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1. Introduction

Suppose we have been able to tridiagonalize given A € R™*" by a similarity trans-
formation V"'AV = T, then with W = V7T for ease of description,

AV = VT, ATw =wr?, Wiy =1, (1.1)
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WTiav=T=|" (1.2)
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We will not be concerned so much with how and when such transformations may

be obtained, but with how sensitive they are when they exist.

We will examine the sensitivity of V., W and T to small changesin 4, 11 = Ve
and wy = Wey, where e; is the i-th column of the unit matrix I. Sensitivity analyses
are of interest in their own right, but there is also a basic numerical motivation for
this analysis. For example when A is symmetric we would take W = V orthogo-
nal, corresponding to the symmetric Lanczos tridiagonalization of A with arbitrary
unit length vy [13], or the direct Givens and Householder tridiagonalizations of
A with vy = ey, see for example [9, §8.3.1]. Numerically stable implementations
of the Givens or Householder reductions lead to computed V, and 7T, such that
(A+ AA)V = VT,, V., = V + AV, where V is orthogonal and [AV]]2 = Ofe),
IAA2/]|All2 = O(e), € being the computer floating point precision, see Wilkinson
[18, §§20-28, §§37-45]. Thus a sensitivity analysis would tell us how such A4 could
cause V, and so V,, to differ from V, and T}, to differ from T in (1.1).

Because k2(V) = ||[V||2]|[V ™|z can be very large for unsymmetric 4, we would
normally not want to use (1.1) for such A if a given problem could be solved
quickly and accurately some other way. But in some problems we specifically want
the T in (1.1). Also if A is large and sparse or structured, whether symmetric or
unsymmetric, then the Lanczos algorithm may be a (sometimes the only) feasible
approach for finding 7', either for itself, or for solving the eigenproblem [13], or for
systems of equations [14], see also [10], [16] and [7], or for other practical purposes
such as in [8], and for these reasons both the symmetric and unsymmetric Lanczos
reductions are important.

The sensitivity analysis of (1.1) is also useful in general, in that it not only
increases our understanding of what circumstances make the reduction particularly
sensitive, and so may help for example in the design and monitoring of algorithms
which produce and use the reduction, but it is also an important part of the solution
of some problems. The very readable paper [6] by Freund and Feldmann clearly
describes the elegant and useful new application of the Lanczos algorithm [8], see
also [5], and also shows how the sensitivity of the reduction (1.1) leads to the
required sensitivities of the computed results. There it is shown how the sensitivity
with respect to some given parameter p can be computed along with the Lanczos
vectors in an extended Lanczos algorithm. Here we will treat the more general
problem of theoretically describing the overall sensitivity of the factors in (1.1) to
any possible small change. From this description condition numbers may also be
found.

Work on similar problems was developed by Le and Parlett [15], and by Carpraux,
Godunov and Kuznetsov [2]. The relation between this work and those will be
discussed in Section 7..

In Section 2. we show why the choice of normalization is important for sensitivity
results by discussing some optimality properties of normalizations. In Section 3. we
quickly summarize the unsymmetric Lanczos algorithm as background for the sen-
sitivity analysis in Section 4., where the sensitivities of the off-diagonal elements of
a matrix Z (which leads to the sensitivities of V and W in (1.1)), diagonal elements
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of T, and remaining elements of 7" and Z are developed in separate subsections.
The sensitivity results are then summarized in Theorem 4.1. in Section 4.4.. The
inverses of two matrices which are critical to the sensitivity are derived in Sec-
tion 5., and bounds for the general case including Krylov subspaces, and condition
numbers for the symmetric case, are derived in Section 6.. The conclusion Section 7.
briefly summarizes the work, relates it to similar works, and mentions some of the
problems which still need to be treated.

2. Normalization and uniqueness

For any nonsingular diagonal D the forms in (1.1) and (1.2) are preserved when we
replace V, W and T by VD, WD~! and D~'T D respectively, so in general we need
to specify a normalization to make the reduction unique, and the sensitivity analysis
meaningful. But whatever normalization we choose, if 8;v; # 0,7 = 2,...,k, but
Br+1vk+1 = 0, then the first k columns of V and W, and the leading k X k block of
T will be unique in (1.1) and (1.2) (this can be seen for example from the algorithm
(3.7) below), but the rest need not be. This immediately suggests small §; or ~;
will lead to sensitive reductions, and we will see the analysis supports this later.

To avoid this lack of uniqueness, we will for simplicity assume fg;v; # 0, ¢ =
2,...,n. Since T'— AI would then have rank at least n—1, this would imply non-
derogatory A. However it will be clear from the analysis that when this assumption
does not hold, we could analyze the sensitivity of the unique leading parts using
the same approach as here.

The normalization will affect the sensitivities, so we discuss the main choices in
some detail here. A popular choice, and the one we use here whenever we do specify
a normalization, is to take

Bi = || >0, i=2,...,n, (2.3)

so T becomes what has been called quasi-symmetric. This looks like it will minimize
some norm of 7', which we now show it does. If D = diag(é4, ..., 6,) is nonsingular,
then transforming T to D~!TD transforms 7; to v;0; and 3; to B:/6; where 6; =
8i/8i1,1=2,...,n. The f; may be chosen independently, and since 267 + 32 /62 is
minimized when |y;6;| = |3:/6;|, we see the normalization (2.3) does minimize ||T||%
(the sum of squares of elements). But we can still have in (1.1) |T'||r = s2(V)|| 4] F,
with arbitrarily large ||T||» for a given || A||#.

This is an unexpected result, so we give an example. Let 2 x 2 A1 = egef, and
for 0 < o define ¥ = diag(1, o). With orthogonal () in the definitions:

1 1 1 _ 1 /-1 -1
QEE(—l 1), ‘/ilsz, Tllz‘GllAll%l:%( 1 1 ),

Ty1 is quasi-symmetric and satisfies A;1Vy;; = V11711 If 0 > 1 then 1 = | Ay ||lFr =
52(‘/11)”T11”F7 while if o S 1 then ||T11||F = 0'_1 = 52(1/11)“1411”}7’7 which is
arbitrarily large by taking o arbitrarily small. For n > 2 we show how this latter
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result can be approached arbitrarily closely by extending this example. Let 0 < 1,

A A o2 N
AZ(‘A; T2122)’ A12:<0-3)eir7 A21:€1(02 o'), V:((l)l I),

where Thy is say o2 times a fixed quasi-symmetric tridiagonal matrix, then

= -1 _ T exv/20%eT

T = VAV = (elﬁazeg T ,
ITlF = o7 +40" +|[Toll3, m2(V) =0,
IAI7 = 140" +20" +0° + || Ta2|%

and by decreasing o we can make ||T'||% arbitrarily large, and ||T||r/[r2(V)|| 4] #]
arbitrarily close to unity.

In our analysis we will consider an instantaneous rate of change T of tridiagonal
T(t), a differentiable function of scalar ¢. Since T must be tridiagonal, and since
B:(t) = |vi(t)| with the normalization (2.3), we must have 82 = 2, 26;3; = 27,
so multiplying by ~;/(23;) gives

¥iBi = Bi¥is (2.4)

and thus |3;| = |4i|, meaning 7" is also quasi-symmetric, and so also has minimum
F-norm over all nonsingular diagonal D. Thus (2.3) is an attractive normalization
to take when examining the sensitivity of 7" alone, as it introduces no spurious
sensitivity. More arbitrary normalizations such as 3; = 1 are clearly much less
appealing for this analysis.

Other normalizations concentrate on the sizes of the columns v; and w; of V
and W in (1.1), while ensuring w7 v; = 1. For fixed V and W consider V = VD
and W = WD~ in (V) = ||V|.|[W7||. Differentiating % (V') with respect to the

elements of D shows its minimum occurs when
llwill2 = ||vil|2, r=1,...,n, (2.5)

so this normalization could be used when the F-norm condition of V' is the major
concern. Finally if D, equilibrates the columns of V = V D, in the sense that for
every column ||v;||2 = 1, and if D = D,,;, minimizes x2(V D), then van der Sluis

[17, Thm. 3.5] showed
ﬁ?(VDmin) S 52(VD2) S \/552(VDmin)7
and so either the normalization ||vi]ls = 1, ¢ = 1,...,n, or the equivalent normal-
ization for W, will give a good approximation to minimizing kq (V).
If we used (2.3), we could later compute Dp = diag(/||wil|2/||vi]|2) so kr(VDp)
is the minimum of kp(V D), and then we would know

kp(V) > kp(VDp) > 6p(V)/62(Dr),

so k2(Dp) would indicate how far kp (V') could be from the minimum with respect
to diagonal D of kp(V D).
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Sensitivity Analysis of the Lanczos Reduction 5

For symmetric A, the normalizations (2.3), (2.5), ||vi||2 = 1, and ||ws||2 = 1, (each
with W7V = 1) all give symmetric T and orthogonal W = V.

3. The unsymmetric Lanczos algorithm

The unsymmetric Lanczos algorithm (in theory) develops the reduction (1.1) as
follows. Here we use the normalization in (2.3). Assume we are given

A, vy and w; such that wlv; = 1. (3.6)

Set ay = wi Avy, 59 = Avy — ayvy, Wy = ATwy — ayw;. For i = 2,3,...,n the
general step is then:

If 5, =0 or w; =0 or m?ﬁi =0 STOP.

Otherwise choose 3; = |vi| such that B;v; = v;, y;w; = w;, wiv; =1,

a; = wlTAvl-,
Vi1 = Avi — v — v,
. T
Wip1 = A w;— aw;— fiwiy. (3.7)

Biorthogonality of the w; and v; can easily be proven recursively. If the algorithm
does not stop prematurely, so that it ceases only after step ¢ = n, then (2.3) holds,
WTV = I, and we must have here 7,41 = 0 and W,41 = 0, and (1.1) follows.
Of course (3.7) also follows simply from observing the columns of (1.1) and the
diagonal elements of (1.2).

4. Sensitivity analysis

Suppose the Lanczos algorithm (3.7) applied to A with starting vectors vy and wy
does not stop prematurely, and gives (1.1) and (1.2) with (2.3). Let A(t) € R"*"
and vy (t), w1 (t) € R"™ be differentiable functions of scalar ¢ with

A(O) = A, ’Ul(O) = V1, w1 (0) = w1, U1 (t)Twl(t) =1. (48)

Here we could define A(t) = A + tAA for arbitrary but small AA, which suggests
we can also handle structured perturbations, perhaps considering changes in only
a few elements of A. Since vy (t)Twy(t) = 1, similar linear functions could be too
restrictive for v1 (t) and w1 (t). Often we will just be interested in the sensitivity with
respect to changes in A, and then we will take ©; = w; = 0, but the basic analysis
is no more difficult with them nonzero. If we carry out the Lanczos algorithm (3.6)
and (3.7) with these functions, an examination of the algorithm shows each function
is differentiable while the §;(¢)7i(t) # 0, so since (2.3) holds, for small enough ¢
the algorithm will not stop prematurely, and the resulting functions will satisfy the
equivalents of (1.1) and (1.2)

AV(H) = V(T (), A(t)TW () = W(t)TT (1),
wHIvit) =1, W(HTA)V(t) = T(t). (4.9)
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The same can be shown for any other unique choice of normalization. We will derive
expressions for the derivatives at ¢ = 0, and write A = A(O), V= V(O) etc. for
simplicity.

Differentiating these last two equations at ¢t = 0 gives

WV 4+WTv=0, WTIAV+WTAV+WTAV =T.
But WIA =TWT, AV = VT, and writing
Zo=-W'Vv=WTv, My=WTAY, (4.10)
gives the crucial relationship
T+TZy— ZyT = M. (4.11)

We will see both 7" and Zg = —WZV = WTV can be developed from this one
matrix equation, and then

V = W Tz,=-VZ,
W o= vzl =wz]. (4.12)

The key is to remember that like T, T must be tridiagonal, and since v; and w;
are known, Z; has known first column —WT?; and row 1i);[V. Write Zg = Z1 + Z
where Z; is the known, and Z the unknown part of Zy, Z having zero first row and
column. This gives for (4.11)

T+TZ—-ZT=Ms—TZ, +2Z,T =M, say, with structure: (4.13)
ar Yo ap 72 0
B2 - . " B2 az - 299+ Zon
; f}/n . . f)/n
ﬁ" a" ﬁn (879 Zn?2 ' Znn
0 ar 72
_ Z22 °  Z2n B2 az
Yn
Zn2 : Znn ﬁn Qn
- M. (4.14)

This structure allows us to split the sensitivity problem into manageable sub-
problems. First we will show how to obtain one nonsingular triangular linear system
whose solution contains all the subdiagonal elements of Z, and an independent one
giving the above-diagonal elements. Next we will see there is a simple expression
for each diagonal element of T. The diagonal elements of Z are zero in the case of
symmetric A and A, but the unsymmetric case is more challenging: note (4.14) is
n? linear equations in the (n — 1)2 + 3n — 2 unknown elements of Z and 7', so we
need n—1 more equations. Specifying the particular normalization used gives the
required number, and we will use (2.3) in the form of (2.4).
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Sensitivity Analysis of the Lanczos Reduction 7

4.1.  Off-diagonal elements of Z

The off-diagonal elements of Z can be found independently of the other elements
of Z or of . We show how to find the strictly lower triangle of Z. Elements 3 to n
of the 1st column of (4.14) give

232 m3i
— Bl . — . ,

Zn2 Mn1
then elements 4 to n of the 2nd column give

242 243 ﬁ4 Qg 75 232 my2
—anl . — BsI . + . . . . = . ,

Zn2 Zn3 ﬁn Ay Zn2 mn2

while for ¢ = 3,4,...,n—2, elements i 4+ 2 to n of the ¢th column give

Zi4+2,i—1 Zi42,i Zi4+2,i+1
- vl : —a;l : — Biy1l
Znyi—1 Zn,i Zni+1
Bit2 @itz Yigs Zig1, Mit2i
ﬁn Ay Zn.i mn,i

3

By using standard MATLAB notation for subscripts, so that for example m;.;
represents the column vector of elements ¢ to j in column %k of M, we may write
the above in block form as

Z3:n,2 m3.n,1
Z4:n,3 My:n,2
Z5:n,4 ms5:n,3
L - = - : (4.15)
Zi4+2:n,i+1 Mit2:n,i
Znn—1 Mpn-2

where L = L(T) is the n—2 block by n—2 block lower triangular matrix

JE2% P
B2 /83.[",3

[0,0,731,_.] B, Bul,_s
. . . , (4.16)
[0,0,%:1"71:71] B, Bipd,_i

[07 07 7"*2] Bn*2 /anl

with B; = [ai] =T]ij20n,i41m5 1 = 2,3,...,n=2.
By analogy, transposing (4.13) to give 7T — TTZT + ZTTT = M7 gives for the
strictly upper triangle of Z (using mp ;:; to represent the row vector of elements ¢
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8 Chris Paige and Paul Van Dooren

to j in row k of M, and m{i:j its transpose, and noting [Z7];.; x = Zlicri:j)

T T
Z?,S:n ml,S:n
T T
Z3,4:n m2,4:n
T T
T Z4,5:n m3,5:n
U : = . , (4.17)
T T
zi+1,i+2:n mi,i+2:n
Zn—1,n Mp—_2,n

where UT = U(T)T is the n—2 block by n—2 block nonsingular lower triangular
matrix

72In72
G2 73In—3

[0707ﬂ31n—4] G3 74]"_4
. . . . (4.18)
[0707/Bi1n—i—1] Gz '7i+11n—i—1

[07 0, ﬁn—2] G, s Vrn—1

with G = [ ]=T7)iy20m 41y 8 = 2,3,...,n—2. Note with the normalization (2.3)
we have quasi-symmetric 7', and so

U =|L]. (4.19)

4.2. Diagonal elements ofT

It is pleasing that the problem splits into finding the elements in the strictly lower
and upper triangular parts of Z sequentially, with the lower independent of the
upper and of the other unknowns. This easy development continues, for we may
now find the &; in terms of the next to (or second) diagonal elements of Z and the
diagonal elements of M alone. From the diagonal elements of (4.14)

a1 = my,

Gy = M2 + P3223 — Y3232,

G = Myt Viziio1 — Bizio1,i+ Bit12ii1 — Vit1%i41,is
i=3.4, .. ,n—1,

Gp = Mmpy+ YnZnn—1 — ﬂnzn—l,n- (420)

4.3. The remaining elements ofT and Z

The analysis so far has been independent of the normalization chosen, though the
actual values will still depend on the normalization used. But now we need to specify
the normalization in order to obtain separate expressions for the off-diagonal ele-
ments of T', and for the diagonal elements of Z. For the reasons stated in Section 2.
we assume (2.3), giving (2.4).

Since 3; = £v;, we can take D = diag(l,69,...,6,) with & = 6;—18;/vi, 1 =
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2,...,n, so TD and TD are symmetric. Let Zp = diag(z11,...,2nn), 211 = 0,

Z =Z — Zp, then from (4.13)
T
N

M+ZT-TZ =N + 5,
M+ZT-TZ, S=Z7ZpT-TZp, (4.21)

where N can be computed at this stage. Note SD = ZpTD —TZpD = ZpTD —
TDZp, and SD is skew symmetric since (SD)T = TDZp — ZpTD = —SD.

Since TD = ND + SD is symmetric with SD skew symmetric, taking the trans-
pose of each side of the former and adding gives

T=3DNT'D'+N), N=M+2ZT-TZ, |D|=I, (4.22)
which does not depend on Zp. If instead of adding we subtract, we get
S=1(DNTD™! - N). (4.23)

We will use these matrix expressions in Section 6..

We now define (; and 7; so that the following two equations easily fit in with
(4.16) and (4.18). This simplifies the presentation of Theorem 1 in the next section.
From (4.21)

_ﬁiCi = N1 =My o1+ Vic1Zi,im2 + (041:71 - ai)zi,i—l — Yi+1%i41,i—19 (4-24)
Vil = N1, =M1 — ﬁi—lzi—2,i - (ai—l - ai)zi—l,i + /Bi+1zi—1,i+la (4-25)

where we use z1; = z;; = 0 for j = 1,...,n and define 8y = v1 = Fpy1 =
Yn+1 = 0 so these definitions hold for : = 2,...,n. With these, and remembering
8; = 6;-108i/vi, the (i,i—1) and (i—1,¢) elements of (4.22) give fori =2,...,n

Bi = (887 mic1i+nii—1)/2 = Bi(mi — :)/2, (4.26)
i o= (§i_152~_1ni,i—l +mi-1,:)/2 = vi(ni — G)/2, (4.27)
while the (7,i — 1) element of (4.23), with (4.21), gives
Bi(zii — zic1.i-1) = (8:67 miz1 i — niiz1)/2 = Bi(ni + G) /2,
so for e = 2,...,n with z;; =0
Zii = Zi—1,i—1 + (i + Gi)/2, (4.28)

which completes the expressions for the sensitivities.

4.4.  Summary of the sensitivity expressions

The sensitivity results we have so far derived can be summarized as follows.

Theorem 4.1. Let A(t) € R™*™ and v1(t), w1(t) € R™ be (known) differentiable
functions of scalar t with

A(O) = A, 1]1(0) = U1, w1 (0) = Wi, vl(t)Twl (t) = 1,
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10 Chris Paige and Paul Van Dooren

such that the Lanczos algorithm (3.6)-(3.7) applied to A with starting vectors vy
and wy leads to tridiagonal T where

ar 72
AV=VT, Wwiv=r T=[" " .
Bn  an

V=[vi,e.c,vn]y, W=lwyy...,wn], Bi=|v|>0, i=2,...,n. (4.29)

Then for t close enough to zero the Lanczos algorithm (38.6)—(3.7) applied to A(t)
with starting vectors v1(t) and w(t) leads to

ADVE) =VOTW), WOTV(E) =1, (4.30)
4
T(t) = ? 2. . ’Yn(t) 5
Bn(t)  an(t)
Bi(t) = |(t)| > 0, i=2,...,m, (4.31)

with each function differentiable and T(0) =T, V(0) =V, W(0) = W. If we write
A = A(0) etc., and define (known) Z; such that

[Z1)omam =0,  Ziep=-WT, el Zy=w]V, (4.32)
then the instantaneous rates of change V and W satisfy
V=-V(2Z4+2), W=WZ+2)", (4.33)

where Zey =0, eI’ Z =0, and T, Z are otherwise uniquely determined by

T+TZ-2T=M=WTAV -TZ, + Z,T. (4.34)
Part of (4.84) can be written as a matriz-vector equation for the scalars {; and the
strictly lower triangular elements zj11.n5, J =2,...,n—1, of Z:
Zy M2:n 1
Ll .- = ' : 2js< G ) j=2,...,n—1, (4.35)
Zn—1 Mp—1:n,n—2 Zi+1:n,j
Cn Mp n-1

where L = f/(T) 18 the n—1 block by n—1 block lower triangular matriz

8,1,
[07B2] ﬁ3ITL—Z
[0,0,’}/3.[",3] [07B3] ﬁ4In,3

[070771'In—i] [07BZ] ﬁi+1I"—i

0,0.7.] [0.B,.] B,
(4.36)
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Sensitivity Analysis of the Lanczos Reduction 11

where the (i,7)-block is n—i X n—7j, and for i =2,3,...,n—1

Qi — Oy —Yi+2
Bi=lad-Tloupr, = | P2 =%z . (437)
. . _’yn
_ﬁn Q; — Oy

Another part of (4.34) supplies an equation for the scalars n; and the strictly
upper part z; ix1n, J =2,...,n—1, of Z:

:1]2 milr,2:n

O IR ' . gi=( i =2,...,n—1, (4.38
Yn—1 mf—?,n—l:n ’ Yi (z;{j+1:n » ' ’ ' ( )
Tn mn—l,n

where UT = ﬁ(T)T 1s the n—1 block by n—1 block lower triangular matrix

'7212—1
[OszT] 7313—2
[07 07 ﬂﬂjn—ﬂ] [07 BE] ’74In—3
- : . . (4.39)
0,0, 8.1, ] [07BiT] Yirr Lo
[Ovoaﬁn—1] [0733—1] Tn
The additional elements (; and 1; in (4.35) and (4.38) give the diagonal elements
of Z:
1 J
zjj = EZ(CH—W), j=2,3,....n, (4.40)
i=2

and the next to diagonal elements of T:
BilBi ="l =3 =G F=23,..m (4.41)

The diagonal elements ofT can be found from the diagonal elements of M and the
next to diagonal elements of Z, where if we use z1;, = z;1 =0 fori=1,...,n, and

define f1 = v1 = fBny1 = Ynt1 =0,
&p =my; +9iziio1 — Bizic1i + Bit1%iiv1 — Yit1Zit1,4, 1=1,...,n. (4.42)
These two expressions for the elements ofT can be summarized as
T=yDN'D'+N), N=M+2ZT-TZ,  |D|=1, (4.43)
where Z is Z with its diagonal made zero.

Proof The existence of the unique reduction (4.30) with (4.31) follows from the
discussion at the start of Section 4., while (4.32) to (4.34) follow from (4.10) to
(4.13). The linear system (4.35) to (4.37) is just (4.15) and (4.16) with the addition
of equations (4.24) (with its equivalents for i = 2,3,n) and unknowns (a,..., (.
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12 Chris Paige and Paul Van Dooren

The linear system (4.38) with (4.39) is the equivalent of (4.35) to (4.37), but now
for the strictly upper triangle of Z and 73, ...,7,. It can be found by applying those
ideas to TT — TTZT + ZTTT = MT. Next (4.40) follows from (4.28) and 211 = 0,
(4.41) follows from (4.26) and (4.27), and (4.42) follows from (4.20). The matrix
version (4.43) is just (4.22). |

Corollary 1 If any other normalization than that in (4.29) is used, all the results
of the theorem hold except (4.31), (4.40), (4.41) and (4.43). These would have to

be altered to suit the particular normalization, see Section 2.. |

Corollary 2 In (4.36) the column below the leading element of each diagonal block
(Biln—iy1) is zero, with a similar observation for (4.39). Thus the off-diagonal
elements of Z can be computed without computing the (; and n;, see (4.35) and

(4.38).

5. Expressions for the inverses

To bound the elements of Z in (4.35) and (4.38) it will help to know the inverse of
L, the submatrix obtained by dropping the first row and column of each diagonal
block of f/, see (4.16), and U7, the equivalent submatrix of UT. These inverses can
be expressed in terms of polynomials in 7' and T7. We have from (1.2)

Qi1 V42
Titrijuna = P aj.+2 Y
Bi
For j =0,...,n—1 define the polynomials in A
PP = 1, (5.44)
e = det(IM = Tligrsgur)s i=j+1....n (5.45)

(4

so ¢;”’(A) is monic and has degree i — j in A, and its zeros are the eigenvalues of
Tiviijirq We see

(,05{21()\) = - Ajq1, (546)

e = (A= aeli() = Brietly(N), i= 2 (5.47)
The inverse of L can be expressed in terms of the cpgj) (T), and that of U” in terms
of the i/ (TT). Note from (5.44) ¢ (T) = (™) = I, while for i > j, o\’ (T)
and <p§~j) (TT) can be found from (5.46) and (5.47).

Theorem 5.1. Let T be as in (1.2), and @Ej)()\) asin (5.44)-(5.45). Let X = L™!
be partitioned identically as L in (4.16), with n—i—1 by n—j—1 X;; its (¢,7) block.
Then for j =1,2,...,n—-2and t=3,...,n—2

X” = _(ﬁj+1ﬂj+2 e ﬁi+1)_1995j) (T)i+2:n,j+2:n- (548)
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Sensitivity Analysis of the Lanczos Reduction 13

Proof Since the j-th block-column of LX = I is

L[0,...,0, X Xy o X0, =10,...,0,10_;-1,0,...,0]",

the form of L in (4.16), with (5.44), shows (5.48) holds with ¢ = j. Also

Xji1,j = =B Bi1 Xjj = = (Bj+18542) (T = ajird)jiam sions
which with (5.46) satisfies (5.48). If (5.48) is true for i = j,...,k—1, then

Xij = =Bt A BeXuo1,j + (0,0, v Lo p—1] Xk -2 5}
= _ﬁk__fl.l{_(ﬁj+1 T ﬂk)_l(akl - T)k+2:n,k+1:n</»9§cjll(T)k+1:n,j+2;n
~(Bj1-++ B=1) 10,0, 30Tk ] 5 (T s o}
= _(ﬂj+1 T ﬂk+1)_l{(T - akl)k+2:n,k+1:nc)‘oggjll(T)k+1:n,j+2:n

_ﬂk,yk(fo%’l2(T)k+2:n,j+2:n}'

But (T_akl)k+2:n,k+1:nc)‘oggjll(T)k+1:n,j+2:n = [T_ (akl)S‘Qg@le(T)]k+2:n,j+2:n since each
row of (T — arl)iy2.n k41.n has the same nonzeros as each corresponding row of
arl — T. Using (5.47) we see (5.48) then holds for i = k, and by induction for
i=j,...,n—2. |

Corollary 3 LetUT be the matriz obtained by dropping the first row and column of
each diagonal block of U in (4.39), see (4.18). If Y = U7 is partitioned identically
to UT, with n—i—1 by n—j—1Y;; its (i,5) block, then for j =1,2,....,n—2 and
i=j,... n—2

Yi; = (’Yj+1’7j+2 T ’Yi+1)_l<PEJ)(TT)mf+2:n,j+2:n- (5-49)

Proof The proof is analogous to that for L=1. |

Note with (2.3) [(vj41 - 7is1) "' = (Bja1 -+ Bigr) ™ also o (TT) = oN(T)T,
but in general Y;; # +£X;;.

6. Condition numbers and bounds

Theorem 4.1. gives all the basics needed to understand the sensitivity of the reduc-
tion. From this we can produce various element and norm bounds and condition
numbers. Here we will illustrate this by giving some basic norm bounds and condi-
tion numbers. Because of lack of time to develop them carefully, the bounds in the
unsymmetric case are probably unnecessarily weak. We will not do the analysis for
W, since from (1.1), the parallel with that for V is obvious.

First we indicate how this work is related to perturbation bounds. Suppose we
have some differentiable factor N(t) of A(t) and are able to prove

INO o MAO)y
V1l [lA4lls
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14 Chris Paige and Paul Van Dooren

where & is a function of A, the reduction, and the norms chosen (denoted by a, 3,7, 6
here), and suppose for any A = A(0) having a unique reduction that equality may
be obtained here for some choice of A = A(O) then we will say & is the (relative)
condition number of the factor (for this choice of norms). In this case first order
(approximate) perturbation bounds can be found by using Taylor series, where
if A+ tAA has a unique reduction for all ¢ € [0,1] and N + AN is the factor
corresponding to A + A A, then we can show

1AM ¢ 1AL
Vs~ 14T

where the notation indicates this is a reliable approximate upper bound only for
small enough ||AA||4/||4||s- We will now concentrate mainly on derivative bounds,
and say little more about perturbation bounds.

To simplify the presentation we will assume v1(¢) = vy and w1 (t) = wy are fixed,
so we concentrate in changes in A alone. We will then have Z; = 0, Zy = Z and
Ma=M=V~"AV in (4.13), see (4.10).

We will use Nz and Ngz, to denote the lower and strictly lower triangular parts
of any matrix N, and Nggy to denote Ngz with its next to diagonal elements set
to zero, and Ny, Ngy and Ngsp to denote the upper triangular equivalents.

Because V = W is orthogonal, the case of symmetric A(t) with v1(t) = wy(t) in
(4.8) has some nice simplifications, so we will treat it first.

6.1. Condition and bounds in the symmetric case

In the symmetric case W (t) = V/(t) is orthogonal in (4.9), s0 Z = Z, = =VTV =
VTV is skew symmetric and has zero diagonal. Also M = M4 = VT AV is sym-
metric in (4.10). If we rewrite (4.15) as Lz = m, then ||z|]s = || Zs.||r = ||Z5U||F =
1Z|lr/ V2 = [VIlr/V2 |Im|l: = [|Msstllr < [|M]lr/v2 = [|Allr/ V2, so since

[zl < (17 Hlalmll2,

IVllr
V]2

|Allr
[E

I14ll»
= WVl =1Z1r < IL7H 2l Al = 1272172 (6.50)
where equality can be obtained for any symmetric A and initial vector v; by taking
the middle three diagonals of M zero and m to be the right singular vector corre-
sponding to the largest singular value of L=', and A = VMV, Thus (using ‘L’ for
Lanczos)

s (A o) S IL7HRIT]: = 1272l All2 (6.51)

can be thought of as the condition number (for the choice of norms in (6.50)) of V
for changesin A in the symmetric Lanczos reduction, that is, for the tridiagonaliza-
tion of symmetric A by orthogonal similarity transformations with Ve; = vy. This
special case of symmetric A and A for the Lanczos tridiagonalization here corre-
sponds to the same special case for the Arnoldi Hessenberg reduction in [2], and for
this case (6.51) corresponds to [2, Thm. 2.(a), p.147]. Note that 8, = ed Te; < ||T|2
and 3, = el L7'ey| < [[IL71]]2, so kp(A,v1) > 1.
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Sensitivity Analysis of the Lanczos Reduction 15

Next we use the simple result from (4.13)
ITllr < 1M+ 2( T2l Z] - (6.52)

We see from (4.20), and (4.24)—(4.27), that the elements of T depend directly on
only those elements of Z in the four diagonals immediately surrounding the main
diagonal of Z. But an examination of (4.15) and (5.48) suggest that (6.52) will not
give too great an over bound. By using (6.52) we get the weak bound

(Al [

S [1 =+ QKJL(A, ’Ul)] - (653)
7|2 4]l
6.2. Bounds for the unsymmetric case
Write Z = [21,...,2n] etc., with Z and Zp as in Section 4.3.. In the symmetric
case U; = —Vz; is orthogonal to v;, but in the unsymmetric case this need not be

true. Since any change in the direction of v; leaves us in the subspace of v;, we
will usually only be interested in that part of ©; orthogonal to v;, that is P;o; with
P=I- vj(vaj)_lvf. Write Vi = [P101,..., Pyiy), then since Pjo; = —P;Vz; =
—P;Vz;, we have that ||P;jo;]|2 < [|[VZj]|2, and so

IVillr <IIVZIr < V202l p- (6.54)
Now we can obtain all our bounds independently of Zp. From (4.15), (4.17)

121 = 1Zs )% + 1 Zsu |7 < 1L EIMssclF + 10T 1311 Mssul%-

Define g = max{||L7Y|2, [|U~T||2}, so

1Zllr < ul|Mllr = u|V AV p,

where equality is attainable by choosing A carefully. With (6.54) and (4.43) this
gives

Vil . IAllr
< | Zllr < pl|M|lp < p||All2k2(V ; 6.55
e 1] || M]] [l All2%2( )||A||2 (6.55)
7] 1M]] »
< (1424(T2) : (6.56)
7|2 7|2

so max{||L™Y|2, [|U~T||2}||All2%2(V) might be a reasonable (hound on the) condi-
tion number for changes in V. Unfortunately with the a prior: bounds

2 [ Allr

SlAlr _IM|r _ VAV E
14l °

ko(V =
VAL S e T A, S

K9 (V)

(6.56) gives an apparently weak bound in the general case, but (6.55) and (6.56)
become (6.50) and (6.53) in the symmetric case.
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16 Chris Paige and Paul Van Dooren

6.3. Partial reductions

In many applications we are interested in the sensitivities for k¥ < n steps of the
Lanczos reduction. The notation is messy, so we treat this separately. When we deal
with n X n matrices, N;; will for example denote the leading principle ix; submatrix
of N, but for a fixed k we will mix this standard notation with the following. Single
superscripts (1) and (2) will denote column partitions as in V = [V(l),V(2)]7 v
having k£ columns, and double superscripts (12) etc. will denote block partitions:

(1) z(2)
Z=[2z",z%] = (gm) g(m)), ZM | x k.

For the higher dimensional matrices L and U in (4.15)—(4.16) and (4.17)—(4.18),
LY ete. will denote the leading principal (k—1)-block by (k—1)-block submatrix.
The initial k£ x k submatrix of (4.43) then gives

Tir = (D NED 4 Nik)s Niw = Mig+ Z ki1 Titr & — Thojt1 Zit1 ks (6.57)

so a bound on Tk requires knowledge of Zj 41 x41. Because Z has zero diagonal,
this only requires knowledge of the first k£ columns and rows of Z. But from (4.15)
and (4.17) with L('"Y and UM as above,

Z3:n,2 m3.mn,1
L . = . =m say, (6.58)
zk+1:n,k mk+1:n,k—l
U(ll)T 2%1,371 B m%}&n
- ’
Zlicr,k+1:n m%—l,k+l:n

so with Z(Slg denoting the first k columns of Zgj, etc., equality is attainable simul-
taneously in the following by choosing M correctly:

12811 LD o [(Mssz) k1|7,
1(Z25) D ||r [T ol (M It ) =1l -

Now LIV=1 and UMV-T are the leading principal (k—1)-block by (k—1)-block
submatrices of L™! and U7, whose subblocks are given in (5.48) and (5.49). Let
E be the matrix obtained by deleting rows k + 1 : n of every block-row of L!1~1,
E the matrix obtained by retaining just those rows, and E be the matrix obtained

by deleting rows k + 2 : n of every block-row of L(')=" (so from (6.58) Em gives
)

the unknown elements of ZSLI , Em gives the unknown elements of Zng)’ and Em

<
<

gives the unknown elements of (Zsz )41 k+1), and let F, F and F be the equivalent
matrices for UMD =T then

11 ol 11 ~

125801 < 1Bl (Mssi)—1] r, 12501 < I1E N2l (MEsp) k- ||
21 = 12 =

12501 < |Elll(Mssp)i—illes 1250 1F < IENN(M Zst) k1]l s

1(Zsp)ksrp41llr < N El2ll(Mssp)r—1llF.
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Sensitivity Analysis of the Lanczos Reduction 17

1(Zsv)ierialle < IFN2(MEsp )il

Now let p = ma_X{HL(H)_le, ||U(11)_1~||2}, k= max{”EHg, ||F||2}7
iir, = max{||E||2, ||F|l2} and jfir = max{||E||2,||F]|2}, then we see

iy < fix < fi, Ik < g, wy < fiy + iy,
1ZO13 = 12505 + 125113
< EMOTHEN(Msso)k-1llF + I FIBI(ME sy ) k—1||F
< WM,
1ZWNr <l M]|r,
1ZE) e = NZ2%0p = 12501 < Bl M]|p,
| Zk+1k+1llr < il M| F,

where these can be loose because we replaced the first k—1 columns and rows of
M, less its main tridiagonal, by M. Next since

1 Zk k1l 7o | Zrsr ke < (1 Zkt1 k|| s
<

1 Tet1 525 | T k4112 | Te+1,5+1]]25

we see from (6.57)

Tl | Mik|lr + 2| Tesr p41ll2)| 2ot 1 k41| 7

(14 28| Tt 1, 1 I M [ 7 < (14 20| T2 M | 7,

IA A

which is similar in form to (6.56).
For the first k columns of V| in (6.54) we have, similar to (6.55),

IVl < IVZOle < IVIuel| M < [Vl (VAL
S0 maX{HL(H)_le, ||U(11)_1||2}||A||252(V) might be a reasonable (bound on the)
condition number for changes in V1),
6.3.1. Krylov subspaces. Since V = V(0) is nonsingular and V(t) in (4.9) is
differentiable for small enough ¢, it has a unique QR factorization

V(t) = Q(t)R(t), QMHTQ(t) =1, R(t) upper triangular,

when we take the diagonal of R(t) positive. Then it can be seen from examining
the algorithm for the QR factorization, see for example [9], that Q(¢) and R(t) are
differentiable for small enough ¢.

Write @ = Q(0), R = R(0), and partition the matrices as in

V(t) = [V (6), V@],
Q(t) = [QW (), QW (1)),

where V) (t) and Q(V)(t) are n x k and RV (t) is k x k, then we have V() (t) =
QW (t)RIM(t), and R(VI(t)) = R(QWM(t)) is the Krylov subspace formed by

ro= [0 R ],
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18 Chris Paige and Paul Van Dooren

k steps of the Lanczos algorithm with A(¢) and starting vectors v1(t) and wy ().
For small £ we are interested in the distance between this and the original Krylov
subspace R(V(1)) = R(Q™M). Tt was shown in [4] that the sines of the angles between
R(QM) and R(Q™M (t)) are the singular values of QT Q1) () (the cosines are the
singular values of Q7 Q") (¢)). Tt follows that one simple overall measure of the
distance between the subspaces R(V)(t)) and R(V) is [|QPTQM (¢)||F, the
square root of the sum of squares of these sines, and we will use this.
But if kxs(A,v1, w1, k) is such that, writing Q Q( ),

Al
[[All2

||Q(2)TQ(1) ”F S K‘KS(Aa U1, W1, k)
with equality attainable for any A by choosing A correctly, then we can show for
small enough AA in A(t) = A+ tAA that we have the first order bound

A4
[14]l2

||Q(2)TQ(1) (Dllp S kxs(A, v, w1, k)

on the distance between the subspaces R(V()(1)) and R(V()). As a result the
condition number for the Krylov subspace R(V)) is kxs(A,v1,wy, k), for this
choice of norms. We will now show how to at least bound this.

Writing V(Y = V(l)(()) we see with (4.12) V(U (¢) = QU (¢+)R1V (1) gives

VO = QWRD 4 oW RAD = _yz(0) = _QRZO,
QDIVW) = QOTHM R = _g@TQRz(0 = _p(22) Z(21)

and noting Z?Y = Z(21 we see

[Q®TQU s = JREZEDR | < Bl B o2
<l B RO M e
< sV IR ol RO ol Al (659

Thus vk (A, v, w1, k) = ﬂkng(V)HA”gHR(m) ||2||R(11)_l ||2 gives an upper bound on
kxs(A,v1, w1, k), but a more careful analysis should give a better bound. When A
and A are symmetric, we see Vks(A,v1,v1, k) = fig]|A||2, and in this case it can be
seen the bound (6.59) is attainable, so jix||A]|2 is the required condition number for
the the Krylov subspace R(V(l)). For this special symmetric case this corresponds
to [2, Thm. 2.(b), p.147].

6.4. Estimating condition numbers

Since the lower triangular matrix L in (4.16) (or UT) has O(n?) elements (about
5n%/2), ||L~"|]2 and the condition numbers and bounds here, see for example (6.51),
could be adequately estimated in O(n?) floating point operations, see Higham
[11,12], where of course L would never be formed, the estimates being obtained
from T alone. However even O(n?) is large for large n, and in that case some
cheaper method of estimation could be desirable, perhaps one based on the expres-
sions for the inverses L™! and U~7 in Section 5.. In the partial reduction case we
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Sensitivity Analysis of the Lanczos Reduction 19

are only looking at O(kn) elements in the triangular matrices. However in both
cases it appears important to use the knowledge of the inverses in Section 5. to
obtain better approximations to the condition numbers in the unsymmetric case,
and numerical bounds for these approximations.

7. Conclusions and comparisons with related work

For the Lanczos reduction (1.1)—(1.2), we considered how the choice of normaliza-
tion affects the sensitivity of the problem. We then showed that by defining

Zo=-V7'V, Ms=V AV

in (4.10), we split the sensitivity analysis of the reduction into subproblems. This
gave the lower triangular system (4.15)—(4.16) for the elements of the strictly lower
triangle of Z, the unknown part of Zy, and the lower triangular system (4.17)—(4.18)
for the elements of the strictly upper triangle of Z. These systems could be solved
independently of each other, the diagonal of Z, and the elements of T. We saw that
all the sensitivities of interest then depended directly on these off-diagonal elements
of Z.

The off-diagonal elements of Z depend on the elements of M4 above, see (4.13)
and (4.15), and so ill-conditioned V' can cause large sensitivity. This effect is absent
when A is symmetric or nearly so resulting in V' being orthogonal or nearly so.

The strictly lower triangle of Z is the solution of (4.15), where from (5.48) the
(¢,7)-th block of L™! involves the multiplicative factor (341 -+ Bi+1) . Similarly
the strictly upper triangle of Z is the solution of (4.17), where from (5.49) the (¢, j)-
th block of U~ involves the multiplicative factor (41 - 7it+1)”". This suggests
how one small, or a few fairly small, next to diagonal elements of 7' can contribute
to the sensitivity of the reduction.

Theorem 4.1. gave a full description of the sensitivities, while Section 5. gave the
inverses of the matrices involved. Section 6. applied some of these results in showing
how some condition numbers and bounds could be obtained. It dealt briefly with
the symmetric and unsymmetric cases, and the full and partial factors, and in this
last case considered the sensitivity of the Krylov subspaces. The bounds obtained
in all the unsymmetric cases look weak, and can hopefully be improved.

A related problem to the sensitivity analysis of the symmetric case was studied by
Le and Parlett [15]. There they looked at the forward stability of the QR algorithm
with shifts, where one step results in a new symmetric tridiagonal T=0TTQ, Q
orthogonal. They showed that forward instability occurs only when the shift is very
close to certain eigenvalues. The ideas of forward instability of such a backward
stable algorithm are closely related to sensitivity analysis, in that the computed
result is exact for nearby data, so their result could also be proven from the work
here if we could show that the reduction is sensitive only when the shift is very
close to certain eigenvalues. A possible approach would be to show, using (5.48),
that some block X;; of L™" in (6.51) can be large only when the shift is very close
to certain eigenvalues. The fact that a shift that is equal to an eigenvalue will lead
to a zero next to diagonal element suggests such a proof might be possible.

Carpraux, Godunov and Kuznetsov [2] studied a closely related problem to the
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20 Chris Paige and Paul Van Dooren

one here: the sensitivity of Krylov subspaces Ky (A4, v;) = span{vy, Avy, .., AF =1},
k = 1,...,n, and of the corresponding orthogonal Krylov bases. Note that our
bases {v1,...,vt} in (4.29) are only orthogonal in the symmetric case, but that
Kr(A,v1) = span{vy,...,vr}, so, using a different approach, we have studied the
sensitivities of the same Krylov subspaces as in [2]. Carpraux et al. showed how the
condition in the general case could be expressed in terms of the inverse of a large
triangular matrix formed from the elements of upper Hessenberg PT AP with P
orthogonal.

In particular they developed the subspace and orthogonal basis condition num-
bers for k = 1,...,n, but did not consider the sensitivity of the Arnoldi Hessenberg
reduction [1]. On the other hand we considered the sensitivity of the Lanczos tridi-
agonal reduction, both full and partial, and gave bounds on the condition numbers
for the nonorthogonal bases (partial factors [v1,...,vg]) and the Krylov subspaces
for k = 1,...,n. In the symmetric case where these two approaches overlap we
found corresponding condition numbers to those in [2] (identical if we replace their
||Al|# by our ||A4||2), but because we were dealing with nonorthogonal bases, and
did not have the time to develop tight bounds, we apparently only produced upper
bounds in the unsymmetric case, not actual condition numbers.

The Krylov subspace and biorthogonal basis sensitivity results from the Lanczos
algorithm are available here for use with methods based on the Lanczos algorithm,
since the 7" would be available — while the Krylov subspace and orthogonal basis
sensitivity results in [2] are available for use with methods based on the Arnoldi
algorithm [1], since those produce the required Hessenberg matrix.

An advantage of the approach here is that for the Lanczos reduction we gave a
very simple and direct derivation of the linear system expressing the sensitivity, and
showed how the inverse of our large triangular matrix could be expressed in terms
of polynomials, see (5.48). In fact in the symmetric case the Hessenberg matrix
in [2] becomes our T in (1.2), and then the lower triangular matrix in [2, p. 151]
becomes —L) in (6.58), the leading k—1 block by k—1 block of —L in (4.16), and
so the two somewhat different approaches to these two related problems result in
the identical expression in the common case.

This paper needs to be extended in several obvious ways. Use needs to be made
here of the known form of the inverses in Section 5. in order to derive superior
condition estimates. The unsymmetric case here needs to be examined more closely
to see if for some choice of norms condition numbers can be obtained, rather than
the upper bounds derived here. Finally the approach used here could perhaps be
applied to the problem in [2], to see if their important results could be derived a
bit more simply.
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