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ABSTRACT

Subspace tracking methods are widespread in signal process-
ing and image processing. To reduce the influence of pertur-
bations or outliers on the measurements, some authors have
used a stochastic piecewise constant velocity model on the
Grassmann manifold. This paper presents an efficient way
to simulate such a model using a particular parameterization
of the Grassmann manifold. By doing so, we can reduce the
spatial and time complexity of filtering techniques based on
this model. We also propose an approximation of this system
which can be computed in a finite number of operations and
show similar results if the subspace variation is slow.

Index Terms— time-varying subspace learning, Grass-
mann manifold, particle filtering

1. INTRODUCTION

Subspace tracking problems appear in many areas such as sig-
nal processing and image processing. For instance, in direc-
tion of arrival tracking (DOA), a subspace tracker is required
to recursively update the dominant subspace of the estimated
covariance matrix of the signal. In image processing, sub-
space tracking problems appear in moving object tracking
on video. In this problem the tracked object is often repre-
sented by a linear subspace. This subspace must be updated to
cope with change in illumination or viewing angles. Further-
more, to reduce the influence of perturbations or outliers in
the measurements, a filter is required. To implement this fil-
ter, some authors [1, 2] work on the Grassmann manifold de-
noted G(n, p) which is the set of p-dimensional subspaces of
Rn and they have introduced a stochastic piecewise geodesic
(constant velocity) model as a motion model for the subspaces
to reduce the influence of the noise.

In [1], the authors use this model and a particle filtering
technique on a DOA tracking problem. This technique ap-
proximates the posterior distribution of the subspace at each

∗This paper presents research results of the Belgian Network DYSCO
(Dynamical Systems, Control, and Optimization), funded by the Interuni-
versity Attraction Poles Programme, initiated by the Belgian State, Science
Policy Office. The scientific responsibility rests with its authors.

time step by drawing a large number of samples according to
their stochastic piecewise geodesic model. Then, they esti-
mate the subspace by computing the mean of these samples.
In [2], the authors use the same model and a Kalman Filter
approach on the tangent space of the Grassmann manifold
to track an object on a video. Both papers show that bet-
ter results are obtained using this geometric approach. But
one of the main problem of these techniques is the compu-
tational cost of the exponential mappings, parallel transports
and log-mappings. In fact, the method presented in [1], re-
quires computing the exponential of an n-by-n matrix which
is not efficient if n is large.

In this paper, we propose a different implementation of
the particle filter introduced in [1] using a computationally
more efficient parameterization of the tangent space to the
Grassmann manifold yielding a computational complexity of
O(np2). To reduce again the complexity, we also propose to
replace the exponential mapping by a retraction and the paral-
lel transport by a vector transport as introduced in [3]. This is
interesting from a computational point of view and yet com-
parable performances are shown if the subspaces vary slowly.

The paper is organized as follows. Section 2 introduced
some notations and explains the main principle of our ap-
proach. Section 3 describes our implementation of the par-
ticle filtering technique. The approximation of the geodesic
process using retractions and vector transports is presented in
section 4. Numerical simulations are shown in section 5 and
section 6 concludes.

2. PRINCIPLE OF OUR APPROACH

In this section, we describe the main idea behind our com-
plexity reduction. We first recall the definition of a stochastic
geodesic process and introduce some notation.

A point X on the Grassmann manifold is represented by
the column space of an orthogonal matrix X ∈ Rn×p; we
write X = col(X). We restrict ourselves to orthogonal ma-
trices to obtain simpler formulas and to avoid conditioning
problems.

In the particle filtering algorithm of [1], the authors use a
piecewise-geodesic model where the velocities on all pieces
are related by a Markov process. Reformulated in our nota-



tion, this model (see algorithm 1 in [1]) is:

[Xk|X⊥,k] = [Xk−1|X⊥,k−1] exp
([

0 −A>k−1

Ak−1 0

])
(1)

Ak = Ak−1 +Nk (2)

where Xk ∈ Rn×p, X⊥,k ∈ Rn×(n−p) such that [Xk|X⊥,k]
is orthogonal, A ∈ R(n−p)×p and Nk is an (n-p)-by-p matrix
whose elements are i.i.d. real normals of mean 0 and variance
σ2

model.
This process is completely defined by the initial state

(X0, X⊥,0, A0) and all the realizations of the noise N . In [1],
this model is used to simulate the movement of particles and
in [2], the same model is used to implement a Kalman filter
(the velocity model represented by the matrix A is different).
Therefore, it is very important to perform simulations with
this model at a very low cost. If this model is implemented as
in (1), it is not very efficient.

In fact, the dimension of the Grassmann manifold G(n, p)
is p(n−p). So is the dimension of its tangent space at a given
point. Hence, a position-velocity pair on G(n, p) involves
2p(n− p) degrees of freedom. Yet, the data available at time
k for one particle in (1) is (Xk, X⊥,k, Ak) which involves
np+n(n−p)+(n−p)p = n2+(n−p)p real numbers. When
n >> p this is much larger than the theoretical optimum of
2p(n− p) parameters.

It would be possible to achieve the theoretical optimal
number of parameters by working in local parameterizations
of the Grassmann manifold. This option has drawbacks: the
equations are less streamlined, and the transition between lo-
cal parameterizations has to be managed.

In [4], a method is proposed to compute the exponen-
tial mapping in O(np2) flops. But this approach does not
work for parallel transport. In fact, at time k, only Xk is
computed and they build an orthogonal completion of Xk

based on Householder vectors. But this orthogonal comple-
tion is not equivalent to X⊥,k which is the rotated version of
X⊥,k−1. So at the next time step we cannot compute Xk+1

because X⊥,k is required. Therefore, this approach does not
solve the problem in this case.

In this paper, we propose to represent the state (Xk, Ẋk) of
a particle at time k by (Xk, Vk), where Xk ∈ Rn×p such that
col(Xk) = Xk and Vk ∈ Rn×p is such that X>k Vk = 0 and
d

dt
col(Xk + tVk)|t=0 = Ẋk is the velocity of the particle. It

can be shown that, given Xk, this Vk is unique and moreover,
if Xk is replaced by XkM , then Vk is replaced by VkM for
any orthogonal M ∈ Rp×p. Notice also that Vk is related to
Ak in (2) by: Vk = Xk,⊥Ak.

Observe that our representation uses 2np real variables,
which is smaller than n2 +(n−p)p for 1 ≤ p < n

2 and n > 1
and is particularly interesting when n >> p.

3. REDUCED-MEMORY IMPLEMENTATION OF
PARTICLE FILTERING

In this section, we explain how the subspace tracking method
introduced in [1] can be implemented in O(np2) flops using
the parameterization of the Grassmann manifold introduced
in the previews section.

In [5], there are formulas equivalent to (1) to update Xk

and Vk:

Vk−1 = Uk−1Σk−1W
>
k−1 (compact svd) (3)

Dk−1 = Xk−1Wk−1 (4)

Xk = (Dk−1 cos Σk−1 + Uk−1 sin Σk−1)Wk−1
> (5)

Vk = (−Dk−1 sin Σk−1 + Uk−1 cos Σk−1) Σk−1Wk−1
>

(6)

+ (Ωk −XkXk
>Ωk)

Equation (5) can be interpreted as the computation of the
geodesic and equation (6) as a parallel transport of the ve-
locity vector Vk−1 at Xk−1 along the geodesic curve between
Xk−1 and Xk where Xk is represented by Xk. From a sta-
tistical point of view, equation (6) is equivalent to (1). Us-
ing the fact that Vk = X⊥,kAk, the perturbation in (6) be-
comes: (In−XkX

>
k )Ωk = X⊥,kX

>
⊥,kΩk = X⊥,kΩ̃k where

Ω̃k = X>⊥,kΩk is also a Gaussian noise with the same vari-
ance than Ωk because X>⊥,k is orthogonal. Thus, this Ω̃k cor-
responds to the Nk in (2). Notice also that this way of com-
puting the geodesic model requiresO(np2) flops per step, the
most computationally demanding step being the SVD.

In [1], an intrinsic version of the mean called the Chordal
mean is used. This mean is the dominant p-dimensional
eigenspace of G̃k = 1

M

∑M
i=1X

i
kX

i
k
> and it requires the

computation of an SVD of the n-by-n matrix G̃k which costs
O(n3) flops. To reach our computational complexity of
O(np2), the chordal mean can be replaced by the Karcher
mean:

µ(X1, ..., XM ) = arg min
Y ∈G

1
M

M∑
i=1

geodis(Xi, Y )

where geodis(Xi, Y ) stands for the geodesic distance be-
tweenXi and Y . There is no closed form formula to compute
this mean. One way to solve this minimization problem is to
implement a gradient descent method as follows:

1. compute Ṽ = 1
M

∑M
i=1 logµk(Xi) where logX(Y )

stands for the log-mapping, i.e., it returns the velocity
vector such that we get Y if we follow the geodesic
curve starting at X in the direction of this velocity
vector. The method proposed in [4] to compute this
log -mapping using a CS decomposition can be slightly
modified to work with the parametrization of the Grass-
mann manifold introduced in section 2:



[
X>Y

(In −XX>)Y

]
=
[
W1 cos(Σ)Z>

W2 sin(Σ)Z>

]
logX(Y ) = W2ΣW>1

2. move along a geodesic curve in the direction Ṽ =
UΣW>: set µk+1 =

(
µkW sin(Σ) + U cos(Σ)

)
W>

This method requires O(Mnp2) flops per iteration and is thus
more efficient than the chordal mean when n is large.

In the particle filtering technique of [1], the following pos-
terior model is used:

p(Yk|Xk) = Kk exp
tr(XkX

>
k YkY

>
k )

σ2
data

(7)

where Kk is a normalizer, Yk = col(Yk) are the measure-
ments and σ2

data is their variance. Notice that this distribu-
tion is independent of the particular orthogonal basis we have
chosen to represent Xk and Yk and requires O(np2) flops to
compute. And consequently, the particle filtering technique
introduced in [1] has a total complexity of O(np2).

4. FURTHER COMPLEXITY REDUCTION BY
APPROXIMATION

The main drawback of this method is its complexity due
to the computation of the geodesics and parallel transports.
One way to reduce their computational cost is to replace the
geodesics by retractions and the parallel transports by vector
transports. In fact, this could replace the SVD decomposition
of an n-by-p matrix by a QR decomposition which can be
performed in a finite number of steps. This is particularly
interesting if p is close to n

2 .
More precisely, we propose to replace the constant veloc-

ity model (5-6) by the following retraction process:

Xk = q(Xk−1 + Vk−1) (8)

Vk =
(In −XkXk

>)Vk−1‖Vk−1‖F
‖(In −XkXk

>)Vk−1‖F
+ (In −XkXk

>)Ωk

(9)

where ‖.‖F denotes the Frobenius norm and q is a pro-
jection of an n-by-p matrix of full rank onto the Stiefel man-
ifold ST(n, p) (the set of orthogonal n-by-p matrices) such
that col(X) = col(q(X)) and q(W ) = W ∀W ∈ ST(n, p)
. This system can be thought as a first order approximation of
the geodesic process projected on the Stiefel manifold. There-
fore, if ‖Vk‖F is small, we obtain a good approximation of
the geodesic. We can attempt to find a tangent vector V such
that we get exactly the same subspace as we had followed the
geodesic, i.e., if it is easy to compute a Ṽ such that:

col(XW cos(Σ) + U sin(Σ))W>︸ ︷︷ ︸
Y

) = col(X + Ṽ ).

Using the fact that we can multiply Y by an invertible matrix
W cos(Σ)−1W> (for σi < π/2) without changing its column
space, we get:

col(Y ) = col(X + U tan(Σ)W>︸ ︷︷ ︸
Ṽ

). (10)

Thus, the exponential mapping using V = UΣW> and the
retraction (8) using Ṽ give the same subspace. Observe also
that this Ṽ is given by the following log-mapping:

Ṽ = Y (X>Y )−1 −X.

Consequently, we can compute Ṽ0 using this log-mapping
and then use (8-9) with this Ṽ0 to simulate the stochastic
geodesic process. Notice however that the geodesic process
(5-6) is not equivalent to the retraction process (8-9) from a
statistical point of view but close to it if ‖V ‖F is sufficiently
small (tan(Σ) ≈ Σ for small Σ).

The parallel transport associated to a linear connection
compatible with the metric preserves the length of vector.
Consequently, in our vector transport (9), we normalize the
projection of Vk to preserve the length of transported vectors.

It remains to choose the projection q in (8). One pos-
sibility is to use the polar decomposition which is the near-
est element of the Stiefel manifold in terms of the Frobenius
norm. This is the best choice. In fact, as we have (X + Ṽ ) =
Y (W cos(Σ)−1W>) the orthogonal factor of the polar de-
composition of (X + Ṽ ) will be Y since (W cos(Σ)−1W>)
is a positive definite matrix ( 0 < σi < π/2). This de-
composition also satisfies the following property: ∀ W ∈
ST(p, p), q(XW ) = q(X)W which makes the retraction pro-
cess (8-9) invariant to the specific choice of orthogonal ba-
sis used to represent the subspaces. More precisely, if X1 is
the first basis and V1 is the corresponding tangent vector, this
means that a change of basis: X1 ← X1W and V1 ← V1W
for any W ∈ ST(p, p) will not change the trajectory (on the
Grassmann manifold) of the retraction process.

Unfortunately, this decomposition is as expensive as an
SVD. We therefore propose to use the following iterative
method to compute the polar decomposition of an n-by-p
matrix A:

Compute the QR-decomposition of A = QR
set r1 = R
for i = 1, ..., N − 1
ri+1 = 1

2 (ri + r−>i )
end for
set: q(A) = QrN

The ri converge quadratically to the orthogonal factor of the
polar decomposition ofR, see [6] for more details. If the sub-
spaces vary slowly, i.e., if ‖V ‖F is small, then X + V will
be close to an orthogonal matrix and in this case, it can be
more efficient to compute its polar decomposition recursively
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Fig. 1. Geodesic distance between the data and the filtered
data returned by the PF and PFapprox methods with σdata =
0.05, 1000 particles for ‖A0‖F = 0.2236.

than to compute an SVD. We will show in our numerical ex-
periments that only the QR-decomposition (with positive el-
ements on the diagonal of R to satisfy q(W ) = W ∀W ∈
ST(n, p)) is needed if the subspaces vary sufficiently slowly.

5. EXPERIMENTS AND RESULTS

A stochastic piecewise geodesic trajectory on G(4, 2) with
σmodel = 0.05‖A0‖F was simulated according to (1-2). The
particle filtering technique was applied on this data set and the
geodesic distance between the data and the filtered data was
computed as a measure of error. This was carried out for the
particle filtering technique using the geodesic process (5-6)
denoted by PF and using our approximation (8-9) with only a
QR decomposition denoted by PFapprox. If the norm ofA0 is
small, the subspaces vary slowly and the level of the error us-
ing the PF or PFapprox methods are equivalent, see Fig.1. But
when the norm of A0 is increased, the subspaces move more
rapidly and the time-averaged error of the retraction method
PFapprox becomes bigger than for the PF method as shown
in Table.1.

6. CONCLUSIONS

We have presented an efficient way to implement the particle
filtering technique of [1] that reduces the spatial complexity
per particles from n2 +(n−p)p to 2np and the time complex-
ity from O(n3) to O(n2). An approximation of the geodesic
process has been also presented to avoid the computation of
the SVD. This approximation is particularly interesting when

‖A0‖F mean error PF mean error PFapprox
0.1118 0.0186 0.0190
0.2236 0.0231 0.0250
0.3354 0.0269 0.0358
0.4472 0.0342 0.1147

Table 1. Time-average errors over 50 time steps aver-
aged over 50 different realizations of a stochastic piecewise
geodesic trajectory using the same initial state. All the exper-
iments were carried out with σdata = 0.05 and 1000 particles.

p gets close to n
2 and when the subspaces vary slowly. In fur-

ther work, we will consider the use of these approximations
in other filtering techniques such as the Luenberger filter in-
troduced in [7]. The use of this filter can be particularly inter-
esting in applications where n or p is large enough such that
the particle filtering technique requires too many particles to
be computationally tractable.
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