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ABSTRACT 

It is shown that the cyclic Kogbetliantz algorithm ultimatei), c~:Li,“~r’;,, x: qudxati- 

tally when no pathologically close singular values are present. 

1. INTRODUCTION 

Kogbetliantz’s algorithm for computing the singular valr~ t it.:,.; .!tlpcsition 
(SVD) of an arbitrary real or complex matrix A [5,6] has rer:eit:cci ;i great deal 
of attention recently because of its efficiency as a parallel algorrtirm [I] and 
also because of its possible extensions to various other decorq&tio:s [3,8]. 
This article is concerned with the speed of convergence of tlw Z<oghetliantz 
method. As proved in [2], the method converges under tlw L~~:,.:i~:@io~> that 
the pairs of rotation angles { +k, qk} lie in a closed intertral !, i,Ayendent 
of k: 

where J is interior to the interval ( - 77/2,7r/2). For the J:itml>i ulethod 
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applied to Hermitian matrices, this result has been extended to 9uadratic 
convergence under some mild conditions [4,9,11-131. Here we extend the 
property of quadratic convergence to the Kogbetliantz method and discuss 
under what conditions and for what variants of the method this property can 
be proved. 

The basic method of Kogbetliantz [5,6] for computing the SVD of an 
m X n matrix 

A = UZV* 0.2) 

(where * stands for conjugate transpose) consists of applying transformations 
U,, V,* such that 

u(O) = z 
rn, 

v(O) = z 
n, 

A(o) = A, (1.3a) 

u(k+ 1) = U,U’k’ v(k+l) = vkvW 
7 

A(k+ 1) = ukA’k’v;, 

(1.3b) 

The updating transformations U, and V, are chosen as orthogonal transforma- 
tions acting only on the pair of rows and cohmms { ik, j, }, in order to yield 
zeros in the positions (ik, jk) and (jk, i,): 

Notice that if m and n are unequal and say m < j, G n, then only one 
element is zeroed and only one transformation is applied (V, in the above 
case). The relevant 2 X2 submatrices u,, Vk of u,, V,, respectively, are 
denoted as [2] 

(Ykcos +k & sin+k 

- yk sin+k 1 [ 

tkcos lC'k 
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where cyk, pk, yk, 6,, &, nk, lk, ok are complex numbers of norm I, satisfying 

4k = PkYk) &$k = %Jk. 0.6) 

The rotations (1.5) can be constructed to satisfy (1.1) and (1.4) simuha- 
neously.’ Note that in the real case all (Yk,Pk,Ykj Sk, ‘$k, nk? lk, wk can be 

chosen equal to f 1. Defining Ack) as 

A(k)= D’k’ + E’k’ + Elk’ 
11 

where Dck) 7 Eck) and Elk) are the matrices containing u ) 
above, and below the diagonal, respectively, we define 

(I.71 

the elements on, 

where ]I. 11 F stands for the Frobenius norm. This quantity is used in the sequel 
as a measure of convergence of Ack’ to a diagonal matrix. 

2. THE CASE OF DISTINCT SINGULAR VALUES 

Let us assume that the singular values of A satisfy 

I”i - Ui] 2 26, (2.1) 

and suppose we have reached the stage when 

]I&~’ - D’k’]], = Sk’ < 6/2. (2.2) 

Then we have, according to [7, Theorem 5.101, 

1 Iu$‘I - ui I< IIDck’ - A’k’]], < 6/2 (2.3) 

’ In fact, a riguorous analysis [2] shows that this can only be ensured for a weaker version of 
either (1.1) or (1.4). For details we refer to [2], since this is not important for the sequel. 



304 C. C. PAIGE AND P. VAN DOOREN 

for SOIIIC ~tl~~ing of the ul. From this, it also follows that 

zz 6. (2.4) 

Since the rotations (1.4) reduce S (k) at each step, (2.4) also holds for all 
s~~l::;crt~~c~~rt i:. We now show that under the above assumption (2.1) after one 
LyY%? oi 

N= max{m,n}(max{m,n} -1) 
2 

(2.5) 

rc:i~iti~;l;~ i 1 ! t including all possible (ik, j,) pairs, we have 

S(k+ IY) < 
[ sq2 

s . (2.6) 

The rcesillt is proved in a similar fashion to [13] but first requires the following 
Ir:nnrra, (II!! ail !ed from [ 10, Theorem 6.31. 

(2.7) 

Y=V~ 6 = I lmd - lm22l I* (2.9) 
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Then there exist angles c$, 4 aAdA complex numbers a, /3, y, 6, E, q, 5, w de- 
fining unitary transformations U, V as in (1.5) such that 

(2.10) 

with ai real positive and 

&GqG& ~\/G&Tzq < 2y/6. (2.11) 

Proof. In fact, [lo, Theorem 6.31 proves the bound (2.11) where + and 
# are the angles over which left and right singular vectors, respectively, are 
rotated in the transformation (2.10). From this, one then easily constructs 
6, e as in (1.5). Notice that therefore, u1 and a2 are not necessarily ordered. 
Each ui is the singular value closest to Imjil, and this choice is crucial for 
obtaining (2.11). H 

In the general cyclic method, ail off diagonal pairs of elements (a i, j,, a j,i,) 
are annihilated successively in some order. Let us denote the values of these 
pairs immediately before annihilation by (x,, y,) and the angles of the 
corresponding pair of rotations by (+s, $,), for s = k, . . . , k + N - 1. If (x,, y,) 
is annihilated in step s we have, according to Lemma 1, 

sin’& + sin’ J/, < 4 
k12 + k&l2 

s2 , 
(2.12) 

Since [S(“)]2 - [S cs+ “1’ = Ix:] + Jys]‘, we have 

k+N-1 

[skq2- c (Ixs12+Iy,12)= [S’k+Nq2>,0, (2.13) 

and thus, from (2.12), 

s=k 

k + N ~ 1 

s = k 

. (2.14) 



306 C. C. PAIGE AND P. VAN DOOREN 

In order to bound S(t+N), we now look at the history of the pair of elements 
in the x, and y, positions subsequent to their annihilation. These elements 
are only affected by a subset of the later rotations, namely those involving 
column or row p or 9, where (p, 9) was the rotation annihilating the pair 
(x,, y,). Let us therefore denote the subscripts of the rotations affecting 
(x,,~s)b sl,..., s,, where r is a function of s. We also denote the values of 
the pair following the transformation involving the rotations (&,, qsi) by x,, sj 

and Y,,, y respectively. 
We then have one of the following two situations: 

x s,s, =X ,,,,_pco~~~,+ as,Psin& 

= Y Yx,s,_, s,s, Taos ICI,,+ bysin#,, (2.15) 

or 

y = s,s, ys,s,_,scos~s,+ bpw+ (2.16) 

where (Y, /?, y, 6,&q, l, w are complex numbers of norm 1, and a,, b,, denote 
elements of the matrix A(“?) whose positions depend on the rotation of step s, 
and on xs, y,. From this we find (with lsin@,,l $ max{ jsin+J, (sin $,,I}) 

(xs,s,l G Iq,s,_,l+ l%,l w%,L (2.17) 

IY,,s,l G IYs,s,_,l+ lbs,llsinq* (2.18) 

Using this recursively and x, = x,, s, = Y, = Y,, s, = 0, we obtain 

Ix,,,,l G Ias, lbinfl,,l+ la,211sin421+ - * . + la,,1 lbin~s,l~ 

IY,,,,~ f lb,,1 lsin$,l+ Ibs,llsin~s,l+ . . * + lb,,l lsinR,l. 

(2.19) 

(2.20) 

Denoting E, (k) + Efk) as the matrix Eck) of off diagonal elements of Ack), we 
thus have that E(k+N) can be bounded elementwise by 

IE (k+N)l G lsinek+rI IPrI+ lsinO,+,l IPsl+ . f . + lsinOk+NI IPJ. (2.21) 
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where Pi are the matrices containing the appropriate elements asz and b,, of 
(2.15)-(2.2(J). Notice that the elements of each Pi are all zero except for two 
columns and rows, which are those involved in the rotations through the 
angles +k+i and $J~+~. These two columns and rows contain the elements ]a F,] 
and (by,1 of (2.15)-(2.20) when s, = k + i. Since these are also off diagonal 
elements of A(k+i), their sum of squares is less than [SCk+“]’ and thus we 
have 

11 IPi1 IIF < S(k+i)< Sk’. (2.22) 

From this we then obtain [because of (2.14)] 

s(k+N) = 11 E(k+N) IIF = 11 (E(k+N)I II8 

< S(k’[]sinOk+I]+ . . . + ]sinf9k+h,]] 

N l/2 
G Sck) N C (sin’$k+i +Sh2$k+i 

k=l )I 
(2.23) 

which shows the quadratic convergence of the general cyclic scheme. 
For the special row by row or column by column scheme, better bounds 

can be obtained, as was also the case for the Jacobi method [13]. The proof is 
here again strongly inspired by [13]. We make the same choice as there also, 
and illustrate the proof for a matrix of moderate size in order to simplify the 
notation. The considered matrix is 5 X 4, and only the row cyclic method is 
discussed, since the proof for the column cyclic method is completely 
analogous. Below we show the effect of annihilating the elements in the first 
row and column. The off diagonal elements are those we are interested in, 
and they are denoted with an index which is updated only when these 
elements are affected by the current rotations. On each matrix A(k+i) we also 
mark with arrows the columns and rows affected by the transformations Uk+i 
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and Vk+i yielding the next matrix A(k+i+ ‘): 

x a0 bo co‘ 
do x eo &I 
go ho x i, 

jo ko 10 x 
_ mo no 00 PO. 

,$k+ 1) 

J J 
x 0 bl Cl 

0 x el f, 

h, x i, J ’ g1 

jl kl 10 x 
_m1 fll 00 PO 

-+ x a2 0 c2 

d2 x e2 fi 
0 h, x i, ’ 

-3 * 
12 kl 11 x 

_ m2 n1 01 PO 

A(k+3) 

-+ X a3 b, O- 

d, x e2 h 

g3 h, x i, 

0 k, 1, x 

+ _ m3 721 01 Pl_ 

A(k+‘U 

X a4 b4 c4 

d4 x e2 fi 

g4 h, x i, 1 (2.24) 

14 k2 12 x 

_o n2 02 P2 

As was noted before, the last transformation is only a one-sided transforma- 
tion because the numbers of columns and rows are unequal. Using (1.5) and 
reasoning similar to that of (2.17)-(2.20), we find the following inequalities 
for the elements of the first row and column of Ackf4): 

Ia,1 G lhl lWhI+ Ikd lsin+A+ ITI lsin+412 

lhl G I41 lsinhI+ lo11 IsinN, 

(2.25) 
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and 

IdA = Id.4 G IelI lb1C/2I+ lhl lsin&,l, 

l&l = l&l G Ii,1 Isin 4.A 

lhl = IhI= 0, 

lm,l = 0. (2.26) 

Using the Cauchy-Schwartz inequality on each of the above lines and adding 
yields 

1%12 + hl2 + Id2 

G IhI + IhI + M2 + 1412 + 1%12 + IPA i sin2$ (2.27) 
i=2 

and 

ld412 + l&l2 + lj412 + h12 G [lql” + Ihl” + li,121 IfI Sin2+ie (2.28) 

i=2 

The following groups of equalities: 

1%12 + IQ2 + Id2 + IP,12 = l%l2 + 1%12 + b”12 + lP,12> 

lj2l” + IhI + VII2 = IhI” + lU2 + 14112~ 

l&l2 + IhI = l&l2 + lk? (2.29) 

and 

Ic212 + If,l” + l&l2 = 1%12 + lfo12 + 14112> 

IhI + leI12 = IhI + leol27 (2.30) 

are easily obtained from (2.24) and the fact that rotations on elements of a 
column or row do not affect the sum of the squares of their elements. Using 
(2.29)-(2.30) on (2.27)-(2.28) one then finally obtains (on putting lsin8,l = 
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b412 + v&l2 + h12 + l&l2 + l&l2 + lj‘I12 + Id2 

4 4 

G IlEdli c sin2+i + lF,ll”F c sin2#i 
i=2 i-2 

sin2 Bi, (2.31) 
i=2 i=2 

where we have implicitly taken sin #4 = 0, since no column transformation is 
performed at that stage. The sum of squares of the elements bounded in 
(2.31) remains unchanged in subsequent steps. One then bounds in a similar 
fashion the sum of squares of the following elements in the second row and 
second column after step k + 7, which completes their successive annihilation: 

Id2 + l&l2 + l&l2 + lk512 + Id2 

Q [S’k+4)]2 C sin28, < [SCk)12 i sin2 Bi . (2.32) 
i=6 i=6 

Here again the sum of squares on the left hand side remains constant in 
subsequent steps. Similarly for the third row and column we have 

l&l2 + lZ612 + 10~1~ G [S(k+7)]2sin2t9, G [Sk)12sin28,, (2.33) 

and finally the last transformation (k + 10) yields p, = 0. Adding (2.31)-(2.32) 
and (2.33), we then have 

is (k+10)12 f [S(k)]2 $J .&ei < [S(k)12 y 
[ 1 

2. (2.34) 
i=l 

From this one derives the general inequality 

2[Sk)12 
S(k+N) < ~ 

s a 
(2.35) 
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3. THE CASE OF REPEATED OR VERY CLOSE SINGULAR VALUES 

For the analysis of the quadratic convergence of the Jacobi method in the 
presence of repeated or clustered eigenvalues, one relies on a lemma of the 
following type [ 141: 

LEMMA 2. Let the symmetric matrix A be decomposed as 

A=D+E (3.1) 

with D diagonal and IIE/IF= E < 6/2, and let all eigenvalues of A be 
separated at least by 26 except for a cluster X 1,. . . , A, of pathologically close 
(or repeated ) eigenvalues: 

Ihi - q < q -=x 6 for i, j<k. (3.2) 

Then after a suitable symmetric permutation of rows and columns one has 

[Ai - aiil < 6, (3.3) 

and the off diagonal elements E, of the leading k X k principal submatrix A, 
of A are bounded by 

E2 
IIQIF < - + 71. 6 

n 

An analogous theorem for the singular values of a nearly diagonal matrix 
A does not hold, as is shown by the following example: 

(3.4) 

with singular values approximately 2 + a~‘, 1 + g&2, 1 + is2, 8 = i, and 9 = as”. 
Although there is a cluster of two close singular values around 1, (approxi- 
mated by the diagonal elements [all1 and la,l), the off diagonal elements aI2 
and a2i are clearly of the order of E and not ~~/a. However, when 
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triangularizing this matrix by a left unitary transformation Q*: 

(3.5) 

suddenly the element a r2 becomes very small. This first step of the triangular 
version of the Kogbetliantz algorithm [S] was in fact always observed to yield 
indeed ~~/8 off diagonal elements in the right places for several random 
matrices with pathologically close singular values. It is for this reason that we 
conjecture such a property to hold for triangular matrices. Notice that this 
does not imply that the triangular version of the algorithm has better 
convergence properties in the presence of pathologically close or multiple 
singular values: the conjectured lemma is indeed only a tool to derive 
appropriate error bounds for proving quadratic convergence. The obtained 
bounds are usually serious overestimates and do not always reflect the true 
behavior of the algorithm. This is particularly the case for the above example 
(3.4), since it is symmetric and Kogbetliantz’s algorithm then becomes 
Jacobi’s algorithm, which is known to converge quadratically (the eigenvalues 
are even well separated). 
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