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Abstract— In this paper, a filtering technique that deals with
subspaces, i.e., points on the Grassmann manifold, is proposed.
This technique is based on an observer design where the data
points are seen as the outputs of a constant velocity dynamical
model. An explicit algorithm is given to efficiently compute
this observer on the Grassmann manifold. This approach is
compared to a particle filtering technique and similar results
are obtained for a lower computational cost. Some extensions
of the filter are also proposed.

I. INTRODUCTION

In many applications related to signal processing and
image processing, it is necessary to filter measurements
that belong to the Grassmann manifold, i.e., the set of p-
dimensional subspaces of Rn or Cn denoted by G(n, p).
This appears in the direction of arrival tracking problem
in antenna array processing when a time division multiple
access technique is applied to increase the capacity of the
antenna array, see [1]. In this case, the measurements are
estimations of the signal subspace, which can be used to
recover the directions of arrival. In object tracking problems
on a video sequence, the tracked object can be represented
by the dominant subspace of a covariance matrix, see [2]. To
deal with deformations and illumination variations, this sub-
space must be updated. A filtering technique is then required
to update this subspace using the subspaces representing the
object at the previous time steps. Subspace tracking problems
also arise when a reduced order model must be updated over
time. In fact, a reduced order model is often computed as a
projection of the full model on a low dimensional subspace.
Since this projection is expensive to compute, an updating
strategy is then required to predict the reduced order model
over time.
A particle filtering technique based on a stochastic piece-

wise constant velocity model on the Grassmann manifold
was introduced in [3]. Efficient implementations were dis-
cussed in [4], but even then, this technique is computationally
demanding on high dimensional problems due to the number
of particles required. In [2], the authors used a Kalman-like
filter on the velocity, i.e., on the tangent space to G(n, p),
to update the subspace representing a tracked object on a
video.

This paper presents research results of the Belgian Network DYSCO (Dy-
namical Systems, Control, and Optimization), funded by the Interuniversity
Attraction Poles Programme, initiated by the Belgian State, Science Policy
Office. The scientific responsibility rests with its author(s).

In this paper, we present a Luenberger-like observer based
on a constant velocity dynamical model on the Grassmann
manifold. This model is used to reduce the influence of high
frequency noise or outliers in the measurements, i.e., sub-
spaces in this case. This method does not work with particles
and is then computationally cheaper than the particle filtering
technique introduced in [3]. It has also a lower numerical
cost than [2] due to an efficient representation of points and
velocities on G(n, p).
The paper is organized as follows. Section II introduces

definitions and gives useful formulas to compute on the
Grassmann manifold. Section III describes the problem and
introduces our filtering approach. Some numerical examples
are shown in section IV. Section V describes some possible
generalizations of our observer to other dynamical models
and section VI concludes.

II. BACKGROUND

In order to define a dynamical system on the Grassmann
manifold, we need to represent the position and the velocity
of a subspace. This section introduces our representation of
subspaces and some mappings that will be useful to define
a discrete-time dynamical model on G(n, p).
A point X on the Grassmann manifold is represented by

the column space of an orthogonal matrix X ∈ Rn×p:

X = col(X).

So, from now on, a subspace will be denoted by X and its
representation by X , an orthogonal n×p matrix. We restrict
ourselves to orthogonal matrices to obtain simpler formulas
and to avoid conditioning problems.
The velocity Ẋ (t) = d

dtX (t) of a smooth curve t �→ X(t)
is termed a tangent vector to G(n, p) at X(t). The term
“smooth” and the derivative are well defined because G(n, p)
has a natural manifold structure; see, e.g., [5]. Given a
tangent vector Ẋ at X , ∃! V ∈ Rn×p, X�V = 0, such

that Ẋ =
d

dt
col(X + tV )|t=0. This allows us, with a slight

abuse of notation, to say that the tangent space at X has a
matrix representation given by:

TXG(n, p) = {V ∈ Rn×p|X�V = 0}.

Thus, given X , a tangent vector VX at X is also represented
by an n × p matrix V . Moreover, if X is replaced by XQ,
then V is replaced by V Q for any orthogonal Q ∈ Rp×p.
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The Grassmann manifold can be turned into a Riemannian
manifold by introducing the following inner product on
TXG(n, p):

< V1, V2 >X= trace((X�X)−1V �
1 V2).

With this inner product or Riemannian metric, we can define
the distance between two subspaces X and Y:

d(X , Y) = inf
{γ∈G(n,p)|γ(0)=X,γ(1)=Y}

� 1

0

�
�γ̇(t), γ̇(t)�γ(t)dt.

The distance is thus the length of the shortest curve γ(t)
between X and Y . It can be shown that this shortest curve
is locally a geodesic, i.e., a curve of zero acceleration,
where the acceleration is given by the Riemannian covariant
derivative of the velocity: ∇γ̇γ̇, see [6]. Notice that this
distance corresponds to

�p
i=1 σ

2
i , where the σi’s are the

principal angles between X and Y .
Finally, we need to introduce the exponential map, the

log-mapping, and the parallel transport, for which efficient
computational methods (with a computational complexity of
O(np2)) are discussed in [7] and [8].
Exponential map
It returns the point on the manifold obtained by following

the geodesic curve γ(t) such that γ(0) = X and γ̇(0) = VX .

expX : TXG(n, p) �→ G(n, p), expX (VX ) = γ(1)

If the subspaces are represented by n × p matrices, the
geodesic can be computed efficiently using

expX(VX) = (XW cosΣ + U sinΣ)W�,

where VX = UΣW� is the compact SVD of VX .
Log-mapping
The log-mapping is the inverse of the exponential map.

exp−1
X : G(n, p) �→ TXG(n, p), exp−1

X (Y) = VX .

Notice that the log-mapping is the opposite of the gradient
of the function: X �→ 1

2d(X , Y)2. The method proposed in
[8] to compute this log-mapping using a CS decomposition
can be slightly modified to work with the parameterization
of the Grassmann manifold introduced in this section

�
X�Y

(In − XX�)Y

�

=

�
W1 cos(Σ)Z

�

W2 sin(Σ)Z
�

�

,

exp−1
X (Y ) = W2ΣW

�
1 .

Parallel transport
The parallel transport of a tangent vector T ∈ TXG(n, p)

along the geodesic curve γ(t) joining γ(0) = X to γ(1) = Y
is denoted by

ΓX→Y : TXG(n, p) �→ TY G(n, p), ΓX→Y(T ) = Z(1)

where Z(t) is the solution of ∇γ̇(t)Z(t) = 0 and Z(0) = T .
An efficient formula to compute this parallel transport on
Grassmann is given by:

ΓX→Y (T ) = (−XW sinΣ + U cosΣ)U�T +(I −UU�)T

where UΣW� = VX is the compact SVD of the tangent
vector VX such that expX(VX) = Y . Notice that this vector
can be computed using a log-mapping.

III. PROBLEM DESCRIPTION

Let us assume that we measure corrupted data Yk ∈
G(n, p) for 1 ≤ k ≤ T . The goal is to filter recursively these
data to reduce the influence of the noise and the outliers. To
achieve this goal, we assume that the data Yk are the outputs
of the following discrete-time dynamical system whose state
is composed of the position (a subspace Xk) and the velocity
(a tangent vector Vk at Xk):

Xk+1 = expXk
(Vk),

Vk+1 = ΓXk→Xk+1
(Vk),

Yk = expXk
(Uk),

where Uk is an i.i.d. Gaussian vector of mean 0 and variance
σ2I that belongs to the tangent space at Xk. This constant
velocity model, i.e., a geodesic model, for the dynamics of
the subspaces is chosen to act as a smoother on the subspace
trajectory to reduce the influence of the noise. Our filtering
method is based on the design of a Luenberger observer for
this dynamical system. A Luenberger observer on Rieman-
nian manifolds has been introduced in [9] to observe the state
(position and velocity) of a class of nonlinear mechanical
systems. We will briefly describe this approach and then will
derive our observer.

The continuous dynamical system for a particle moving
on a geodesic curve is

Ẋ = V,

∇ẊV = 0.

If the position of the particle is measured, we can build the
following Luenberger observer as in [9]:

˙̂
X = V̂ + α exp−1

X̂
(Y), (1)

∇Ẋ V̂ = β exp−1

X̂
(Y) + R(V̂, exp−1

X̂
(Y))V̂, (2)

where X̂ and V̂ are the estimated position and velocity, Y
is the measured trajectory, R is the Riemannian curvature
tensor and α, β are two tunable real parameters. Remark
that exp−1

X̂
(Y) = ∇X̂

1
2d(X̂ , Y)2. Notice that the curvature

is involved to ensure the convergence of the observer in the
negative curvature case. But the curvature of the Grassmann
manifold is non negative. Hence, this curvature term is
not required. So, we discard this term since the observer
is less expensive to compute without this curvature term.
The convergence proof in [9] will not hold anymore but
our numerical experiments have shown that the observer
converges even without this term.

Using an explicit Euler method with Δt = 1, a discrete
version of (1-2) can be derived:

X̂k+1 = expX̂k
(V̂k + α exp−1

X̂k
(Yk)), (3)

V̂k+1 = ΓX̂k→X̂k+1
(V̂k + β exp−1

X̂k
(Yk)), (4)

where X̂k and V̂k denote the estimated state and the estimated
velocity at time step k. Notice also that this discrete-time
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TABLE I

LUENBERGER OBSERVER ALGORITHM ON G(n, p)

inputs: the current state representation: (Xk ,Vk), the measurement: Yk ,
and the parameters α and β
outputs: the next estimation of the state (Xk+1,Vk+1)�

X�
k Yk

(Yk − XkX
�
k Yk)

�

=

�
W1 cos(D)Z�

W2 sin(D)Z�

�

(CS Decomposition)

set: L = W2DW�
1

compute: (Vk + αL) = UΣWT (compact svd)
set: Dk = XkW
set: Xk+1 = (Dk cos(Σ) + U sin(Σ))W�

set: B = (U�Vk + βU�L)
set: Vk+1 = (−Dk sin(Σ) + U cos(Σ))B + (Vk + βL − UB)

observer can be seen as the generalization of the following
discrete-time observer in Rn:

xk+1 = xk + vk + α(yk − xk),

vk+1 = vk + β(yk − xk),

where xk, vk and yk belong to R
n. In fact, the addition of the

position xk and the velocity vk is replaced by an exponential
map in (3), the difference between two points is computed
using a log-mapping, and the parallel transport is used to
relate tangent vectors that do not belong to the same tangent
space in (4).

This observer can be implemented efficiently using two
n × p matrices: one whose column space represents the
subspace and another one that represents the velocity of the
subspace. In fact, as we have seen in section II, there exist
formulas to compute the parallel transport, the exponential
map and its inverse in O(np2) operations on G(n, p) using
this representation. The implementation of the observer is
summarized in TABLE I.

IV. SIMULATIONS AND COMPARISONS

We simulated a piecewise geodesic trajectory on G(10, 5).
So, the distance between the subspaces is constant on each
piece as shown in Fig. 1. The Luenberger observer has an
important overshoot when the velocity vector changes but
is able to filter the noise, see the red curve in Fig. 1. We
have also compared this observer with the particle filtering
technique of [3] on G(4, 2). Similar results are obtained and
shown in Fig. 2. The main advantage of the Luenberger
observer over the particle filtering technique is its low
computational cost. In fact, 2000 particles are required to
get good results with the particle filtering method and this
number increases when n or p increases.

V. EXTENSIONS

This section briefly presents some extensions of the pre-
sented observer. We have considered a very simple dynamics
but the generalization to other dynamics is straightforward.
For instance, it is possible to extend our approach to a
constant acceleration model. The acceleration Âk will be
also modeled by a tangent vector at X̂k and our observer
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Fig. 1. The magenta curve represents the distance between the subspaces
d(Xk,Xk+1) of the true trajectory (unperturbed). The blue curve represents
the difference between the perturbed data Y and the unperturbed data X ,
i.e., the level of the noise. The difference between the filtered data and the
unperturbed data is represented in red for the Luenberger observer (with
α = 0.5 and β = 0.1) and in green for the modified observer that deals
with measurements in Rn (with α = 0.1 and β = 0.01).
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Fig. 2. Difference between the true trajectory and the filtered one for
the Luenberger observer with α = 0.3 and β = 0.02 (red curve) and
for the particle filtering technique with 2000 particles (black curve). As
in Fig. 1, the magenta curve represents the distance between the subspaces
d(Xk,Xk+1) of the true trajectory (unperturbed). The blue curve represents
the difference between the perturbed data Y and the unperturbed data X ,
i.e., the level of the noise.

will become:

X̂k+1 = expX̂k
(V̂k + α exp−1

X̂k
(Yk)),

V̂k+1 = ΓX̂k→X̂k+1
(V̂k + Âk + β exp−1

X̂k
(Yk)),

Âk+1 = ΓX̂k→X̂k+1
(Âk + γ exp−1

X̂k
(Yk)),

where α, β and γ are real parameters. Notice that this
observer will be just a bit more expensive to compute since
it requires the parallel transport of the acceleration vector.
If the measurements do not belong to G(n, p), we can

replace the function 1
2d(X , Y)2 by another function that

depends on the subspace X . Its gradient with respect to
X will be a tangent vector at X . This approach is called
gradient based observer and is studied in [10] for observers
on Lie groups. In our case, if we measure only points
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y ∈ Rn and not subspaces, one possible choice could be:
1
2 ||(I − XX�)y||2F . The gradient of this function is given
by: −(I − XX�)yyTX . This approach can be extended to
an arbitrary number of points. In this case, the gradient will
be −(I − XX�)CX , where C is the covariance matrix of
the data points. We tested this approach by generating, for
each measured subspace, p data points y of unit norm. The
result is shown in Fig. 1 in green.

VI. CONCLUSIONS AND FURTHER WORK

We have shown how to implement a Luenberger-like
observer to filter data on the Grassmann manifold. This
approach seems to be more attractive from a computational
point of view than the particle filtering approach on problems
where the dimension is high as in [2]. Furthemore, this
approach can be extended to other dynamical models on
Grassmann. The convergence region of our observer seems
to be quite large and a particularization of the convergence
result obtained in [9] will be considered in further work.

REFERENCES

[1] R. Weber, “Subspace Tracking for Mobile Communications,” Techn.
Univ. München, Munich, Germany, Tech. Rep. TUM-LNS-TR-97-7,
1997.

[2] Tiesheng Wang, Andrew Backhouse, and Irene Y.H. Gu, “Online
subspace learning in Grassmann manifold for moving object tracking
in video,” in Proceedings of IEEE international conf. Acoustics,
Speech, and Signal Processing (ICASSP’08), 2008, pp. 969–972.

[3] Anuj Srivastava and Eric Klassen, “Bayesian and geometric subspace
tracking,” Adv. in Appl. Probab., vol. 36, no. 1, pp. 43–56, 2004.

[4] Quentin Rentmeesters, P.-A. Absil, Paul Van Dooren, Kyle Gallivan,
and Anuj Srivastava, “An efficient particle filtering technique on the
Grassmann manifold,” in Proceedings of IEEE international conf.
Acoustics, Speech, and Signal Processing (ICASSP), 2010, pp. 3838–
3841.

[5] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms
on matrix manifolds, Princeton University Press, Princeton, NJ, 2008.

[6] M.P. Do Carmo, Riemannian geometry, Birkhauser, 1992.
[7] Alan Edelman, Tomás A. Arias, and Steven T. Smith, “The geometry

of algorithms with orthogonality constraints,” SIAM J. Matrix Anal.
Appl., vol. 20, no. 2, pp. 303–353 (electronic), 1999.

[8] Kyle Gallivan, Anuj Srivastava, Xiuwen Liu, and Paul Van Dooren,
“Efficient algorithms for inferences on Grassmann manifolds,” in
Proceedings of 12 th IEEE Workshop on Statistical Signal Processing,
2003, pp. 315–318.

[9] Nasradine Aghannan and Pierre Rouchon, “An intrinsic observer for
a class of Lagrangian systems,” IEEE Trans. Automat. Control, vol.
48, no. 6, pp. 936–945, 2003.

[10] C Lageman, J Trumpf, and R Mahony, “Gradient-like observers for
invariant dynamics on a lie group,” Tech. Rep. arXiv:0805.0828, May
2008, Comments: 10 pages.

Q. Rentmeesters et al. • A Filtering Technique on the Grassmann Manifold 

2430




