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Abstract— We characterize the complex passivity radius of a
rational transfer matrix G(s) := C(sIn −A)−1B+D and propose
an approach to compute it. The method depends on computing
the smallest structured indefinite perturbation to a Hermitian
matrix that makes it singular. We consider both additive and
multiplicative perturbations, giving details for the additive case.
In both cases, the smallest indefinite perturbation can be effi-
ciently computed by solving a unimodal optimization problem
in a real parameter. The passivity radius can be computed
by minimizing the smallest singularity-inducing multiplicative
indefinite perturbation of a frequency-dependent matrix over
the imaginary axis.

I. INTRODUCTION

We consider a time-invariant continuous-time system with
an m × m transfer matrix given by a minimal realization
G(s) := C(sIn − A)−1B + D where A ∈ C

n×n, B ∈ C
n×m,

C ∈C
m×n, and D ∈C

m×m. Such a transfer function is said to
be passive if it is stable and if the Hermitian part of G( jω)
is positive definite on the imaginary axis, i.e. if :

ℜλi(A) < 0, G( jω)+ [G( jω)]∗ � 0,

for all eigenvalues λi(A) and for all frequencies ω . If we now
consider the perturbed transfer function G∆(s) := C∆(sIn −
A∆)−1B∆ +D∆ where

[

A∆ B∆
C∆ D∆

]

:=
[

A B
C D

]

−
[

∆A ∆B
∆C ∆D

]

we can ask the question: when is passivity is lost as the norm
of the perturbation increases? More precisely we consider
complex perturbations of the form

∆ :=
[

∆A ∆B
∆C ∆D

]

and wish to compute

inf{‖∆‖2 | G∆(s) is not passive}.

We call this quantity the passivity radius of the system G(s).
Since the eigenvalues of A∆ and G∆( jω)+[G∆( jω)]∗ vary

continuously with ∆, it follows that the passivity of G∆(s) is
lost when either ℜλi(A∆) = 0 or

det(G∆( jω)+ [G∆( jω)]∗) = 0 for some ω ∈ R. (1)

One can show that when passivity is lost then (1) must
certainly hold [2] (and loss of stability might happen simul-
taneously). Moreover, the zeros of the determinant (1) can
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be obtained from

det









0 B∆ A∆ − jωIn
B∗

∆ D∆ +D∗
∆ C∆

A∗
∆ + jωIn C∗

∆ 0







 = 0 (2)

since the matrix in (1) is the Schur complement of the matrix
above. Equation (2) is a Hamiltonian generalized eigenvalue
problem and its imaginary eigenvalues can be computed
efficiently [1].

In order to extract the perturbation matrix ∆, we rewrite
this determinant condition as

det
(

H (ω)−E
[

0 ∆
∆∗ 0

]

ET
)

= 0, (3)

where H (ω) is a Hermitian matrix for all ω :

H (ω) :=





0 B A− jωIn
B∗ D+D∗ C

A∗ + jωIn C∗ 0



 ,

and where

E :=





In 0 0 0
0 Im 0 Im
0 0 In 0



 .

This is also equivalent to the determinant condition

det
(

I2p −
[

0 ∆
∆∗ 0

]

H(ω)

)

= 0, (4)

where

p = m+n, H(ω) := ET
H (ω)−1E.

For a fixed value of ω , finding the perturbation ∆ of
smallest 2-norm that makes this matrix singular is a matrix
perturbation problem that we address in the next section.

II. STRUCTURED INDEFINITE PERTURBATIONS

In this section we look at structured perturbations of a
given Hermitian matrix. We first look at structured additive
perturbations ∆H of a given matrix H that make H −∆H
singular. Specifically, we partition H and ∆H as follows:

H =

[

S R
R∗ T

]

, ∆H =

[

0 ∆R
∆∗

R 0

]

, (5)

where S and T are n × n Hermitian matrices. We then
consider structured multiplicative perturbations ∆H of the
same form that make I −∆HH singular.



A. Existence of solution

We first consider additive perturbations ∆H . Let H −∆H
be singular. Then this perturbed matrix has a non-zero null
vector z, which we partition accordingly :

(H −∆H)z =

[

S R−∆R
R∗−∆∗

R T

][

u
v

]

= 0.

Multiplying this from the left by [ u∗, −v∗ ] and then taking
the real part, we obtain the necessary condition u∗Su =
v∗T v for the existence of a singularity-inducing Hermitian
perturbation of the type (5). If S is positive definite and T is
negative definite (or vice versa), then there is obviously no
solution. In fact, the converse also holds, as the following
theorem states.

Theorem 1 Let H be a nonsingular Hermitian matrix.
Then there exists an additive perturbation ∆H of the type
(5) such that det(H −∆H) = 0 if and only if the matrix

[

S 0
0 −T

]

(6)

is not (positive or negative) definite.
Proof: The above discussion shows that if there exists

a non-zero vector z in the kernel of H −∆H then it follows
that u∗Su = v∗T v, or equivalently

z∗
[

S 0
0 −T

]

z = 0,

which implies that (6) is a necessary condition. To show
sufficiency we transform the matrix H −∆H as follows :

Ĥ −∆Ĥ :=
[

DS R̂−∆R̂
R̂∗−∆∗

R̂ DT

]

=

[

U∗
S 0

0 U∗
T

][

S R−∆R
R∗−∆∗

R T

][

US 0
0 UT

]

where US and UT are unitary, and where DS and DT are the
diagonal matrices of eigenvalues of S and T , respectively.
The condition (6) implies that there must exist a pair of
diagonal elements si and tk with non-negative product (i.e.
zero or positive). Then choose ∆R̂ such that the i-th row
and k-th column of R̂ − ∆R̂ are zero except for the (i,k)
element, which we choose as

√
sitk. This clearly makes Ĥ −

∆Ĥ singular, and therefore also H −∆H .
The analogous result for multiplicative perturbations is

slightly more complicated. We state a sufficient condition
without proof.

Theorem 2 Let H be a nonsingular Hermitian matrix.
A sufficient condition for there to exist a multiplicative
perturbation ∆H of the type (5) such that det(I−∆HH) = 0
is that there exist vectors u and v such that u∗Su = v∗T v 6= 0.

B. Minimum norm perturbation

We will use in this section a perturbation result of Lidskii
that we first recall here (see [3] for a proof). Throughout the
remainder of the paper, denote the ordered eigenvalues of
any m×m Hermitian matrix M by λ1(M) ≥ ·· · ≥ λm(M).

Lemma 3 (Lidskii) Let M and M̂ be two n×n Hermitian
matrices. Then

‖M− M̂‖2 ≥ |λi(M)−λi(M̂)|, (7)

for i = 1, . . . ,m.
For any Hermitian matrix M, define

µ(M) := min
i
{λi(M) : λi(M) > 0},

ν(M) := min
i
{−λi(M) : λi(M) < 0}

where we adopt the convention that minimization over the
empty set yields ∞. A first bound for the minimal perturba-
tion ∆H that makes det(H −∆H) = 0 is easily stated. Since
the |λi(H)| are the singular values of H, the following result
is immediate, but we point out that it also follows from
Lidskii’s result (which we shall need later).

Lemma 4 Let H be a nonsingular Hermitian matrix. Then
the smallest Hermitian perturbation ∆H such that H −∆H
is singular is bounded by

min‖∆H‖2 ≥ min{µ(H),ν(H)} (8)

and a perturbation achieving equality is given by ∆H =
λi(H)zz∗, where λi(H) is an eigenvalue corresponding to
the minimum in (8) and z is a corresponding normalized
eigenvector.

Proof: The bound is a consequence of Lidskii’s theorem
since Ĥ := H −∆H has a zero eigenvalue.

If we now impose a constraint of the type (5) on the
perturbation then it is unlikely that ∆H given by Lemma 4
will satisfy the constraint and hence we can expect the
minimal structured perturbation ∆H to have a larger norm
than (8). Following [6], we consider the scaled matrix

Hγ :=
[

γ2S R
R∗ T/γ2

]

= Γ
[

S R
R∗ T

]

Γ (9)

where

Γ :=
[

γIn 0
0 In/γ

]

and γ is real and positive. Observe that this transformation
leaves the perturbation ∆H invariant, so

Γ(H −∆H)Γ = Hγ −∆H .

Thus for all γ ∈ (0,∞), the inertia of Hγ −∆H equals the
inertia of H −∆H , and in particular whether or not Hγ −∆H
is singular is independent of γ . Hence ∆H must satisfy a
bound similar to that of Lemma 4 for all values of γ . We
make this more precise in the following two theorems.

Theorem 5 Let H be a nonsingular Hermitian matrix.
Then the smallest perturbation ∆H with the structure given
in (5) such that H −∆H is singular is bounded by

inf‖∆H‖2 ≥ sup
γ

min{µ(Hγ),ν(Hγ)}. (10)

Proof: The proof follows immediately by applying
Lemma 3 to Hγ for all values of γ . Since the inequality



Fig. 1. Plot of the singular values of Hγ as a function of γ
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(8) holds for all γ in the open interval 0 < γ < ∞, it must
also hold for the supremum.

Fig. 1 illustrates Theorem 5. The singular values |λi(Hγ)|
(not the eigenvalues) are plotted as a function of γ from
0.1 to 10 for a randomly generated Hermitian matrix H.
The circle in the graph shows the lower bound given by
Theorem 5, namely the maximum least singular value over
gamma, achieved at, say, γ = γ̂ . However, the theorem does
not exhibit a perturbation that has the required structure. In
fact, this is not generally possible when the smallest singular
value coincides locally with one eigenvalue µ(Hγ) on one
side of γ̂ and a different eigenvalue −ν(Hγ) on the other
side of γ̂ , as is the case in Fig. 1. This is demonstrated by
the following stronger result, illustrated in Fig. 2, where the
eigenvalues λi(Hγ) are plotted over the same range for γ and
for the same matrix H. The circle in Fig. 2 illustrates the
lower bound given by Theorem 6, namely the smaller of the
absolute values of the maximum value of the least positive
eigenvalue µ(Hγ) and the minimum of the largest negative
eigenvalue −ν(Hγ). Notice that, since H is Hermitian, the
situation illustrated in Fig. 2, namely that the eigenvalues
are smooth functions of γ , is generic, since the codimension
of the manifold of complex Hermitian matrices (resp. real
symmetric matrices) with multiple eigenvalues is 3 (resp. 2)
and Hγ is a one-parameter family (see [5], where a figure
like Fig. 2 appears on the cover of the text). On the other
hand, Fig. 1 is also generic, since the only requirement is
that the generically smooth curves µ and ν cross at some
value of γ . Note that the proof of Theorem 6 includes the
nongeneric case where eigenvalues coincide for some γ: there
is no assumption that the functions λi(Hγ), µ(Hγ) and ν(Hγ)
are smooth functions of γ .

Theorem 6 Let H be a nonsingular Hermitian matrix.
Then the smallest perturbation ∆H with the structure given
in (5) such that det(H −∆H) = 0 is bounded by

inf‖∆H‖2 ≥ min{sup
γ

µ(Hγ),sup
γ

ν(Hγ).} (11)

Fig. 2. Plot of the eigenvalues of Hγ as a function of γ
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Proof: Consider a graph of the eigenvalues λi(Hγ) as
a function of γ as in Fig. 2. These curves are continuous but
not necessarily smooth. Since the matrix Hγ is nonsingular
for all γ ∈ (0,∞) these eigenvalue curves do not intersect
the horizontal axis. Furthermore, if Hγ −∆H is singular for
some γ , it must be singular for all γ ∈ (0,∞), and since the
inertia of Hγ −∆H is independent of γ , it follows that there
is at least one index i for which the eigenvalue λi(Hγ −∆H)
is identically zero for all γ (not shown in figure). Thus, by
Lidskii’s theorem,

‖∆H‖2 ≥ |λi(Hγ)−λi(Hγ −∆H)| = |λi(Hγ)−0|.

Suppose that λi(Hγ) is positive (recall that the sign is the
same for all γ). Then it follows that

|λi(Hγ)| ≥ µ(Hγ)

and since this is independent of γ we obtain

‖∆H‖2 ≥ sup
γ

µ(Hγ).

Similarly, if λi(Hγ) is negative we have

|λi(Hγ)| ≥ ν(Hγ)

and therefore
‖∆H‖2 ≥ sup

γ
ν(Hγ).

Since one bound or the other must hold, we have the desired
result.

It follows from Theorem 6 that if both supγ µ(Hγ) and
supγ ν(Hγ) are unbounded, there is no solution to the prob-
lem. Indeed, if e.g. S � 0 and T ≺ 0 then the sub-matrix γ2S
of Hγ guarantees that it has n positive eigenvalues tending to
+∞ for γ going to +∞ and the sub-matrix T/γ2 guarantees
that it has n negative eigenvalues tending to −∞ as γ goes
to 0. Thus both suprema are unbounded.



The next theorem shows that the bound just proved is tight.
The proof exhibits a ∆H that solves the problem, but we do
not give all the details.

Theorem 7 Let H be a nonsingular Hermitian matrix.
Then the smallest perturbation ∆H with the structure given
in (5) such that det(H −∆H) = 0 has norm given by

min‖∆H‖2 = min{sup
γ

µ(Hγ),sup
γ

ν(Hγ)} (12)

when the right hand side is bounded.
Proof: Somewhat analogously to the proof in [6], we

observe that there are three possible cases when the right-
hand side is bounded; we give details only for the first case.
The first case occurs when the relevant supremum is achieved
by an eigenvalue λi(Hγ̂) for some index i and some γ̂ ∈ (0,∞)
and this eigenvalue is simple (does not coincide with any
other λk(Hγ̂)). It follows that λi(Hγ) is differentiable with
respect to γ at γ̂ , with

dλi(Hγ)

dγ
= z∗

dHγ

dγ
z = 0,

where z is a corresponding normalized eigenvector [3].
Observe that

dHγ

dγ
= 2γ−1 (

DHγ +Hγ D
)

(13)

where D = diag{In,−In}. If we partition z = [u∗ v∗]∗, then at
γ = γ̂ ,

z∗
dHγ

dγ
z = 2λi(Hγ)γ−1z∗Dz = 2λi(Hγ)γ−1(‖u‖2

2 −‖v‖2
2) = 0.

Thus ‖u‖2
2 = ‖v‖2

2 = 1/2. We now construct ∆H by setting
∆R = 2λi(Hγ̂)uv∗, for which ‖∆H‖2 = |λi(Hγ̂)| and Hγ̂ −∆H
has the null vector z. The equation (12) follows from this
and the lower bound established by Theorem 6.

The second case occurs when the lower supremum in (12)
is achieved by an eigenvalue λi(Hγ̂) for some index i and
some 0 < γ̂ < ∞ and this eigenvalue coincides with one or
more λk(Hγ̂),k 6= i. In this case one shows that there exists
an eigenvector z = [u∗ v∗]∗ in the corresponding invariant
subspace such that ‖u‖2 = ‖v‖2, but we omit the details.

The third case is that the lower supremum in (12) con-
verges to a limiting value as γ → 0 or γ → ∞. This case can
occur only when S and T are both positive semidefinite, and
at least one of them is singular. In this case the minimizing
perturbation can be constructed directly; we omit the details.

We now observe that the distance characterized by The-
orem 7 can be computed efficiently since either µ or ν ,
whichever has a lower supremum, is unimodal. The beau-
tifully simple proof is again inspired by [6]. Note that we
do not claim that µ and ν are both unimodal functions. In
fact, this is not always the case.

Theorem 8 Let H be a nonsingular Hermitian matrix and
suppose that at least one of the suprema in the right-hand
side of (12) is finite. If the minimum of the two suprema is
the supremum of µ(Hγ), then any local extremum of µ(Hγ)
is a global maximum. Likewise, if the minimum of the two

suprema is the supremum of ν(Hγ), then any local extremum
of ν(Hγ) is a global maximum.

Proof: Without loss of generality, suppose the first
of the two cases holds. Suppose that γ̃ locally minimizes
or maximizes µ(Hγ). The proof of theorem 7 applies in
exactly the same way to γ̃ and exhibits a perturbation H∆
for which ‖∆H‖2 = |λi(Hγ̃)| and Hγ̃ −∆H is singular. If there
were another γ for which µ(Hγ) is larger, this would violate
Theorem 6.

The multiplicative perturbation results are similar. For any
Hermitian matrix M, define

µ(M) := max
i
{λi(M) : λi(M) > 0},

ν(M) := max
i
{−λi(M) : λi(M) < 0},

with the convention that maximizing over the empty set
yields −∞. The main result for multiplicative perturbations
is as follows.

Theorem 9 Let H be a Hermitian matrix. Then the
smallest perturbation ∆H with the structure given in (5) such
that det(I −∆HH) = 0 has norm given by

min‖∆H‖2 = 1/max{inf
γ

µ(Hγ), inf
γ

ν(Hγ)}, (14)

when the denominator on the right-hand side is nonzero.
A proof of this theorem for invertible H is immediately

obtained by applying Theorem 7 to H−1. We omit the proof
for singular H here.

III. COMPUTING THE PASSIVITY RADIUS

As a consequence of an analogy of Theorem 8 for the
multiplicative case, the solution characterized by Theorem 9
can be computed efficiently. Each univariate minimization
problem can be solved using bisection since derivatives are
available. One minimization may fail because the function is
not unimodal, but if this occurs, it must be the other infimum
that is larger.

It follows from the previous section that in order to
compute the passivity radius rP, one needs to compute

r−1
P = max

ω
max{inf

γ
µ(Hγ(ω), inf

γ
ν(Hγ(ω)} (15)

where
H(ω) := ΓET

H (ω)−1EΓ.

We point out here that the right-hand side of (15) is nonzero
for all ω because the sufficient condition of Theorem 2 is
always satisfied. The (1,1) and (2,2) blocks of H(ω) :=
ET H (ω)−1E are given by

H1,1 = X(ω)∗(G( jω)+ [G( jω)]∗)−1X(ω),

H2,2 = Y (ω)∗(G( jω)+ [G( jω)]∗)−1Y (ω),

where
X(ω) :=

[

−C(A− jωIn)
−1 , Im

]

Y (ω) :=
[

Im , −BT (AT + jωIn)
−1 ]

.

These matrices correspond to the matrices S and T of
Theorem 2 and clearly have the same inertia.



The expression (15) is a two-parameter optimization prob-
lem. We propose to solve this using a level set method.
This is inspired by a method given in [7] to compute the
real stability radius, solving the two-parameter optimization
problem described in [6].

In order to explain the principle, we assume for simplicity
that

r−1
P = max

ω
τ∗(ω),

where

τ∗(ω) := inf
γ

τγ(ω), τγ(ω) = µ
(

Hγ(ω)
)

.

We start by choosing a frequency ωo and compute τ∗(ωo).
Let γo be a minimizing value of γ; it can be shown that
γ0 ∈ (0,∞). Now freeze γo and observe that

ξo := τγo(ωo) = τ∗(ωo)

but at all other frequencies ω we have

τγo(ω) ≥ τ∗(ω). (16)

One then computes the intervals of ω for which τγo(ω) > ξo
via the solution of an eigenvalue problem (see [7]). These
are obtained from the real zeros ω of

det
(

ξoI2p −ET
γo

H (ω)−1Eγo

)

= 0,

where

Eγo :=





γoIn 0 0 0
0 γoIm 0 Im/γo
0 0 In/γo 0



 .

These are also the real zeros ω of the equation

det
(

H (ω)−Eγoξ−1
o ET

γo

)

= 0,

which is a Hamiltonian generalized eigenvalue problem :




−γ2
o In/ξo B A− jωIn
B∗ D+D∗− (γo2+ γ−2

o )Im/ξo C
A∗ + jωIn C∗ −γ−2

o In/ξo



 .

These so-called level sets are the only intervals in which we
can find maxω τ∗(ω) because of (16). The algorithm pro-
ceeds to find a new frequency ω1 for which ξ1 := τ∗(ω1) > ξ0
unless the union of the intervals is empty. The repeated
application of this idea is shown in [7] to yield a sequence
of levels ξi that globally converges to the solution of the
two-parameter optimization problem. Moreover, variants are
described in [7], [4] for which the asymptotic convergence
behavior was reported to be at least quadratic.

We conclude by pointing out that if {A,B,C,D} are real
and the perturbation matrix ∆ is also restricted to be real,
the problem is much more difficult : the matrix H(ω)
is still complex and one has to consider real symmetric
perturbations of a complex Hermitian matrix. This problem
is not treated in this paper, and seems quite challenging.
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