preserved. As was
indicated in [10], preserving at each step the form (15)
is instrumental for keeping the algorithm complexity to
O(n?). More precisely, we indicate below how the uni-
tary matrices @ and Z can be efficiently constructed
such that (we reuse block names)

Q*S(NZ
A1l Ao — AE1s A1z — AEi3 } Y-V
= O - Aze A2z — AE23 _
o Aszz Asza T PAG
e —

n—pp ) PE

: (16)
where Aj; is row compressed, iz is full column rank,
E,3 is upper triangular and invertible and pa,, :=

Ao
tion of the pencil in (16) and the fact that the resulting
subpencil in (16) As — AEs := Apz A — Mg
Aszz Ass
exhibits the same structure and the constitutive blocks
have the same properties as the starting pencil S(A).
The algorithm continues further on the subpencil 4, —
AE,. The transformations ¢ and Z are constructed
such that the first n — pg columns of A in (15) are
row compressed while keeping Ei2 upper trapezoidal
in an economical manner. This is explained in detail
below. The novelty of our staircase algorithm consists
in the efficient reduction of a pencil of form (15) to
(16) and we shall describe this reduction — called the
basic step reduction — only. Notice that at each step
i, (i = 1,...k) one retrieves a pair of indices s;,#; and
basis matrices for the spaces Q; and Z; are implic-
itly constructed. For example, after the first step has
been performed we have from the pencil in (16) that
51 =pA., and t1 =n — pg.

rank [ A } in (15). Notice the new block row parti-

Before going into fine details, we state the following
lemma that will be used further on.

Lemma 5 Let M be a square matriz partitioned as fol-



lows
My My | Ing
M= 17
[le 0] jl }n1 ( )
P S
n1 ny

with Mys and My invertible, and let U be an invertible
transformation which compresses the first ny columns
of M. Then

a)
T — Mu M12 }nl
o= [ ] dm g
n ng

and 1\7[11 and M-n are invertible, too.

b) If May and Miz are upper triangular U can be ef-
ficiently constructed as a sequence of Givens rotations
such that the resulting My, and M,y are upper trian-
gular. This is described below.

Proof. a) Trivial.

b) We illustrate by means of an example how U can
be efficiently constructed such that Mj; and Moy are
upper triangular. Let n; = 3, ne = 4. Then M takes
the form

My | My
M= [ M LM ]
[ x x x|{x x x x]
®s X X X X X
®3 X X X X
=1 ® x X x (19)
® X X
x X
L. x -

The bold “x” denotes nonzero entries. Clearly ®;
is nonzero as well. We determine first a sequence of
Givens rotations Gj1,; between adjacent rows § and
j+1( =4,...,1) such that elements ®; ( = 1,...,4)
are successively annihilated in the first column of M.
For Qz 1= (91 G32G43G54 we get

fx x x|x x x x
x x|x x x x
X X X X X
QM = X X X X (20)
X X X
X x
L X .

Notice that the non singularity of M guarantees that
the bold entries in (20) are nonzero. We proceed sim-
ilarly with columns j = 2, 3, finally obtaining after ac-
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cumulating in @} all Givens rotations

X X xX|x x x x
X X |x x x x n1
X[ X X X x
QM = X X X X
X X X
X X 2
| x
(21)
O

We describe now the basic reduction step. In order to
perform a reduction of pencil (15) to the form (16)
three steps are taken.

Step a. We compress by rows Az (using for example
a QR algorithm with pivoting) by constructing unitary
@, and permutation P, such that

1 2
=g B @

where A}, is square, upper triangular and invertible.
Defining

ool a) wel" ]

we get at the end of this step
Ay, - AE, :=Q*(A- AE)Z

Ah A%l | A1z — AE)s }PE
= A%1 A%l A%z }oaz (23)
o 0 A2,

where %2 ] = Q;Agg and [ Ah A%l ] = AuPa

have been adequately partitioned. Notice that at this
step the subpencil A;2 — AE;, is not affected.

Step b. We focus now on the subpencil

Al A12—/\E12] }rE (24)

As — AE, :=
[ A%l A%Z }pAzl

where A}, and Ej; are square, upper triangular and
invertible. We construct a unitary left transformation
Qs as a sequence of row Givens rotations such that the
first block column of A, is row compressed while A; is
preserved in upper trapezoidal form. We obtain (after
reusing block names)

Al A~ AE tpa
H(As —AE,)=| "1 2 e (25
N i v R G

where A}, and E}, are invertible and also upper trian-
gular. @, is constructed according to Lemma 5, where

_ [ AL | By
we take M = [ AL o |-



At the end of this step we obtain (after reusing block
names)
Ap — AEy, = Q" (A - AE)

Al AL | A= ABn | }pan
= 0 Agl A%2 - ’\E212 }PE
o 0 A3, Y~ pg — pan
~——
PAgy

(26)
where now A}, and El, are upper triangular and in-
vertible.

Step c. We compress by rows A%, while keeping E3, in
upper triangular form. This is done by using an appro-
priate sequence of row and column Givens rotations.
At this step we focus only on transformations of the
blocks A2, and E}, and track therefore the matrix

N:=[ A3 | By ] (27)

where Fi, is invertible and upper triangular. We
demonstrate again the algorithm by means of an il-
lustrative example for which N outlines the following
structure, i.e.

X X IxXx X X X
X X X X X
N = (28)
X X X X
X X X

We first compress by rows the first column by using
Givens rotations Gy41,; between adjacent rows i + 1
and ¢ (i = 3,...,1) such that

x x| x x x X
_ X|® X X X

G21G32GeaN = < ® x x (29)
X ®1 X

(a permutation P, of columns in A%, is implicitly as-
sumed in order to increase the reliability of rank deci-
sions).

The elements ®; introduced by the row Givens ro-
tations are now annihilated by using a sequence of
column Givens rotations, i.e. we determine Gjjyq;
( = 5,...,3), to annihilate successively elements ®;
(7 =3,...,1). We proceed similarly on next columns
of A% . If the rank of A2, is lower than its number of
columns the procedure terminates earlier but remains
essentially the same. All row and column Givens rota-
tions are accumulated in Q. and Z,, respectively.

Overall, we conclude that A%, can be row compressed
while keeping F3, in upper triangular form in an eco-
nomical manner. Set

I I
QFQ Qc y Z = P,
I Z.
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At the end of this last step we get (after reusing block
names) the pencil

A= \BE, == Q*(A - AB)Z

Al AR | A, - AEL, AR, - AE,
0 0] AL, A3, — M\E3,
O 0 A3, AS,

where A}, and A2, are row compressed, E}, and E3,
are square, invertible and upper triangular.

By comparing (30) with (16) it is easy to see that our
basic reduction step produces the desired effect and this
is done in an efficient way. The operation count for this
algorithm shows that its complexity is O(n?).

Remark 6 (a) The algorithm stops when at a certain
step j = k + 1 the resulting subpencil to be further
reduced has a matrix E of full column rank. In the re-
sulting staircase form (11) the subpencil Agy; — AEg41
then has the form

(31)

A, - \E
Ak+1—ABk+1=[ te 1}

Ay
where El is square, upper triangular, and invertible.

(b) Notice that at each step the relevant subpencils out-
line a “generalized state—space system representation”
form. More specifically, if we denote the partitioned
pencil (15)

[ An|An-ABn ] _ [ -B|A-)E
S(/\)—[Am] Tz }'—{—Dl —c]

we get that S(A) is the transmission matrix (or pencil)
of a system in generalized state—space representation

AEx = Az + Bu
{ y = Czx+ Du, (32)
where moreover F is invertible. Here ) stands for the
differential operator or for the unit shift.

(c) If a dual version of the new staircase algorithm is
applied to the resulting subpencil (31) one retrieves the
row Kronecker structure of the original pencil and at
the end of this reduction the resulting subpencil (31)
will be square (will have a void matrix 1212), regular,
with invertible El matrix. Notice that for this dual
staircase algorithm applied to (31) at each basic reduc-
tion step only substep (c) is needed.

Finally, we discuss advantages of our algorithm over
existing ones. There are mainly two other methods for
performing a reduction step leading to an overall O(n?)
complexity algorithm for computing the Kronecker-like



form. The first O(n®) complexity algorithm, called the
echelon staircase algorithm, which computes precisely
the staircase form (11) was proposed in [2]. For this
algorithm, E is initially compressed to a column ech-
elon form that is preserved during further steps. As
noted in [10], the main drawback of this algorithm is
the alternative rank decision made at each step on both
the intervening E and A matrices, one of which with-
out pivoting leading thus to a potential unreliable algo-
rithm. Moreover, the algorithm in [2] does not preserve
a generalized state—space like form at each step making
the analysis of the structural invariants of generalized
state-space systems somehow more intricate. More re-
cently, an algorithm performing a decomposition from
where the structural invariants of a generalized state-
space system can be retrieved and which could be ap-
plied as well for computing the Kronecker structure of
an arbitrary pencil was proposed in [10]. The main
difference between this algorithm and ours is that the
first one uses at each reduction step a column and a row
compression with pivoting of the intervening A matrix
while keeping E in upper triangular form. This algo-
rithm preserves also at each reduction step a system
pencil like form leading to an overall O(n?®) algorithm.
However, this algorithm lacks symmetry in revealing
the structure at infinity (it needs inelegant extra reduc-
tion steps for computing the infinite elementary divi-
sors), does not compute exactly the staircase like form
(and therefore handles with difficulty the computation
of deflating subspaces), and has the same complexity
for the further reduction of the subpencil (31) (see also
Remark 6 c). Actually, our new staircase algorithm
combines the advantages of the two methods in [2] and
[10].

4 Conclusions

A new algorithm for computing the staircase form of
a pencil, which preserves at each step a system pen-
cil like form, was proposed. The algorithm combines
advantages of previously proposed staircase-like algo-
rithms. The concept of deflating subspace of a singular
pencil which unifies the notions of reducing and proper
deflating subspaces has been introduced. Our charac-
terization of deflating subspaces — and in particular of
the reduction subspaces — in terms of associated basis
matrices is effective both from a theoretical and numer-
ical viewpoint. The proposed algorithm in conjunction
with a pole placement algorithm for systems in gener-
alized state—space form [13] can be used for computing
deflating subspaces with specified spectrum [11]. In-
terpretations of different geometric spaces associated
to a generalized state-space system in terms of deflat-
ing subspaces of the associated system pencil will be
discussed in a future paper.
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