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1 Introduction

Time-varying processes appear in many applications such as speech process-
ing, time-varying behavior detection (fault detection or wear detection) or
more generally when some parameters of a linear system vary over time. In
this paper, we are interested in time-varying systems identification using an
ARX model of order N − 1:

N−1∑
i=0

y(t− i)αi(t) =
N−1∑
i=0

u(t− i)βi(t) (1)

where y is the output of the time-varying system, u is the input and αi(t) and
βi(t) are the coefficients of the model at time t.

Several approaches have been adopted to deal with time-varying modeling
problems. One of the most popular ones is to use an adaptive algorithm that
computes iteratively the coefficients of the model; see, e.g., [1]. This approach
works quite well under the assumption that the time variations are slow.

Another approach is to expand the coefficients of the model in a finite set
of basis functions [2]. The problem then becomes time-invariant with respect
to the parameters in the expansion and is hence reduced to a least squares
problem. The two main issues which are encountered when this approach is
applied to general time-varying systems, are how to choose a family of basis
functions, and how to select finitely many significant ones.

Here, we consider a method which identifies the time-varying coefficients
in a fixed time window. This method is not recursive and does not assume
strong hypotheses on the evolution of the coefficients. Moreover, at each time
step, a value for the coefficients of the model is identified. Thus, it is not
necessary to find a basis to expand the coefficients which is an important
practical advantage. It will still be possible to choose a basis of functions to
expand the coefficients after the identification to reduce the space complexity
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of the identified model. Our approach is based on a trade-off between the
minimization of the prediction error and the minimization of the coefficient
variation. The penalization of the coefficient variation enables the reduction
of high frequency noises and the use of classical techniques to find the order
of the model.

The paper is organized as follows. Section 2 introduces our approach and
describes a method to solve efficiently the least squares problem that arises.
Section 3 presents another normalization of the cost function introduced in
section 2 that leads to an optimization problem on the Cartesian product of
spheres. Numerical experiments and some ways to find the parameters of the
method are presented in section 4.

2 Our approach

The main idea is to make a trade-off between the minimization of the coef-
ficient variation and the the minimization of the prediction error. In fact, on
one hand, the coefficients must be allowed to vary sufficiently to deal with
possibly large coefficient variations and to fit the data points. But, on the
other hand, the coefficient variation must be penalized to reduce the influence
of high frequency noises or outliers. To achieve this trade-off, the following
cost function is considered:

min
X(0),...,X(T−1)

T−1∑
t=1

‖X(t)−X(t− 1)‖22 + µ

T−1∑
t=0

‖φ>(t)X(t)‖22, (2)

where T is the size of the time window where the identification is per-
formed, X(t) =

[
α0(t)β0(t) . . . αN−1(t)βN−1(t)

]> is the coefficient vector and

φ(t) =
[
y(t)− u(t) . . . y(t−N + 1)− u(t−N + 1)

]> is the data vector. The
first term imposes that the coefficients do not vary too fast and the second
term corresponds to the square of prediction error. The parameter µ > 0 can
be chosen to find a compromise between fitting the data and preventing the
coefficients from varying too quickly.

This problem admits the trivial solution: X(t) = 0 for all t. Consequently,
we must normalize the coefficient vector. Two kinds of normalizations are
considered: fixing one coefficient at 1 for all t and imposing ‖X(t)‖ = 1 for
all t. The first one yields a least squares problem. The second one yields an
optimization problem on the Cartesian product of spheres and is the subject
of the next section.

The rest of this section explains how to solve the problem efficiently when
the normalization: α0(t) = 1 ∀t is chosen. In this case, the problem (2) can
be rewritten as the following least squares problem:
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where X2(t) = [β0(t) . . . αN−1(t)βN−1(t)]> and φ2(t) = [−u(t)y(t− 1) . . .]>.
To preserve the structure, a method based on the normal equations (A>AX2 =
A>b) is proposed to solve the problem. The A>A matrix is:266666666664
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(3)

where I is the identity matrix of size 2N − 1.
The matrix A>A is bloc tri-diagonal and is the sum of two positive semi-

definite matrices M and Φ. Hence, A>A is invertible if the kernel of M has no
intersection with the kernel of Φ. The eigenvalues λk and the corresponding
eigenspaces vk of M are (see [3]):

vk =
[
cos((0 + 1

2 )kπT )I · · · cos((j + 1
2 )kπT )I · · · cos(((T − 1) + 1

2 )kπT )I
]

λk = 2− 2 cos(
kπ

T
) 0 ≤ k ≤ T − 1

The eigenspace relative to λ0 = 0 is: v0 =
[
I . . . I

]>. Consequently, in order
to get a unique solution, the following condition is required:

v>0 A
>Av0 = µv>0 Φv0 = µ

T−1∑
i=0

φ2(i)φ2(i)> � 0.

This is true if λmin
(∑T−1

i=0 φ2(i)φ2(i)>
)
> 0 which means that the data vector

φ2(t) must span a space of dimension 2N − 1 on the whole time horizon of
size T . This condition will be easily satisfied if the input is sufficiently exciting
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and if the order of the model is not overestimated. Notice that this tells no
information about the reliability of the identified coefficients. To be able to
recover the true coefficients of a model, the data should be unperturbed and
as exciting as possible. The condition: λmin

(∑k+2N−2
i=k φ2(i)φ2(i)>

)
> 0 ∀k

corresponding to the best case.
The system of normal equations can be efficiently solved by performing

a bloc tri-diagonal LU factorization of the A>A matrix (3), see [4, 4.5] for
more details. This decomposition has a complexity of O((T − 1)(2N − 1)3)
operations which is linear in T .

Using the same technique, it is also possible to normalize at 1 another co-
efficient than α0 and to take into account already known coefficients by fixing
them at their value. This can be interesting if we want to identify a more
particular model structure than (1) by fixing some coefficients at 0. Unfor-
tunately, the solution of the problem will depend on the coefficient which is
normalized, that is why another normalization is proposed in the next section.

3 Other normalization

In this section, we explain why it can be interesting to normalize the coefficient
vector, i.e., fixing ‖X(t)‖ = 1 ∀t and we describe the method used to solve
the corresponding optimization problem.

The main idea behind this normalization is the following. The ARX rela-
tion (1) can be rewritten as:

X(t)>φ(t) = 0

and is unchanged if it is multiplied by a scalar γ(t) 6= 0 which means that
γ(t)X(t) corresponds to the same ARX model as X(t). Consequently, an ARX
model at time t is not represented by a particular coefficient vector but by a
direction in R2N . Hence, a good notion of distance between two ARX models
is the angle. In fact, this notion of distance does not depend on the particular
choice of vector in R2N used to represent an ARX model. When ‖X(t)‖ =
1 ∀t, the first term of (2) becomes:

T−1∑
t=1

4 sin2

(
∠X(t)X(t− 1)

2

)
and only depends on the angle ∠X(t)X(t− 1) between two coefficient vectors
representing two ARX models at consecutive time steps.

This is also a more neutral normalization because the cost on the coeffi-
cient variation is uniform as opposed to the normalization of the α0 coefficient.
In fact, when the α0 coefficient is normalized, the distance between two ARX
models represented by ‖ X(t)

α0(t) − X(t−1)
α0(t−1)‖22 will be larger if the model at time t

is well represented by a model whose α0 coefficient gets close to 0 and lower



Identification method for time-varying ARX models 5

if the model at time t is well represented by a model whose α0 coefficient is
large. This is shown in the following example. At time t = 150, the α0 coeffi-
cient of the following system:

α0(t) = 0.5 + 0.45 sin
(
t2π
200

)
1 ≤ t ≤ 200

β0(t) = 5
α1(t) = 0.01
β1(t) = −4

gets close to zero. Fig. 1. shows the identified β0 coefficient using the two
normalizations. If the coefficient α0 is normalized, the true coefficient is not
recovered in the neighborhood of t = 150 because a coefficient variation is
highly penalized in this neighborhood. This is avoided when the coefficient
vector is normalized since the cost on the variation of the coefficients depends
only on the angle.
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time step

 

 

identified coefficients with α0 = 1

true coefficients

identified coefficients with ‖X‖2 = 1

Fig. 1. true and identified coefficient β0 when ‖X(t)‖2 = 1 ∀t

With this constraint, the optimization problem (2) is no longer a least
squares problem and an optimization technique on manifolds is proposed. We
will only describe the main points of this method. For more details, see [5].

By introducing the following notation:

X =

 X(0)
...

X(T − 1)

 =

 X0

...
XT−1

 ∈ R2NT ,

the constraint ‖X(t)‖ = 1 ∀t can be also rewritten as: X ∈ (S2N−1)T where
(S2N−1)T stands for the Cartesian product of T unit spheres in R2N :
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(S2N−1)T = S2N−1 × · · · × S2N−1︸ ︷︷ ︸
T

⊂ R2NT

where S2N−1 = {x ∈ R2N |x>x = 1} is the unit sphere in R2N . This is a
submanifold of R2NT and its tangent space at X is:

TX(S2N−1)T = {Z =
[
Z0 . . . ZT−1

]> ∈ R2NT |X>i Zi = 0 0 ≤ i ≤ T − 1}.
The orthogonal projection on this tangent space at the point X is given by:

PX(Z) =

 PX0(Z0)
...

PXT−1(ZT−1)

 =

 (I2N −X0X
>
0 )Z0

...
(I2N −XT−1X

>
T−1)ZT−1

 .
Then, the problem (2) becomes the following optimization problem on

(S2N−1)T :

min
X

f : R2NT −→ R, X −→ X>A>AX

s.t. X ∈ (S2N−1)T

where the A>A matrix is given by:



I + µΦ(0) −I
−I 2I + µΦ(1) −I

. . . . . . . . .
. . . . . . −I

. . . 2I + µΦ(T − 2) −I
−I I + µΦ(T − 1)


(4)

with Φ(t) = φ(t)φ>(t) and I is the identity matrix of size 2N . The restriction
of f to (S2N−1)T is denoted by f .

A Newton method on the oblique manifold has been chosen to solve this
problem because our numerical experiments have shown that the solution of
the least squares problem (when α0 is normalized) belongs to the attraction
basin of the Newton method. The Newton equation is given by:

∇Zgrad f = −grad f(X) Z ∈ TX(S2N−1)T (5)

where grad f(X) represents the gradient and ∇Zgrad f stands for the Rie-
mannian covariant derivative of the vector field grad f(X) in the direction
Z.

To implement this method, an expression for the gradient and for the Rie-
mannian connection ∇ is required. The gradient with respect to the induced
metric is the unique element grad f(X) of TX(S2N−1)T which satisfies:
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grad f(X)>Z = DF (X)[Z] ∀Z ∈ TX(S2N−1)T

where DF (X)[Z] stands for the differential at X in the direction Z. In our
case, this gives:

grad f(X) = PX(2A>AX).

Since (S2N−1)T is an Rn submanifold of the Euclidean space R2NT , the Rn
connection is equivalent to the classical directional derivative in R2NT followed
by a projection on the tangent space at X: ∇Zgrad f = PX(Dgrad f(X)[Z]).
Then, the Newton equation (5) becomes:

2

 PX0B0Z − Z0X
>
0 B0X

...
PXT−1BT−1Z − ZT−1X

>
T−1BT−1X

 = −grad f(X) (6)

Z ∈ TX(S2N−1)T (7)

where Bi is the bloc matrix composed of the rows i2N + 1 up to (i + 1)2N
and all the columns of A>A in (4). By introducing the following change of
variables,

Zi = X⊥i βi where [Xi|X⊥i ]>[Xi|X⊥i ] = I2N

the condition (7) is trivially satisfied and (6) becomes:

K0β0 −X⊥0
>
X⊥1 β1 = −X⊥0

>
B0X

−X⊥i
>
X⊥i−1βi−1 +Kiβi −X⊥i

>
X⊥i+1βi+1 = −X⊥i

>
BiX for 1 ≤ i ≤ T − 2

−X⊥T−1

>
X⊥T−2βT−2 +KT−1βT−1 = −X⊥T−1

>
BT−1X

where Ki = X⊥i
>
µΦ(i)X⊥i − IX>i BiX. This system is bloc tri-diagonal and

can be easily solved using a bloc LU factorization which requires O((T −
1)(2N−1)3) operations. Consequently from a computational complexity point
of view, one iteration of this Newton method is equivalent to the least squares
method presented in the previous section. Once the Newton step Z has been
computed, the following retraction:

RX(Z) =


X0+Z0
‖X0+Z0‖

...
XT−1+ZT−1
‖XT−1+ZT−1‖


can be used to compute the update X+ = RX(Z).

4 Choice of µ and the order

In this section, some numerical experiments and methods to select or gain
some insight in the µ parameter value and the order of the system are pre-
sented. Let us consider the system defined by the following coefficient vector:
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X(t) =


α0(t)
β0(t)
α1(t)
β1(t)
α2(t)
β2(t)

 =



1
1− 0.2e−( t−T/20.25T )

−0.8
−0.2
0.6
−0.6

 .

This system was simulated with a white noise of unitary variance as input.
The output was perturbed in the following way: y(t)← y(t)+∆|y|U(t) where
U(t) is a random variable distributed uniformly on [−1, 1]. Fig. 2. shows the
error on the coefficients in function of µ for different levels of perturbation.
For an unperturbed model (∆ = 0), the error on the coefficients is smaller
for a large value of µ because the bias introduced by the first term of our
cost function is reduced. For a perturbed system, it is not optimal to trust
too much the data, and there exists an optimal value of µ that minimizes
the error on the coefficients. To get an insight of this optimal value of µ in
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Fig. 2. difference between the true X2 and the identified coefficients X̃2: ‖X2−X̃2‖2
in function of µ for different levels of perturbation ∆

practice, we can look at the identified coefficient β0 shown in Fig. 3. For a
small value of µ, we get an almost constant coefficient and for a large value
of µ we identify a coefficient that oscillates around the true coefficient. This
means that we are identifying the noise. So it is possible to get an idea of
the best value of µ that makes a desired trade-off between the slow coefficient
variation or equivalently the risk of bias and the rejection of the perturbations.
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Fig. 3. identified (.-) and true (-) coefficients β0 for different values of µ when
∆ = 0.1

The notion of order for a time invariant system somehow represents the
complexity of the model. If this complexity is increased, the model will better
fit the data. So, a common criterion to find the order of a time-invariant
system consists in measuring the fitting error (the prediction error in our
case) and selecting the order that corresponds to a drop on the fit level. This
idea does not directly extend to time-varying models. In fact, even with a
time-varying model of order 0, it is easy to make the fitting error going to 0.
But by imposing a cost on the variation of the coefficients, the same idea can
be applied as shown in the following experiment. A time-varing ARX system
of order 4 was identified using different models (different values of the order)
and different values of µ, see Fig. 4. When we go from a model of order 3 to a
model of order 4, the error drops and remains rather constant if the order is
further increased. This drop indicates that the model order is probably 4 and
it is interesting to notice that this conclusion does not depend on the value of
µ.

5 Conclusions

We have presented a method to identify a time-varying ARX model by penal-
izing the variation of the coefficients. By doing so, we can choose the order
using classical techniques and the influence of the perturbations can be re-
duced. A more neutral normalization of the coefficient vector has also been
proposed. This normalization leads to better results on models whose α0 co-
efficient gets close to 0. In later work, we will extend these methods to MIMO
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Fig. 4. prediction error (
PT−1
t=0 ‖φ

>(t)X̃(t)‖2 where X̃(t) stands for the identified
coefficient vector) for different values of µ and the order

systems. When the coefficient matrix is normalized, this yields an optimization
problem on the Cartesian product of Grassmann manifolds.
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