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Abstract

In this paper we discuss the convergence of a stabilization algo-
rithm based on a singular version of the Discrete Riccati Dif-
ference Equation. This method is particularly appealing for
large scale linear time invariant dynamical systems since one
can nicely exploit the sparsity of such systems in order to re-
duce the complexity of the algorithm.

1 Introduction

In this paper, we focus on the stabilization of a discrete-time
system � � �
	���
 � ����������� (1)

where 
 and � are ����� and ����� real matrices which are
known, and

� � and ��� are vectors of dimension � and � respec-
tively. The stabilization of the system requires the computa-
tion of a ����� feedback matrix � such that all eigenvalues of
 �!� � are inside the unit circle and therefore the system de-
fined by replacing 
 with 
"�#� � is stable. For small and mod-
erate values of � , � can be computed via pole placement or the
solution of a matrix equation, e.g., a Riccati or Lyapunov equa-
tion. The computational requirements for standard algorithms
for these approaches, however, is prohibitive for large values of� . Fortunately, when � is large and ��$%$�� , the system matrix
 and/or input matrix � are typically very sparse. Algorithms
for such problems must therefore exploit this structure in order
to efficiently compute a stabilizing feedback.

2 Saad’s Approach

An important contribution to solving large scale stabilization
problems with a few unstable eigenvalues is Saad’s projection
method [7]. In this algorithm, stabilization or eigenvalue as-
signment is only imposed on a small invariant subspace that
contains the unstable invariant subspace of 
 . Such an ap-
proach is often effective, but it can have convergence difficul-
ties and the need for a basis of the invariant subspace can cause

excess space requirements for very large systems.

In Saad’s projection method, a left invariant subspace &"' of 

(with presumably small dimension), that contains the left un-
stable invariant subspace of 
 is computed. In order to exploit
the possible sparsity of the matrix 
 one often chooses to com-
pute the basis directly by a subspace iteration like method. The
low-order projected system ()&"' 
 & � &�' �"* is then stabilized
and the reduced feedback �,+ is lifted back to form a stabiliz-
ing feedback � � �,+-&�' of the original system ( 
��.�"* . Sub-
space iteration like methods as proposed by Saad, generate a
sequence of approximations to a particular invariant subspace& starting from an initial subspace &0/ . The convergence of
such methods depends on the separation between the eigenval-
ues of 
21 , the restriction of 
 to the invariant subspace & ' ,
and the remaining eigenvalues of 
 . This is the so-called gap
of 
 with respect to & and if it is too small, one should try to
compute a larger space instead (see [6]).

In this paper, we discuss an efficient alternative that addresses
this convergence difficulty. We also prove that this algorithm
converges under very mild conditions and we show that it
avoids the need for an explicitly formed basis of the invariant
subspace.

3 Discrete Riccati Equation Stabilization

The major results of this paper are based on the discrete-time
Riccati equation (DRE) and the discrete-time Riccati difference
equation (DRDE)3 ��
 ' ( 3 � 3 � (54 ��� ' 3 �"*76 	 � ' 3 *�
���8 (2)3 � �
	�� 
 ' ( 3 �9� 3 �)� (54 ��� ' 3 �5�"* 6 	 � ' 3 �:*�
;��8 (3)

where 4 and 8 are �;�<� and ���=� non-negative matrices
and 8 is usually decomposed into >@?BA >C'? . The most general
results about the DRE and DRDE convergence are given in [2].
It is shown there that under the condition of stabilizability of( 
��.�"* , a stabilizer and non-negative solution

3ED
of the DRE

(2) exists and a stabilizing feedback � can be computed by

� A�GF4 6 	 � ' 3,D 
��HF4 A� (54 ��� ' 3,D �"* A
Whether the solution of DRDE (3) converges to the stabilizing
solution of DRE depends on properties of ( 
 ' � >C? * and the



initial condition
3 / . We establish in this paper that this algo-

rithm converges to the stabilizing solution under more general
conditions than those reported in [2].

4 Basic properties of the DRDE

The Riccati difference equation (3) has several equivalent for-
mulations. First, one can rewrite it as the Schur complement
(with respect to the (1,1) block) of the compound matrix� � � 4 ��� ' 3 �)� � ' 3 �)

 ' 3 �)� 
 ' 3 �)
���8�� A (4)

From this one easily derives a factorized form of the algorithm
[4]. One needs to assume that the Cholesky factorizations of
the positive semi-definite matrices 4 , 8 and

3 � are given :

4 A� >��@A > '� � 8 A� >C?BA > '? � 3 � A��� � A � '� A (5)

Using these one obtains trivially the following non-square fac-
torization of

�
:� � � >�� � ' � �	�� 
 ' � � >C? ��

���� >C'� �� '� � � '� 
� >C'?

� ��� A (6)

The so-called square root form of the Riccati difference itera-
tion is then obtained from a lower triangular reduction of the
left factor ([4]) :� >�� � ' � ���� 
 ' � � >C? ��
�� �
� � F> � � �F� ��� � �
	�� � (7)

where � � is orthogonal. We will assume in this paper that 4��� , which implies that F4 � A� 4 ��� 3 �)� ' � � as well. As a
consequence, we obtain a decomposition of

�
:� � � F> � �F� ��� � �
	 ��
 � F>C'� F� '�� � '� �
	 � � (8)

from which it follows that the Schur complement with respect
to the (1,1) block equals

3 � �
	���� � �
	 
 � '� �
	 . Notice that this
holds even if

3 � �
	 is not of full rank.

Another formulation of (3) follows from the underlying two-
point boundary value problem [9, 1] :� 
 �� 8	��� � �"! � �
	# � �
	$� � � ��� � 4 6 	 � '� 
 ' � �"! �# �%� �
where

3 �C� # � ! 6 	� implies
3 � �
	2� # � �
	 ! 6 	� �
	 and vice versa

(this implies of course that both
! � and

! � �
	 must be invert-
ible). We rederive this formulation below in a more explicit
form.

Lemma 1
If 4�� � the DRDE (3) can be rewritten as follows� 
 �� 8	���$� � ���3 � �
	&� � � ��� � 4 6 	 � '� 
 ' � � ���3 ��� 
('*) �

(9)

where


('*) A��
���� 
 � �.� � � A� F4 6 	� � ' 3 �)
�� F4 � A� 4 � � ' 3 �)� A
Proof : We need to show the following two identities


 � ( �2��� 4 6 	 � ' 3 �:*�
('*) � 3 � 6 	 �=8 ��
 ' 3 �)
('*) A
Using the definition of the matrices involved, the second equa-
tion becomes3 � �
	 � 
 ' 3 �)
 �!
 ' 3 �)� � ����8� 
 ' 3 �)
 �!
 ' 3 �)� F4 6 	� � ' 3 �)
���8 �
which is the DRDE. The first equation becomes


 ��
;��� 4 6 	 � ' 3 �)
 �!� � � �!� 4 6 	 � ' 3 �)� � �
which is equivalent to� � �,+ 4 6 	 F4 �9�-�%� 4 6 	 � ' 3 �)�/. � �
and is clearly an identity.

5 Convergence of the DRDE

If one wants to study the convergence of the DRDE, the above
lemma plays a crucial role. It is clear from (9) that the general-
ized eigenvalue problem0 � 	@� �21 A� 0 � 
 �� 8	��� � � � ��� � 4 6 	 � '� 
 ' �
determines the convergence of the DRDE. Let us first assume
 to be invertible (we will show that this assumption does not
affect our results). Iteration (9) is then a subspace iteration with
a space of dimension � :� ! � �
	# � �
	$� � � 6 		 �21 � ! �# �3� A
Let
0 � be an eigenvalue of

� 6 		 �21 and assume they are or-
dered by decreasing magnitude 4 0 � 4 . If 4 0 � 4 is strictly larger
than 4 0 �-�
	 4 then the above recurrence is known to converge
for almost all initial conditions

! / � # / , to the so-called dom-
inant invariant subspace of

� 6 		 �21 . If, on the other hand,4 0 � 4 � 4 0 �-�
	 4 then the iteration almost never converges : there
exist fixed points but they correspond to very special initial
conditions [3]. It turns out that

� 6 		 �21 is simplectic and
therefore has a special eigenvalue pattern : the eigenvalues
which are not on the unit circle come in pairs that are mirror
images of each other with respect to the unit circle. Therefore
the condition 4 0 � 4/�54 0 �-�
	 4 is satisfied iff

� 6 		 �21 has no
eigenvalues on the unit circle. We make this assumption in the
rest of the paper. This is a classical assumption in the RDE lit-
erature since it is closely linked to the existence of stabilizing
solutions of the corresponding feedback problem [2]. We recall
in this context the following results proved in [2].

Theorem 2
A stabilizing solution

3 D
of the DRE exists and is unique if and

only if either of the following two conditions is satisfied



1. ( 
��.�"* is stabilizable and ( 
 ' �78�* has no unobservable
eigenvalues on the unit circle,

2. ( 
��.�"* is stabilizable and the pencil
0 � 	#� �21 has no

generalized eigenvalues on the unit circle.

The simplectic structure of the pencil implies that all eigenval-
ues are then mirror images of each other with respect to the unit
circle, and the following result then holds ([2, 3]).

Theorem 3
Let the simplectic pencil

0 � 	 � �21 have no generalized eigen-
values on the unit circle. Then there exist invertible matrices �
and � such that0 � 	@� �21 � �

� 0 
('!�-� �� 0 ���!
 '' � �,�
where 
(' is stable and depends on the stabilizing solution

3ED
as follows :


(' A��
 �!� 
 � � � A� F4 6 	 � ' 3,D 
�� F4 A� 4 ��� ' 3,D � A

Under these conditions, the power method thus converges, pro-

vided the initial matrix

� ���3 / � has a “non-degenerate” compo-

nent in the direction of the invariant subspace

� ���3,D � . When

expressing the initial matrix as a linear combination of both
invariant spaces (spanned by the block columns of � 6 	 ) :� ���3 / � ��� 6 	 � &� � �
the non-degeneracy implies that & must be invertible. Since

& ��� ��� �*��� � � ���3 / � ��� 	.	 � � 	 1 3 / � (10)

it is easy to see that for a random initial matrix
3 / the matrix &

is generically invertible. The DRDE thus almost always con-
verges to the stabilizing solution of the RDE the corresponding
simplectic pencil

0 � 	@� �21 has no unit circle eigenvalues.

Theorem 4
Let the simplectic pencil

0 � 	 � �21 have no generalized eigen-
values on the unit circle and let the initial matrix

3 / satisfy the
non-degeneracy condition rank ( �,	.	@�$� 	 1 3 / *%� � . Then the
iterates

3 � converge linearly to the stabilizing solution
3ED

of
the RDE :

� � ��
	�� 3 �
� 3,D � � � ��
	���
 3 � �
	@� 3,D 
���
 3 ��� 3,D 
 ��� $�� A
We now return to the case where 
 is singular. If this is the
case we consider a perturbed matrix 
�� A� 
 ����� which has
the same eigenvectors as 
 and the same eigenvalues, except

for the zero eigenvalue of 
 which now gets perturbed to � .
The assumptions of Theorem 2 are clearly not affected by this
since stabilizability of ( 
�� �.�"* and ( 
��.�"* are equivalent and( 
�� �78�* has no unobservable modes on the unit circle provided� is sufficiently small. The stabilizing solution

3���� � of the cor-
responding perturbed RDE is then well defined. Moreover

� � �� 	 / 3!��� � � 3!�
since the corresponding invariant subspaces� ���3!��� � � � and

� ���3!� �
are well defined and � close to each other [3]. By continuity ar-
guments, one then sees that the invertibility of 
 is not needed
to prove the convergence of the RDE.

Remark The result of the above Theorem 4 relaxes the as-
sumptions that were needed to prove convergence of the RDE
so far. In [2] it is shown that under the assumption of Theorem
2, the RDE converges for any initial condition

3 / which is ei-
ther positive definite (i.e.

3 //� � ), or larger than the stabilizing
solution (i.e.

3 /&� 3!�
). The economical SQR algorithm de-

scribed in section 7 requires a singular matrix
3 / of rank larger

or equal to
3!�

. Both assumption required in [2] therefore do
not hold then. This is why the above theorem is so crucial for
the rest of this paper.

6 Convergence to "�#
We already know that the invariant subspace computed at each
iteration $ converges to the stable invariant subspace we are
interested in, but one typically wants to know this in terms of
the matrix

3 � as well. Although it is normal to expect linear
convergence here as well, we analyze this in more detail in this
section.

The following simple lemma follows by straightforward error
analysis of the inverse of a matrix and can be found in slightly
modified form in [8].

Lemma 5 Let 
 be a square invertible matrix with smallest
singular value %'& � � and let � be a perturbation of norm smaller
than this :


 � 
 1 A�)( $*%+& � � A
Then ( 
;��� *76 	 � 
%6 	 �!
%6 	 ��
%6 	 �-,

, � ( 
;��� *76 	 ��
%6 	 ��
%6 	 � 
%6 	 ��
%6 	 � ( 
;��� *76 	 �

 , 
 1/. 
 
%6 	 ��
%6 	 ��
%6 	 
 1 $ ( 1 � %10& � � A

Defining the convergence error as follows

��� A� 3 � � 3,D �



and applying the above lemma to the expressions

F4 6 	� � (54 ��� ' 3 �)�"*76 	 �
3 � �
	���
 ' + 3 �9� 3 �)� F4 6 	� � ' 3 � . 
;��8 �

we obtain

F4 6 	� � F4 6 	� � F4 6 	� � ' ���)� F4 6 	� ��� ( 
 ��� 
 11 *
and3 � �
	 � 
 ' + ���9� ���)� F4 6 	� � ' 3 � � 3 �)� F4 6 	� � ' ���� 3 �)� F4 6 	� � ' ���)� F4 6 	� � ' 3 � . 
;��� ( 
 ��� 
 11 * �� ( 
 �!� � �:* ' ��� ( 
 �!� � � *9��� ( 
 ��� 
 11 * �
where � � A� F4 6 	� � ' 3 �)
 .

Corollary 6 Let 
 '*) be the closed loop matrix 
�� � � � and let
the error ��� A� 3 �
� 3,D between the $ -th iterate of the DRDE
and its steady state value

3 D
be small, then this error converges

linearly and is in first order equal to

��� �
	���
 ''*) ���5
('*) ��� ( 
 ��� 
 11 * A
Remark The convergence ratio � of Theorem 4 is therefore
approximately equal to ��( 
 'C* 1 (the square of the spectral ra-
dius of 
(' ), since 
('*) tends to 
(' . Notice that this is smaller
than 1 since 
 ' is the stabilized closed loop matrix.

7 The singular SQR algorithm

The square root algorithm (SQR) of this paper is based on the
DRDE with 8 �$� . In the previous section we showed that the
DRDE equation converges under very mild conditions to the
stabilizing solution provided the corresponding pencil

0 � 	B��21
has no unit circle eigenvalues. For 8 � � this pencil has

a spectrum that is the union of the spectrum of 
 and that of
 6 	 since0 � 	C� �21 � 0 � 
 �� ��� � � � ��� � 4 6 	 � '� 
 ' � A
Therefore the feedback � generated in the limit moves the un-
stable eigenvalues of 
 ,

0
to their unit circle mirror images,� � 0 , and leaves the stable eigenvalues unchanged. As a special

case of the square root form of DRDE, the SQR stabilization
algorithm (developed in [6]) has the form� >�� � ' � �� 
 ' � �,�(� � � � F> � �F� ��� � �
	 � (11)

where � � is orthogonal and the dimension of �9� is �;��� , the
same as � / . Note that the QR decomposition is computed for
a small matrix with size ( � � � * � � (the first row of (7)) and
feedback � � can be computed from F> � and F� � as follows :

� �
� F> 6 '� F� '� A

Moreover, if 
 and � are sparse, the construction of the left
factor in the left hand side of (11) is cheap as well (see [6]).

The SQR iteration can produce the same sequence of subspaces
as Saad’s subspace iteration method with only an additional
economical QR decomposition of �9� since the updating of �9�
has the form � � �
	 � 
 ' � � � 1 1� . If � / is taken to be the same
initial subspace basis as used for Saad’s method, SQR will con-
verge. Moreover convergence is easier to check as was pointed
out in [6].

It is also useful to point out that for 8 � � the DRDE can be
rewritten in a very compact manner :

3 � �
	���
 ' 3 �)
('*) �
or equivalently � � �
	 � '� �
	 ��
 ' � � � '� 
('*) A (12)

In the limit we also have that
3 D

satisfies the discrete-time
Sylvester equation

3,D � 
 ' 3,D 
(' A
8 Comparing Saad’s method and SQR

Saad’s subspace iteration method essentially performs the 8 4
factorization of 
 '
& � where & � is the previously computed or-
thogonal basis : 
 ' & �
� & � �
	 4 � �
	 A (13)

Comparing this with


 ' � � � 1 1� �$� � �
	 � (14)

it is obvious that both methods compute the same spaces. Be-
cause of (13,14),

Im & / � Im � / ��� Im & �
� Im � ��� $ �
as long as � 1 1� and 4 � �
	 are invertible. Multiplying (12) by the
right inverse ( � '� �
	 * � of � '� �
	 we obtain :� 1 1� ��� '� 
('*) ( � '� �
	 * � A
Upon convergence, �9� �
	 and � � are close to each other, and� 1 1� � � '� 
('*) ( � '� �
	 * � tends thus to a constant matrix whose
eigenvalues are smaller or equal to 1 since 
 � 1 1� 
 1
	 � . The
effect of such a multiplication is to dampen out the components
along the smallest eigenvalues of � ' 
('*) ( � ' * � , and the iter-
ates � � may converge to a smaller rank matrix. This is actually
what happens in practice if � / has dimension larger than the
number of unstable eigenvalues of 
 .

In order to analyze this we put ourselves in a special coordinate
system, where 
 � � 
2	.	 �
 1 	 
 1 1 � �
where 
2	.	 is unstable and 
 1 1 is stable.



Theorem 7 Let 
 be in the coordinate system described above.
Then the solution to the DRE has rank equal to the dimension
of the unstable subspace of 
 . The invariant subspace satisfies

���� 
2	.	 � � �
 1 	 
 1 1 � �� � � �� � � �
� ��� ���� � �� �3 	.	 �� �

� ��� �
���� � �

� 	.	 � 	 1� � �%1 	 �%1 1� � 
 ' 	.	 
 '1 	� � � 
 '1 1
� ��� ���� � �� �3 	.	 �� �

� ��� 
(' �
where � � 	.	 � 	 1�%1 	 �%1 1 � A� � �%	� 1 � 4 6 	 � � '	 � '1 � A
The matrices

3,D
and 
(' in this coordinate system are given by

3,D A� � 3 	.	 �� � � �.
(' A� � 
2	.	 �!�%	 F4 6 	 � '	 3 	.	 
2	.	 �
 1 	 �!� 1 F4 6 	 � '	 3 	.	 
2	.	 
 1 1 � A
Moreover,

3 	.	 has rank equal to the number of unstable eigen-
values of 
 .

Proof : Let
3 	.	 solve the following RDE of smaller dimen-

sion :

3 	.	���
 ' 	.	 ( 3 	.	 � 3 	.	 �%	 (54 ��� '	 3 	.	 �%	 * 6 	 � '	 3 	.	 *�
2	.	 �
then it is easy to see that

3 D
given above solves the larger RDE,

which can e.g. be written as

3,D ��
 ' 3,D 
(' A
Moreover 
(' given above is stable since 
 1 1 is already stable.
Since there is a unique stabilizing solution to the RDE,

3ED
must

be that solution.

This theorem implies that the image of
3 D

is also the desired
unstable left invariant subspace of 
 , which explains that when� / has rank larger than the number of unstable eigenvalues of
 , some components of �9� have to be damped out in the it-
eration. When we overestimate the dimension of the unsta-
ble invariant subspace, we therefore nevertheless converge to a
subspace of correct dimension. Moreover, Corollary 6 implies
that the spectrum of 
 ' determines the convergence ratio of3 � towards the stabilizing solution

3 D
. Convergence will oc-

cur provided the initial matrix
3 / satisfies the non-degeneracy

condition (10). Tests for checking whether convergence has
occurred and extensive numerical experiments are reported in
[5],[6].

9 Numerical experiments

The results of this paper give a theoretical explanation of the
convergence behavior observed in [6]. The analysis also give
a proof that the DRDE converges to a stabilizing solution of

the DRE under milder conditions than those of [2], provided
an asymptotically stabilizing solution exists. The number of
iteration steps needed to obtain a stabilized system will depend
on several factors and it does not seem possible to give upper
bounds on this. Results are nevertheless encouraging, in the
sense that one can expect stabilization in very few steps. We
quote an example from [6] to exemplify this.

The system matrix 
 is constructed by randomly generating a� �*� ��� �*� matrix with MATLAB RANDN and scaling it to�
 so that the spectral radius of
�
 is 0.9. The � �*� �-� matrix� is generated randomly with RAND as is a � �*� �*� matrix�� . Construct 
 � �
 � � �� . All eigenvalues of 
 (dots in

Figure 1) are well-separated from the unit circle and only two
are unstable. The norm 
 �� 
 1 � � A ������� and eigen-condition
number of

�
 is �
1 ( ! � �
#*#� � � � A 	 �*� � . So the system ( 
��.�"*

should be well-conditioned and easy to stabilize. Figure 2 show
the results of rank 2 SQR. Figure 3 show the result of rank 3
SQR.

3 	�
 1/ is randomly generated with RAND. The spectral
radius of 
 � � � � from both rank 2 and rank 3 SQR converges
within 7 iterations, which is shown in Figure 2 and Figure 3.
Furthermore, Figure 1 shows the spectrum of 
 �!� �
� (the �
symbols) converges to a stable configuration in 5 iterations. We
also see that the only eigenvalues moved are the two unstable
ones of 
 .

This example illustrates that for a well-conditioned stabiliza-
tion problem where 
 has only few unstable eigenvalues and
all eigenvalues of 
 are well-separated from the unit circle,
SQR is very efficient and stabilization is reached within only
a few steps. We can relax the condition that all eigenvalues of
 are well-separated from the unit circle to that all unstable
eigenvalues of 
 are well-separated from all stable eigenvalues
of 
 . If the unstable eigenvalues of 
 are well-separated from
the unit circle, fast stabilization with SQR is expected and feed-
back convergence with SQR depends on the choice of the rank
of
3 	�
 1/ , with the worst case when some stable eigenvalues of
 are very close to the unit circle and we choose an incorrect

rank of
3 	�
 1/ (larger than the number of unstable eigenvalues of
 ). In this case, we can monitor the eigenvalue convergence of&��� ( 
���� � �)* & � to catch the stability of 
���� � � or modify the

rank of
3 	�
 1� during the iteration. If some unstable eigenvalues

of 
 are very close to the unit circle and stable eigenvalues of 

are well-separated from the unit circle, some scaling on 
 can
help to accelerate both stabilization and feedback convergence
(see [5], [6] for more details).
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