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Linear Time-Variable  Systems: Balancing 
and Model  Reduction 

SHAHRIAR SHOKOOHI, MEMBER, IEEE, LEONARD M. SILVERMAN, FELLOW. IEEE, AND PAUL M. 
VAN DOOREN, MEMBER, IEEE 

Abstract-A ‘‘uniformly  balanced” realization  for  linear  time-variable 
systems is defined. This representation is characterized by the  fact that its 
controllability and observability  Gramians are  equal  and diagonal. Ex- 
istence and uniqueness  of  the uniformly  balanced realization is studied. 
Such a framework has many  remarkable properties and leads to a  novel 
method  for approximating time-variable  systems, where the subsytems of 
the balanced realization  can  be  taken as a  reduced model.  The reduced 
model is examined from the  point of view of stabiliw.  controllabiliw. and 
obsen-ability. 

I. INTRODUCTION 

M ULLIS and  Roberts [25] and Moore  [23]  have  re- 
cently introduced a novel coordinate system  for 

realizing finite dimensional linear time-invariant  systems. 
The realizations so obtained exhibit certain symmetries 
between the input  and  output  maps of the realization and 
are called “balanced realizations.” In  the balanced coordi- 
nate system, the controllability and observability Gramians 
are equal and diagonal. By ordering these diagonal ele- 
ments we are able to measure the “degree of controllability 
and observability” of different components of the state 
vector. The  states corresponding to small diagonal ele- 
ments are “nearly uncontrollable” and “nearly unobserva- 
ble.” and  thus  “nearly  redundant,” so that the most con- 
trollable and observable part  can  be retained as a reduced 
model. This amounts  to taking a subsystem of the balanced 
realization as an approximation to the original  system. For 
constant systems obtained in this way,  reduced  models are 
almost always stable if the original  system  is stable [4],  [23]. 
Pernebo and Silverman [ 5 ] ,  [24]  showed,  moreover, that the 
stability of the reduced  model  is guaranteed if the diagonal 
elements of the controllability and observability Gramians 
are distinct. 

In th s  paper, we consider a generalization of balancing 

to time-variable  systems, and  study the properties of such a 
realization. This framework leads to what  is  possibly the 
first systematic procedure for lower order  approximation 
of time-variable  systems. In Section I1 some preliminary 
results and definitions are given. The earlier work of 
Silverman  [2],  [3]  in  which a class of system representations 
termed “uniform” were introduced are particularly useful. 
The class of uniform realizations for time-variable  systems 
behave in many  ways  like that of minimal realizations 
(controllable and observable)  for time-invariant systems. In 
Section 111 a characterization of systems  which are equiva- 
lent to a balanced one is given.  Also, a set of reasonable 
properties of the system ( A ,  B, C )  is proposed, which  en- 
sures the  existence of balanced realizations.  We then in- 
vestigate the uniqueness of such a realization. Applications 
of balanced realizations to periodic systems are also con- 
sidered. In Section IV  we further  study the properties of 
balanced realizations, whch leads to a natural setting for 
model reduction of time-variable  systems.  We justify that 
the  reduced  model  is in fact a good  one. if the diagonal 
elements of the controllability and observability Gramians 
can be separated into “large” and “small” sets. Stability of 
the  subsystems (reduced models)  is of prime importance 
and it turns  out  that once the stability of subsystems  is 
guaranteed, then the subsystems  preserve many of the 
properties of the original system including balancedness. 

This paper is an extended and  more complete version of 
the conference papers [6] and [7] where  some preliminary 
results without the proofs were  given.  Verriest and  Kailath 
[22]  have also considered balancing for the special  class of 
analytic systems subsequent to our initial work  16). It  turns 
out that there are fundamental differences  between discrete 
and  continuous balanced realizations. Time-invariant dis- 
crete balanced systems ‘are considered in  [5],  [24]-[27], 
while  discrete  time-variable  systems are studied in  [28]. 
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where x( t )  E gn, u( t )  E CRr, y (  t )  E 3”’ are the state, input, 
and  output vectors,  respectively, at time t E ( - 00,m). 
A ( t ) ,  B( i ) ,  and C ( t )  are matrices of order compatible with 
x ( t ) ,  u( t ) ,  and y ( t )  and are assumed to be  continuous 
functions of time. A system representation of this type will 
be denoted by the triplet ( A ,  B, C). The impulse  response 
corresponding to this triplet is  given  by 

H ( t , r ) = C ( t ) O ( f , 7 ) B ( r )  t > 7  (2) 

where O(t ,  7) is the transition matrix  associated  with the 
homogeneous part of (la). A realization of an  impulse 
response H(t ,  7) is any triplet ( A ,  B, C )  such  that ( 2 )  holds. 
It is well known [ 181 that an impulse response can  be 
realized  by a system of type (1) iff it is separable in the 
form 

H ( t , r ) = q ( t ) 8 ( 7 )  t > r  

where \ k ( t )  and O ( t )  are  continuous matrices of finite 
dimensions. The system (0,8, +) then trivially  realizes 
H ( t ,  7). However,  such a realization is unstable and there- 
fore undesirable practically. In general, there is  no unique 
solution to the realization problem  and different realiza- 
tions of the same impulse response  have quite distinct 
characteristics. It is  necessary,  therefore, to examine the 
properties of “equivalent” representations. 

Definition 1: The representation ( A ,  B, C )  is  said to be 
algebraically equivalent to ( A ,  B,  C ) ,  if and only if there 
exists a continuously differentiable matrix T( t ) ,  nonsingu- 
lar for all t E %, such that 

- - -  

A ( t )  = ~ - ‘ ( t ) [ ~ ( t ) ~ ( t ) - ~ ( t ) ]  ( 3 4  

B ( t )  = T - ’ ( t ) B ( t )  (3b) 

C ( t )  = C ( t ) T ( t ) .  (3c) 

The  above type of equivalence will be denoted symboli- 
cally as follows: 

( A , B , C )  5 (ATB;c).  (4) 

It may  be  readily  verified that if (4) holds, then 
- 
O ( r , r ) = T - ’ ( t ) O ( t , T ) T ( r )  ( 5 )  

which, together with  (3b)  and  (3c),  implies that p(t, 7) = 

H(r ,  7). Hence, input-output properties of a system are 
invariant under algebraic equivalence.  However, the inter- 
nal properties of a system  may  change under such a 
transformation.  For  example,  the  internal stability 
(Lyapunov stability or exponential stability) and  bounded- 
ness’ of the coefficient matrices A ,  B, C are not preserved 
under algebraic  equivalence. Therefore, the following  type 
of equivalence  will  be more  important for our purpose. 

Definition 2: The representation ( A ,  B, C )  is  said to be 
_ - -  

Vr E a, where 1 ) . 1 1  is the Euclidean norm. 
‘A matrix / M ( t )  is said to be hourzded if 3 a constant K 3 I I M ( r ) l l <  K 

81 I 

T 
topologically equivalent to ( A ,  B, C), if ( A ,  B ,  C )  + 

( A i  B, c) where T is Lyapunov transformation, i.e., T, 
T- I ,  and T are continuous  and  bounded. 

It is a routine matter to show [ 111 that if Tis a Lyapunov 
transformation, then the boundedness  and internal sta- 
bility of ( A ,  B,  C )  is invariant under such a transforma- 
tion. Other system properties of interest in this paper  are 
controllabihty and observability. For  bounded realizations, 
the following definitions of uniform  complete controllabil- 
ity/observability are equivalent to the ones introduced by 
Kalman [ 11. 

Definition 3 [2]: A bounded realization ( A :  B,  C )  is said 
to be uniformly  completely  controllable if 36 > 0 such  that 

G c ( t - 6 , t ) > a , ( 6 ) 1 > 0   V t € %  

where 

G c ( t - 6 , t ) & / ‘  ~ ( t , r ) B ( 7 ) B 1 ( r ) O ’ ( r , 7 ) d 7 .  (7)  

Definition 4: A bounded realization ( A ,  B, C )  is said to 

t - 6  

be uniformly  completely  observable if 36 > 0 such that 

G o ( f , t + 6 ) > a 2 ( 6 ) 1 > 0   V t E %  (8) 

where 

G o ( t , t + 6 ) P / t + S O ’ ( 7 , t ) C ’ ( 7 ) C ( 7 ) ~ ( 7 , t ) d 7 .  I (9) 

7 
If ( A ,  B, C )  - (A, E, E), the controllability 

servability Gramians of the transformed system 
following forms: 

G,(t) = T-’(t)G,(t)“’’(t) 

Go(t)  = T’ ( t )G , ( t )T ( t )  

and 

co(t)c(t) =T‘(t)G,(t)G,(t)T-’’(t). 

Equation (10) implies that is congruent [ 191 to G,, so 
that they  have the same number of positive,  negative, and 
zero eigenvalues. Equation (1 1) implies the same  about Go 
and Go. Equation (12)  implies that the eigenvalues of the 
product GoGc are invariant under algebraic equivalence. 
This set of invariants plays a crucial role in the theory to 
be presented. 

Definition 5 [3]: A system representation ( A ,  B, C )  is 
said to be uniform if 

1) A( a ) ,  B( .), C( - )  are continuous  and  bounded 
2 )  ( A ,  B, C )  is  uniformly  completely controllable and 

observable. 
If the impulse response H(t ,  7) is separable, i.e., H(t ,  T) 

definite. 
*For symmetric  matrices A > B ( A  B )  means A - B is positive  (semi-) 
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= 9 ( t ) 8 ( 7 ) ,  t 3 T ,  then corresponding to any such separa- 
tion there is a realization (0,8, 9) for which  we can define 
the controllability and observability matrices 

M ( t  - 6, t )  = / I  e ( T ) e ’ ( 7 )  d7 (13) 
r - 6  

N ( t , t + 6 ) = / f + S \ k ‘ ( T ) + ( T ) d T .  I ( 14) 

Silverman [3] gave the necessary and sufficient conditions 
for existence of uniform realization of a given  impulse 
response H( 1 , ~ ) .  

Theorem 1: H( t ,  T )  is a uniformly  realizable impulse 
response if and only if H(t ,  T )  = ‘k( t )8(  T )  where 9 and 8 
are continuous matrices of finite order, and 36 > 0 3 

i) A , { N ( t , t + 6 ) M ( t - 6 , t ) } ~ . p , ( 6 ) > 0 3  Qt 

ii) A , ( q t ) M - l ( t  - 6, t ) s ( t ) )  < ~ ~ ( 6 )  K 3o Qt 

iii) A , { + ( t ) M ( t  - 6 ,  t ) + ‘ ( r ) }  <&(a)  -= 00 Vt  

iv) A,( M - l ( t - s , t ) ; i i M ( t - S , t ) )  a <p4(6)<oo ~t 

The  importance of uniform realizations is that this  class 
plays a role  similar to that of minimal  (completely control- 
lable and observable)  realizations  for  time-invariant  sys- 
tems, as is  shown  by the following  Theorems 2 and 3. 

Theorem 2 [3]: Let ( A ,  B, C) be a uniform realization 
of the impulse  response H ( t ,  7). Then ( A ,  B, C) is also a 
uniform realization of H ( t ,  T )  iff ( A ,  B, C) and (x E, c) 
are topologically  equivalent. W 

This shows that the class of uniform realizations of an 
impulse  response  matrix is  closed under topological  equiva- 
lence. Of course, a similar  closure property holds for 
minimal time-invariant realizations.  More importantly, for 
uniform realizations, “input-output”  and  “internal stabil- 
ity” are equivalent, which  for time-invariant systems  is 
equivalent to saying there are no pole-zero cancellations. 

- - -  

Definition 6: 
1) A system  with  impulse  response H( t ,  T )  is  (zero state) 

BIBO stable if and only if 3 k,  > 0 3 

/I l lH(  t ,  T)11 dT < k ,  VI.  
m 

2) A realization ( A ,  B, C )  is exponentially stable if and 
o n l y i f 3 k 2 > O a n d k 3 > 0  3 

Il(a(t, to)II < k2e-k3(r -r~)  V t  z t o .  

We note that BIBO stability is independent of the partic- 
ular realization. In contrast, exponential stability is a char- 
acteristic of the internal structure of the system. The fol- 
lowing  theorem  shows that equivalence  for uniform  realua- 
tions. 

3h”,(A)  
a  matnx A .  

denote t h e  minimum and maximum eigenvalues of 

Theorem 3 [2]: If the realization ( A ,  B, C) is uniform, 
then it is  BIBO stable iff it is exponentially stable. rn 

Our analysis in the next section relies  heavily on the six 
technical  lemmas  which for the continuity of discussion are 
contained in Appendix A.  We close this section  with the 
following  useful  Theorem. 

Theorem 4: Suppose G ( t )  is symmetric, uniformly posi- 
tive definite, and Lyapunov. If there  exists an eigenvalue 
decomposition 

G ( t )  = U ( t ) z 2 ( t ) U ’ ( t )  

where U ( t )  is unitary and differentiable, then z( t )  is 
Lyapunov. 

Proof: If  we show Z 2 ( t )  is Lyapunov, then its square 
root z ( t )  is also Lyapunov (Lemma A2). Continuity of 
z’(t), z-’(t), and ( d / d t ) z 2 ( t )  follows  from  Lemma A5. 
Boundedness of X 2 ( t )  and Z- ’ ( t>  is  trivial and we need 
only to  show that ( d / d t ) X 2 ( t )  is bounded. 

d ( t ) = i i ( t ) x 2 ( t ) U ’ ( t ) + U ( t ) l ( z 2 ( t ) ) U ’ ( t )  d 

Pre- and postmultiplying the above equation by V ( t )  and 
U ( t ) ,  respectively, and using the fact that U ( t )  is unitary 
we obtain 

d 
-z’W dt =V’(t)G(t)U(t)-U’(t)U(t)Z’(t) 

Defining D( t )  U’( t ) U (  t ) ,  we have 

Since U ( t )  is a unitary matrix, we have 

D ( t ) + D ’ ( t ) = O  

which  means D ( t )  is skew-symmetric  (in particular, its 
diagonal elements are zero). Considering  that Z 2 ( r )  is 
diagonal, then D ( t ) Z 2 ( t )  and Z 2 ( t ) D ( t )  also have  zero 
diagonal elements. Taking the diagonal elements of (15) we 
therefore have 

-u:( t )  = i t h  diagonal element of (U’GU) 
d 
dt 

but diagonal elements of (VGU) are bounded since G is 
Lyapunov  and U is unitary. Thus we have ( d / d t ) X 2 ( t )  
< M. 

111. UNIFORMLY BALANCED REALIZATIONS 

In this  section we introduce the notion of a “uniformly 
balanced” realization for time-variable systems. We then 
deal  with the existence,  uniqueness, and other properties of 
such a realization. We start with the following definition. 
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Definition 7: A system representation ( A ,  B, C) is said 
to be uniformly balanced if 

1) ( A ,  B, C )  is uniform 
2) Gc(t - 6, I )  = Go(t ,  t + 6) = Z ( t ) ,  where E(?) is a di- 

agonal matrix. rn 
Since uniformly  balanced realizations form a subclass of 

the class of uniform realizations, we  will  always  assume in 
this section that the systems we are dealing with  can be 
uniformly realized (for necessary and sufficient conditions, 
see  Theorem 1) and moreover, that a uniform realization 
( A ,  B ,  C) is  given. The following  theorem and its corollary 
characterizes the existence of a uniformly  balanced  realiza- 
tion within the class of uniform  realizations. 

Theorem 5: Let the impulse response H(t ,  7) have a 
uniform realization ( A ,  B,  C). Then H(t ,  7) has a uni- 
formly  balanced  realization. - The  product GoGc has  an 
eigenvalue  decomposition of the form 

G o ( t ) G c ( t )  = T(t)Z2(f)T-'(t) ( 16) 

where T ( t )  is  Lyapunov. 

T- ''( t )  we obtain 
Proof: (e) Applying the Lyapunov transformation 

7- "( t )  
( A , B , C )  + (&g , , )  

where ( A ,  B, C) is uniform (Theorem 2) and  from (12), the 
product of its Gramians is given  by 

_ _ _  

GoGc=T-'(t)Go(t)Gc(t)T(t)=22(t). 

By Lemma 3, Z 2 ( t )  is diagonal (i.e., has  no  Jordan 
blocks), so that COGc = X 2 ( t )  = X2'( t )  = GcGo. By Lemma 
A4, 3 a unitary matrix U such that 

Go ( t  ) = UDoUJ, Gc( t ) = UDcU' (17) 

where Do and De are diagonal, and 

G o G c = ~ ~ o ~ c ~ = ~ 2 ( t ) .  (18) 

Since Go and are Lyapunov  (Lemma Al)  and the 
product of  two Lyapunov transformations is again 
Lyapunov [ll], then using Lemma A2, we know that 
q/2E- ' /2( t )  is also Lyapunov.  Applying this transforma- 
tion we obtain the following: 

EJ/Zz- 1 / 2  

( A , B , C )  + ( A , B , C ) .  

Gc( t )  = z'/2G- '/2GG- '/2Z'/2 = Z( t )  

Go( t )  = 2- '/2G'/2G G'/22- '/2 
c o c  (19) 

Using  (10) and (1 1) we have 

c c  

Using (17) we obtain 

c o ( t ) = Z - ' / 2 U D i / 2 U ' U  DoUV  D,/2U'Z-1/2 vw 
I I 

= Z-'/2,TJDi/2D D1/2U,Z-1/2. 
o c  

Since Do and Dc are diagonal, they  commute, and using 
(1 8) we have 

813 

G o ( t )  = z - ' / 2uD D u'z-'/2 = Z- ' /2z22- ' /*  = Z ( t ) .  
o c  

(20) 

Equations (19) and (20) show that realization (A", 8, c )  is 
indeed uniformly balanced. 

( * ) Suppose that (A",8, c )  is a uniformly balanced 
realization with Go(t )  = Gc(r) = Z( t ) ,  then by Theorem 2, 
(A,  8,c) and ( A ,  B ,  C) are topologically equivalent, and 
there exists a Lyapunov transformation L ( t )  such that 
(A", B, E) + ( A ,  B, C). Therefore, 

G,( t )Gc( t )  = L ' ( t ) G 0 ( t ) G ~ ( t ) L - ' ' ( t )  

= L'( t )Z2( t )L"' ( t ) .  

Letting T ( t )  L'(t), we have the required decomposition 
(16). rn 

Notice  that  any  uniform realization ( A ,  B, C )  could  be 
used in the previous  theorem without affecting the results. 
Since G i I 2 ( t )  is a Lyapunov transformation, 

I / 2  G, ( 1 )  - - - 
( A , B , C )  + ( A , B , C )  (21) 

- - -  
where the realization ( A ,  B,  C) is uniform with 

Gc ( t ) = G,- l / 2 ~ c ~ c -  = I (22) 

Go(t) = G;/~G,,G;/~ A s(t) .  (23) 
_ _ -  

Using this uniform realization ( A ,  B, C )  we then have the 
following corollary to  the above  theorem. 

Corollary I :  Let H(r ,  7) have a uniform realization 
( A i  B, c) as in (21). Then H( t ,  7 )  has a uniformly  balanced 
realization - Go(t)Gc(t)  = S ( t )  has  an eigenvalue  decom- 
position of the form 

G0(t)Gc(t)=U(t)Z2(t)U'(t) (24) 

where U( t )  is unitary and o( t )  is continuous and bounded. 
Proof: (e) Since U( t )  is unitary, then boundedness 

and continuity of o(t) implies that U ( t )  is Lyapunov  and 
the proof  follows from  Theorem 5.  

( 3 ) We only  have to prove that T ( t )  in Theorem 5 can 
be  chosen unitary. Let (A, 8, e) be a uniformly balanced 
realization with Go = Gc = X, then 3 Lyapunov transforma- 
tion T such that 

( A , B , C )  5 (A,B,C) 

where (x B, C) is the realization in (21) with 

Go(t) = T ' ( t ) Z ( t ) T ( r )  = I (25) 

Gc(t) =T-'(r)"-''(t) = S ( t ) .  (26) 

Taking T ( t )  = Z - ' / 2 ( t ) V ( t ) ,  then V ( t )  is Lyapunov since 
T ( t )  and Z ( t )  are Lyapunov  also. Equation (25) implies 
that V'(t)V(t) = I ,  i.e., V ( t )  is unitary and (26) implies 
that 

~ o ( t ) G c ( t ) = S ( t ) = V ' ( t ) Z 2 ( t ) V ( t ) .  (27) 

Hence, V( t )  is the required unitary transformation. rn 
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Remark: Given any  uniform realization ( A ,  B, C ) ,  we 
can  obtain a topologically  equivalent  uniformly  balanced 
realization (A ,  B ,  e) via a transformation T( t )  = 

U ( t ) Z - 1 / 2 ( t ) G : / 2 ( t )  

provided that U ( t )  is continuous  and  bounded in decom- 
position (24). 

Since we can always construct a uniform realization 
( A ,  B, C )  as in (21), with properties given in (22) and (23), 
then we can use Corollary 1 for analyzing the existence of 
uniformly balanced realizations. The  problem is then sim- 
plified  since  only boundedness  and continuity of U are 
required (U is then Lyapunov,  since it is unitary). More- 
over, the  symmetric  decomposition (24) has been studied 
more  extensively in the literature [ 131 than the nonsymmet- 
ric decomposition (16). For example,  Lemma 6A holds 
only  for symmetric operators. Since the product COG, in 
(24) is Lyapunov, then it follows  from  Theorem 4 that 
X 2 ( t )  is also Lyapunov in that decomposition. However, 
T ( t )  in (16) or U ( t )  in (24) cannot necessarily  be  chosen 
Lyapunov as can be  seen  from the following  example. 

- - -  

Example 1: Let COGc = S ( t )  equal 

We  now define  some “reasonable” properties of uniform 
systems ( A ,  B, C) or ( A ,  B, C) that will ensure the trans- 
formations T ( t )  in (16) or U ( ? )  in (24) to be Lyapunov, 
thus guaranteeing the existence of a uniformly balanced 
realization. In the sequel,  whenever we  use the term  eigen- 
values of G,G,, we  will refer to the diagonal elements of 
2*(t)  in (16) or (24), i.e., to a choice of decomposition  that 
makes Z ( t )  continuously differentiable. 

Property I: The  product GoGc of the uniform system 
( A ,  B, C) has eigenvalues u;(t) that only cross at isolated 
points, constituting the set 51. (A point t ,  E 9 is  called an 
isolated point if 3 neighborhood U of t ,  such that U n (8, = 

( t l } ,  i.e., t ,  is not a limit point.) 
Property 11: Two eigenvalues of of( t )  and a;(?), i == j ,  

do not have  common  derivatives at their  crossing points. 
Property 111: GoG, has a continuous second  derivative in 

a neighborhood of each t E 51. 
The first  two properties could  be  called “generic” since 

they will be satisfied for  “random”  uniform systems 
( A ,  B, C ) .  The third property requires  local smoothness 
(first derivative) of the triplet ( A ,  B,C).  We can then 
establish the following  result. 

Theorem 6: If a uniform system ( A ,  B, C )  satisfies 
Properties 1-111, then there exists a uniformly balanced 

- - _  

c o s ( t )  

sin(r)][  l-fcos(2t)  

0 cos(?) - s i n ( t )  
-sin(t) cos(t) 0 Sin(?) COS(t) 

t E [2km,  (2k + 1 ) r )  

k = Z  
sin (1) 

cos ( t )  I t E [ (2k  + 1)57,(2k  +2)m). 

Notice  that the above  decomposition is the only  one (up to 
a permutation) guaranteeing the continuous differentiabil- 
ity of Z 2 ( t )  

Z * ( t )  is  Lyapunov, S ( t )  is also Lyapunov (check  the 
continuity of A),  however, U ( t )  is not, since 

realization (A,  B, C) which  is  topologically equivalent to 
( A ,  B ,  C ) .  

Proof: See Appendix €3. rn 
Notice  that the conditions in the above  theorem are not 

necessary. Full necessary and sufficient conditions are still 
an open question. Uniqueness of uniformly balanced reali- 
zation will  now be studied. 

Theorem 7: Suppose ( A ,  B, C) is a uniformly balanced 
realization with Go = G, = X([). If Property I holds, then 
this representation is unique  up to a constant permutation. 

Proof: Suppose that ( A ,  B, C )  and ( A ,  B, C) are two 
equivalent uniformly  balanced realizations satisfying Prop- 
erty I with 

G , = G , = Z ( t )  and cc=Go=z(t). 

~~~ ~ ~ 

- _ -  

-Sin(?) COS(?) 
-cos(t) -sin([) 1 
- s i n ( t )  -cos(t) 

c o s ( r )  -sin(t) 1 
r E [2km,(2k  + 1 ) ~ )  

U (  t )  = 

t E [ (2k  + 1)mT,(2k  +2)77) 

k E Z (28) 

and U ( t )  is discontinuous at ( k r ) ,  for example, Then there  exists a Lyapunov transformation T such that T _ _ _  
0 

( A ,  B ,  C )  + ( A ,  B ,  C) and 
u ( r - ) = [ + l  -;] u(*.,=[-l 0 + 1  ()I. Z ( t )  = T ’ ( ? ) Z ( t ) T ( t ) ,  

- 
z ( t ) = ~ - ’ ( t ) ” ( t ) ~ - ” ( t )  
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E 2 ( t )  = T-'(t)Z2(t)T(t). (29)  

On !X the eigenvalues of X and E are distinct so that the 
only solution to (29) is a permutation matrix. Since a 
permutation matrix can  only  vary discontinuously, T ( t )  
must be a constant permutation matrix (since T is 
Lyapunov). rn 

Two types of systems that can always  be  uniformly 
realized  (see [21) are  minimal periodic and time- 
invariant systems  (i.e.,  systems that possess periodic and 
time-invariant representations, respectively).  They can  be 
characterized as follows. 

Lemma 1[3]: A necessary and sufficient condition for a 
separable impulse response H(t ,  7) to possess a periodic 
(time-invariant) realization is that 

H ( t + A , T + A ) = H ( t , T )  b ' t > ~  

for some  (all) constant A. rn 
The following  necessary conditions for a system  to  be 

periodic (time-invariant) are easily  derived. 
Lemma 2: If a system ( A ,  B, C) is periodic (time- 

invariant) then G,( t - 6, t )  and Go([ ,  t + 6) are periodic 
(time-invariant) for  all 6. 

Proof: This easily  follows  from the periodicity (time- 
invariance) of B ( r ) ,  C ( t ) ,  and @ ( I ,  t + a), the latter being 
equal to 

@( t ,  r + 6 )  = e-A6 

for time-invariant systems and equal to (for some P ( t )  and 
R )  

6 ( t , t  + 6) = P(t )e -R6PP- ' ( t  + 6 )  

for periodic systems,  where P ( t )  is periodic (Floquet the- 

Our interest in the above lemma  lies in its significance 
for uniformly  balanced  realizations. We close  this  section 
with  the  following  theorem. 

Theorem 8: Suppose that H ( t ,  r )  has a minimal periodic 
(time-invariant) realization: and ( A ,  B ,  C) is an arbitrary 
uniform realization for it, i.e., not necessarily periodic 
(time-invariant), then 

1) the eigenvalues of GoG, are periodic (time-invariant), 
2) the uniformly  balanced realization (A, B ,  e), if it 

ory POI) .  rn 

exists,  is periodic (time-invariant) if Property I holds. 
Proof: 

1) Since ( A ,  B, C) is topologically  equivalent to a peri- 
odic (time-invariant) representation ( A ,  B ,  C), then there 
exists a Lyapunov transformation T such that 

_ _ _  

By Lemma 2, the eigenvalues of COG, are periodic (time- 
invariant) and by (30) those of GoGc also  are. 

2) If ( A ,  B, C )  can  be  uniformly balanced, then the 
topologically equivalent, periodic system ( A ,  B ,  C) can  also 
be,  according to Theorem 5. But in the eigenvalue decom- 
position 

- _ _  

Tand Z2 can obviously  be  chosen periodic (time-invariant). 
If one constructs a balanced realization (A,  B ,  e) from (x if, c> along the lines of (16)-(19) in Theorem 5, then 
all the decompositions there can also  be  chosen periodic 
(time-invariant) so that (A, E, e) will be periodic (time- 
invariant). The uniqueness in Theorem 7 then completes 
the proof. rn 

IV. MODEL REDUCTION 

In this  section we show  how the uniformly  balanced 
realization leads to a method for model reduction which  is 
a generalization of that introduced by Moore [4], [23]. The 
basic idea  is to eliminate that part of the system corre- 
sponding to relatively  small  singular  values,  i.e., the weakly 
controllable and observable part. So far, we have consid- 
ered balancing over a finite interval 6 (see Definition 7), 
and have not assumed anything  about stability of the 
original systems.  However,  since we are interested in using 
the uniformly balanced coordinate system for model  reduc- 
tion, we now assume that we start with a uniform  realiza- 
tion ( l , B ,  E )  which  is  asymptotically stable. Uniformity 
of the realization implies that there exists a 6 > 0 such that 

G,(t - 6, t )  2 a 1 ( 6 )  > 0 

Go( t ,  t + 6 )  2 a 2 ( 6 )  > 0. (31) 

We note that if (31) holds for some 6, then it will  hold for 
any 6' 2 6, and therefore uniformity is preserved for any 
6 ' 2  6. In particular, as 6'- co, we have 

G,(- co, t )  = lr 6(r, T ) B ( T ) B f ( T ) & ( t ,  7) d7 

Go(t,co) =/"af(T, t ) t / ( r ) t ( T ) 6 ( T ,  t )  d7 

--oc 

I 

where asymptotic stability and  boundedness of (k, E )  
guarantee that e,( - x ,  t )  and Go(t, co) are uniformly 
bounded.  Under the assumption that co.,(t, m)Gc( - c o ,  t )  
satisfies the properties of Theorem 6 ,  we can uniformly 
balance ( A , B ,  c), giving 

( A , B , C )  5 ( A , B , C )  

where now 

G o ( t , m ) = G c ( - o o , t ) = 8 ( t )  

The following  lemma  is important for model reduction. 
Lemma 3: Suppose that (6, B,  e) is a uniform realiza- 

tion which is also asymptotically stable. Let (a, B ,  c )  be a 
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topologically  equivalent  uniformly balanced realization 
with GO(t,m)=Gc(- m,t )=e( t>,  and let ( A ,  B , C )  be 
any realization obtained  by simple reordering of the state 
variables of ( A ,  B ,  e). If ( A ,  B, C )  is partitioned as 

(33) 

then the subsystem ( A ,  B , ,  C, ) satisfies the equations 

w = ~ l l ( ~ ) ~ l ( ~ ) + ~ I ( ~ ) A ; , ( t ) - t  B , ( t ) B : ( t )  

- % ( O  =A;,(~)~,(d)+~,(t)A,,(t)+C;(t)C,(t) 
(344 

(34b) 

where the diagonal matrix X , ( t )  is a submatrix of Z ( t )  = 
Go( f ,  00) = G,( - 00, t ) ,  to conform with the partitioning in 
(32) and (33), and there exists j3; > 0, I = 1,2, such that 

0 < & 1 ~ Z , ( t ) ~ , 8 ~ 1 < m  vr. (35) 

Proof: (a, i, e) is stable and uniformly balanced with 

e(t)=Go(t,m)=Gc(-OO,t)  

= J f ,  ~ ( t , 7 ) i ( 7 ) 3 ' ( T ) ~ ~ ( t , ~ ) d 7 .  

Taking the derivative, we obtain the following: 

= A ^ ( t ) e < t ) + e < t ) a . ( t ) + i ( t ) ~ ' ( t ) .  

Now  let: (a, B ,  e) + ( A ,  B,  C), where P is a permutation 
matrix. Permutation P in effect reorders the state variables 
corresponding to ( A ,  3, e), and since e(t) is diagonal, this 
transformation simply interchanges the diagonal elements 
of e(t), and we obtain 

P 

A ( t )  = A ( t ) Z ( t ) + Z ( t ) A ' ( t ) +  B ( t ) B ' ( t )  

* 2l = A , , Z ,  + Z , A ; ,  + B I B ; .  

Equation (34b)  follows  similarly. 
From the above lemma, we notice that any subsystem 

( A ,  ,, B , ,  C , )  of a uniformly  balanced asymptotically stable 
(UBAS) realization ( A ,  B, C) satisfies  two Lyapunov  equa- 
tions of the type  (34a),  (34b). This immediately  implies 
some preliminary information about the stability (not 
asymptotic stability) of the subsystems ( A , , ,  B,, C,). We 
summarize  these properties in the following  theorem. Notice 
that every property holding for a subsystem ( A , , ,  B,,  C , )  
also holds for the system ( A ,  B,  C ) ,  since it is a trivial 
subsystem of itself. 

Let u( t )  be a vector satisfying (pointwise) ( A ,  ,( t)+ 
A ; , ( r ) ) u ( f )  = Arnax(f )u(r ) ,  then pre- and postmultiplying 
(36) with u'(t)  and u(r) ,  respectively,  gives 

Therefore, A,(t) G 0 Vt.  
ii) Using the Bendixon inequality [17] 

for any  matrix M ,  the result  follows  immediately from 
property i). 

iii) Let a,+,(?, to )  be the transition matrix  corresponding 
to i , ( r )  = A , , ( t ) x , ( r ) ;  then using the Wazewski's inequal- 
ity [ 111 
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In circuit theory a realization ( A , , ,  B , ,  C , )  satisfying (39) is 
called dissipative [ 141. 

If the uniformly balanced framework is to  be used for 
model reduction,  then  the  asymptotic  stability of subsys- 
tem (reduced models) is of prime importance. Theorem 10 
below characterizes the asymptotic  stability (AS) of the 
subsystems. We first need the following  lemma. 

Lemma 4: Suppose that i ( t )  = A ( t ) x ( t )  is exponen- 
tially stable  and A ( t ) ,  C ( t )  are  bounded.  Then 

P ( t )  =lWQf(7, t ) C f ( ~ ) C ( ~ ) @ ( ~ ,  t )  d7 (40) 

exists as a  bounded nonnegative definite symmetric matrix, 
and it satisfies 

f 

- P ( t ) = A ' ( t ) P ( t ) + P ( t ) A ( t ) + C ' ( t ) C ( t ) .  (41) 

Moreover, P ( t )  is  the unique bounded  matrix satisfying 

Proof: All claims are clear  except perhaps  for  the  last. 
Let Q ( t )  be  a second bounded matrix satisfying (41). Set 
R ( t )  = P ( t ) -  Q ( t ) ,  then 

(41)- 

- & ( ' T ) = A ' ( T ) R ( 7 ) + R ( ' T ) A ( T ) .  

Pre- and postmultiplying the above equation by @'(T, t )  
and @( 7, t ) ,  respectively, and  integrating we obtain 

This implies that 

R(t ) -@'( t , ,  t ) R ( t , ) @ ( t , ,  t )  = 0. 

Letting t ,  + 00, using the asymptotical decay of @ ( t , ,   t )  
and  boundedness of R ( t , )  gives R ( t )  = 0. 

Theorem IO: Let ( A ,  By C )  be  a UBAS realization. Then 
for any subsystem ( A ,  ,, B , ,   C , )  the following are equiva- 
lent  statements. 

i) A , , ( t )  is AS. 
ii) ( A ,  , ( t  ), B ,  ( t  )) is uniformly controllable. 
iii) ( A  , , ( t  ), C,  ( t )) is uniformly observable. 
iv) ( A , , ( f ) ,  B,(t) ,  C, ( t ) )  is uniformly balanced with 

W )  =J02@;,l(7, t)C;(~)C1(~)9411(Ty t )  

Proof: i) * iv). Using the last lemma, we let 

where G I  ( t )  satisfies 

However, according to (34b) & ( I )  also satisfies the above 
equation. By uniqueness proved in  the  last lemma, we have 
GI(  t )  = X , ( t ) .  We can similarly show that 

x , ( t )= lim G , ( t , t + S )  
8-02 

Then using the  definition of the limit, we can firid S large 
enough such that G I (  t ,  t + 8 )  is uniformly bounded away 
from zero, and hence ( A ,  C,) is uniformly observable. 
iii) - i). Take 

J 7 ( x 1 ( t ) , t )  % ( ~ ) W ) ~ I ( ~ )  

> a , x ; ( t ) x , ( t )  > 0 

as a Lyapunov function, with its derivative given  by 

d V ( x , ( t ) ,  4 
dt 

= x ; ( ~ ) [ ~ ; , ( ~ ) ~ , ( ~ ) + ~ , ( ~ ) ~ , , ( ~ ) + ~ , ( ~ ) l x , ( ~ )  
= -x;(t)c;(t)c,(t)x,(t).  

To establish asymptotic  stability,  compute  the change in V 
along  a length 6 of the trajectory. Thus, 

=-~~(t)/~~*@~(~,t)C~(~)C,(~)@(~,t)d~x~(f) f 

= - x ; ( t ) G , ( t ) x , ( t ) ~  - a2x;(t)xl(t) < 0. 

Therefore, V ( x , ( t  + a), t + 6 ) - V ( x , ( t ) ,  t )  is uniformly 
strictly less than zero. This establishes the  asymptotic 
stability of A , , ( t )  (see also [29]). Equivalence with ii) can 
similarly be proved. 

This theorem shows that any of the  conditions i), ii), and 
iii) imply that  the subsystem ( A , , ,  B , , C , )  is UBAS. 
Silverman and Anderson [2] have shown that several broad 
classes of systems  have the uniform complete observability 
property.  For example, the class of all the nth order  linear 
differential  equations with bounded coefficients are uni- 
formly observable. They have also shown that  for periodic 
systems uniform complete observability is equivalent to 
complete observability (in some interval), and since com- 
plete observability of any  pair ( A ,  ,, C , )  is generic, then we 
have the following corollary to Theorem 10. 

Corollary 2: Suppose ( A ,  B, C )  is a UBAS realization. If 
the  pair (Al l ,C, )  or ( A , , ,  B , )  is periodic, then  the follow- 
ing  properties  for  the subsystem ( A ,  ,, B , ,  C , )  hold generi- 
cally. 

i) A , , ( t )  is AS. 
ii) ( A , , ,  B , , C , )  is uniformly balanced with Z, = Go = G,. 
iii) ( A , , ,  B , ,  C , )  is  UBAS. 
For  a  linear  differential  equation of the form (1) which is 
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asymptotically stable, in  general, nothing can be said about 
the asymptotic stability of the  subsystems.  However. for 
uniformly balanced realizations, asymptotic stability of A , , 
in  many  cases will follow. The  authors have  extensively 
studied such a question in [8]. Here we quote a theorem 
and its corollary  which  gives a sufficient condition whch 
guarantees the asymptotic stability of any subsystem. In 
view  of property i) of Theorem 9, the properties of this 
theorem are “generically”  satisfied. 

Theorem 11 [8]: Let ( A ,  B,  C) be a UBAS  realization. 
If 

then mery subsystem ( A , , ,  B,, C , )  is  UBAS.4 
Corollary 3 [8]: Let ( A ,  B, C )  be a UBAS  realization 

with A( t )  periodic. If 

then every subsystem ( A , , ,  B,, C , )  is  UBAS. 
Notice that  both Corollaries 2 and 3, although different 

in nature, imply that for periodic uniformly balanced reali- 
zations, the subsystems ( A , , ,  B , ,  C,) are generically  UBAS. 
We also  emphasize that the condition on Amax(r) is only 
sufficient as can be verified  by the following  example. 

Example 2: Let ( A ,  B, C) be given  by 

Then ( A ,  B , C )  is UBAS  with Z = I z x r .  We note  that 
Am”( A + A‘) = 0 E i? ,, yet  every  subsystem is UBAS. 

Justification for Reduced Model: We  now  give  two  differ- 
ent arguments to justify that  the subsystem ( A , , ,  B, .C, )  is 
in fact a “good”  reduced  model. The first argument is 
based on  input  and  output energy, and the second one is 
based on an inequality that we derive.  A  rigorous treat- 
ment of this subject  should be of interest for further 
research. 

For model reduction to  be meaningful we assume that 
the eigenvalues of Z(t) can  be divided into two groups of 
“small”  and “large,” and via a constant permutation we 
can always rearrange the balanced realization ( A ,  B. C) 
such that 

where Z,(t) > & ( t )  2 CUI> 0 Vt .  If Z , ( t )  >> * ( t ) :  i.e., there 
is a “gap” between the eigenvalues of X([), then in the 
balanced framework, the states corresponding to Z , ( t )  are 

4A real valued  measurable functionf: [Io. w )  - 3 is said to be inregru- 
ble or summable if f E, [ r o .  m), where 

very controllable and observable.  On the other hand, since 
E , ( t )  is  small, the states corresponding to Z z ( t )  are  “nearly 
uncontrollable” and  “nearly unobservable,” and therefore 
“nearly  redundant.”  Upon deleting those states, we obtain 
the subsystem ( A  , , , B ,, C ,  ) corresponding to Z ,, which  we 
claim is a reasonable reduced  model.  We can further justify 
this by the following  energy argument: Kalman [ l ]  showed 
that the minimum control energy  required to get to state 
e,‘ = [0 0 . . . 1 0 . . . 01 at time T is given by 

Therefore, the input power  needed to drive the  state in the 
e, direction is  given  by 

And the power  we can  obtain at the  output  from  state e, is 

= e,’Z(t)e, = u , ( t ) .  (43) 

If u, ( t )  is  small, then (42)  implies that it takes a relatively 
large amount of input energy to drive the state in the 
direction e, .  Therefore, the  states in the e, direction are 
very  weakly  coupled to the input  (hard  to control). Simi- 
larly, (43)  shows that very little output energy can be 
observed from state e,. Therefore, the states in the e, 
direction are very  weakly coupled to the output  (hard  to 
observe). In conclusion, if a, is  small, then the states in the 
e, direction are nearly uncontrollable and nearly unob- 
servable, and therefore nearly redundant.  and can be  de- 
leted. 

We  now derive an inequality that will  give further insight 
to justify that the subsystem ( A , , .  B , .  C , )  is a reasonable 
reduced  mode.  Let 

vt 

where Ay”(t)  is the pointwise  minimum  eigenvalue of 
( ( A ,  , + A’, ,)/2). Pre- and postmultiplying (36) by T ; ( t )  

and q:, ( t  ), respectively,  gives 

2 A ~ ( t ) ~ ~ ( t ) ~ , ( t ) ~ , ( f )  = - t Y ; ( t ) ( B , B ;  1- c ; c , ) T ; ( t ) .  

Therefore, 

Similarly 
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where Ay"(t) is the pointwise  maximum  eigenvalue, and 
r\;(t) is the normalized  eigenvector of ( (A22  + Ai2)/2). 
Subtracting (45) from (44) we obtain 

[~min(z,)-~rnax(~2)1 

Also by  Wazewski's inequality [ 111  we have 

Interpretation: If ~ ~ ~ ( 2 , )  >> umm(Z2), then the dif- 
ference on the right-hand side of inequality (46)  is  also 
large. This means the following. 

1) [ ~ ~ ~ , i t r , l l ~  +I~C,T-,~~~I is large or IAP((A,, + A ; ~ ) / ~ ) I  is 
small  which  by  Wazewski's inequality it implies that 
l l @ A , l ( r ,  to)ll is slowly  decaying. 

2)  [ I I B ~ T ~ ~ I ~  + l l ~ $ 5 1 1 ~ ]  is small or + ~ > ~ ) / 2 ) 1  
is large whch again by  Wazewski's inequality means that 
II(PA,,(t, t o ) l l  is  decaying  fast. 

Statements 1) and 2) together  imply that ( A , , ,  B , ,  C , )  is 
in some  sense the dominant subsystem of ( A ,  B ,  C) and 
can  be used as a reduced  model. This appears to be the 
first such notion of dominance for  time-variable  systems. 
We finally note that stability and  uniform  balancedness of 
the original  system  is  preserved in the reduced  model 
according to Theorems  10,  11 and Corollaries 2,  3.  We 
close this  section  with the following  example. 

Example 3: Consider the stable time-variable system 

Go(t)Gc(t) = T(t)Z2(t)T-'(t) 

cos ( t )  - sin ( t ) 
sin ( t )  cos ( t  ) 

Since T ( t )  is Lyapunov, we can then obtain a uniformly 
balanced realization (Theorem 5, Corollary 1). The uni- 
formly balanced realization (AT E, c) (which in this case is 
time-invariant!)  is  given  by 

with 

G -G = X = [  ] 0- c 

- -  20 0 
0 1 '  

The  impulse response for this  system is given by 

h ( t  ) = 20.95e- + 83.048e-3.25r. (47) 

Since in the matrix Z, 20 >> 1, then as justified above, the 
subsystem ( A , , ,  B,,C,) = (-2.5,10,10) can be taken as a 
reduced  model. Its impulse response  is  given  by 

h R ( t )  = 100e-2.5f. (48) 

A comparison of h ( t )  and hR(  t )  is given in Table I. 
The DC gain of the original system  is  (42.31)  while for 

the reduced  model it is  (40),  which is in good agreement. 
The  graph of the two  impulse  responses is given in Fig 1. 

V. CONCLUSIONS 

It is  obvious that not all the realizations are equally 
useful for practical implementation or for answering  vari- 
ous theoretical  questions. We have attempted here to intro- 
duce a "good"  realization for time-variable systems.  Such a 

20 -sin2(t)--sin(2t)--  -sin2(t)+-sin(2t)+- 5 4 0  1 1 
21 2 21 4 21 
1 41 

-sin2(t)+-sin(2t)--  --sm2(t)-sin(2t)-2 1 .  
4 21 2 

A ( t )  = 

B ( t )  = C ' ( t )  = I lOcos(t)+2sin(t) 
- lOsin(t)+2cos(t) 

The  product of the controllability and observability framework has many interesting properties and leads to a 
Gramians is  given  by natural setting for performing model reduction. The idea of 

taking a subsystem as a reduced  model  is  very appealing 
400 - 399 sin2 ( t  ) - 399 Sin ( t COS ( t )  and attractive. However,  much  work  needs to be done to 

-399sin(t)cos(t)  1-399sin2(t) * further understand balanced and related realizations and 
their implications in linear system theory. In particular, 

This product has the eigenvalue decomposition  more research is desirable to find some  measure of close- 

I I GO(t)G,(t) = 
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TABLE I 

I 

h R ( t )  ,055 .674 2 . 3 5  8 15.34   29  54 73.16 100 
I 

I h ( t ) - h R ( t ) l  .44 1 . 1 6 8   1 . 5   1 . 3 9  2 . 1 6 :   1 . 3 3 1   . 1 2  .07 4 

t h(t '  

Fig. 1 

ness  between the original system and its reduced  model. At 
this point, however,  balanced  realizations  yield a new 
perspective and view  of linear  systems and model  reduc- 
tion. 

APPENDIX A 

This Appendix contains some  technical  Lemmas  which 
are useful throughout the paper. 

Lemma AZ: The  controllability  and observability 
Gramians G, and Go of a  uniform realization are Lyapunov 
transformation. 

Proof: Considering the observability Gramian [9] and 
differentiating, we have 

G o ( f )  = @'(t  + 8 , t ) C ' ( f  + 8 ) C ( t  + 8 ) a J ( t  + s1 t )  

- C ' ( t ) C ( t ) - A ' ( t ) G o ( t ) - G o ( t ) A ( t ) .  

Since the realization ( A ,  B, C )  is uniform, then the continu- 
ity and  boundedness of Go, G; I, and G o  can  easily be 
deduced. rn 

Lemma A2 [3]: If G is a symmetric  positive definite 
Lyapunov transformation, then so is w 

Lemma A3: Let Go and G, be two  symmetric  positive 
definite matrices,  then their product GoGc is semisimple 
(i.e.,  has no  Jordan blocks) and has positive  eigenvalues. 

Proof: It is well  known [19] that  a symmetric  positive 
definite matrix Go always  has a  decomposition of the type 

where So = GA12 is symmetric and positive definite. Clearly 

Sg ( G,Gc) So = SoG,So 

is symmetric and  positive definite since So is a  congruence 
transformation. Hence, 

A (  Go(?,) = h (Si 'GoG,So) = h ( SoGcSo). 

Therefore, the product GoG, is semisimple  with  positive 
eigenvalues. rn 

Lemma A4 [Z2]: Two Hermitian matrices G,  and G, 
can  be simultaneously  diagonalized  by a unitary matrix U 
iff G,G, = G,G, (i.e., G I  and G, commute). rn 

Finally, we are interested in the smoothness of an eigen- 
value  decomposition of a time-variable  symmetric matrix. 
The strongest results known in th s  context are given in 
Kat0 [13]. Rephrased in our terminology, the following 
results are shown  there. 

Lemma A5  [Z3]: Eigenvalues of a continuously dif- 
ferentiable (analytic) self-adjoint operator can  be chosen to 
be continuously differentiable (analytic) on the real axis. rn 

Unfortunately, similar results, Kith the same  generahty 
do not hold for eigenvectors. As a general  rule, we can 
state that eigenvectors  behave  worse,  more  singularly, and 
with  much  less continuity than the  eigenvalues  even for 
self-adjoint operators. However, one of the most remarka- 
ble  results of analytic function theory for self-adjoint oper- 
ator is the existence of an orthonormal basis depending 
smoothly on t. 

Lemma A6 [Z3]: If the self-adjoint operator G ( t )  is 
analytic, then the orthonormal eigenvectors {v i (  t)}y= can 
be  chosen as analytic function of t .  rn 

Note  that in the above  theorem analyticity of the opera- 
tor G ( t )  is essential. Kat0 [ 13, Example 5.3, p. 1 1  I ]  shows 
that smoothness of eigenvectors  can be lost  completely if 
the analyticity of G( t )  is  replaced  by infinite differentiabil- 
ity. However, for eigenvalues  (Lemma A5), the  assumption 
of analyticity can be  removed, and they still behave  nicely. 

APPENDIX B 

Before we prove  Theorem 6, we need  some  preliminary 
results. According to Assumptions 1-111  we have the fol- 
lowing situation: S( t ) is a symmetric  real matrix for real t ,  
and therefore has real  eigenvalues. S ( t )  has continuous 
derivative, thus eigenvalues {a,( t)li = 1 - a ,  n }  can  be cho- 
sen  to  have continuous derivative ( L e m a  A5) 

I c I I 
a '0 t b t 

t n C  n Go = SoSo 
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On 8, the complement of 8 no eigenvalues  cross, on P two 
eigenvalues u i ( t )  and ? ( t )  cross  with  values u = ui(ro) = 

?( to) ,  but have different derivatives (Propositions I, 11). 
Moreover, in an  open neighborhood of to ,  i.e., ( t o  - 6, to + 
S ) ,  S ( t )  has continuous second  derivative (Proposition 111). 
For simplicity we assume to = O! For an interval I(0) = 

( a ,  b )  we can show that the projector P ( t )  on the invariant 
subspace of the pair q ( t )  and u j ( t )  has continuous deriva- 
tive since  over the whole interval I(0) = (a ,  b), this pair is 
separated from the other eigenvalues [ 13, Remark 5.10,  p. 
1151 and S ( ' ) ( t ) A  t- '[S(t)-u]P(t) is continuous. 

We  now  show that in the interval O(o) A (- 6, + 6) 
where S ( t )  has continuous second  derivative, there P ( t )  
has also continuous second derivative and S ( ' ) ( t )  continu- 
ous first derivative. 

Lemma BZ: If S ( t )  is symmetric, real, and has continu- 
ous second  derivative in O(o) and if P ( t )  is the projector 
on the u group, then 

1) P ( t )  has  continuous second  derivative in O(o) 
2) S ( ' ) ( t )  has  continuous first derivative in O(o). 

1) The projection operator P ( t )  is given  by [ 13, p. 671 
Proof: 

where  resolvent R([, t )  A ( S ( t ) - ( ) - ' .  R ( f ,  t )  is twice con- 
tinuously differentiable since 

We then have that [ 13, Formula (2.8),  p. 761 P ( t )  is twice 
continuously differential in O( 0). 

2)  We have S ( ' ) ( t )  = t - ' ( S ( t ) -  u ) P ( t )  A t - ' S ( t )  with 
s(0) = (S(0)- h)P(O) = 0 [13, pp. 112-1  131. Clearly S ( t )  is 
twice continuously differentiable in O(o) since S ( t )  and 
P ( t )  are so in O(o). Now define the following: 

Hence (lb) makes (la) also continuous at {O}. Therefore, 
the derivative ( a / a t ) S ( ' ) ( t )  is continuous! 

Now we use  this  lemma to complete  Theorem 6.8 [ 13, p. 
1231 and  obtain the desired  results,  namely the following. 

Theorem BI: Let S ( t )  satisfy the conditions of Lemma 
B1 and let Property I1 hold. Then the projectors P , ( t )  and 
p,( t ) ,  which  project on the eigenvectors ui(t) and u j ( t )  of 
ui( t )  and uj( t ) ,  respectively,  have continuous derivative. 

Proof: Follow  [13, Theorem 6.8, p. 1231 until line 14. 
There it says that P J t )  and P, (  t )  are also the projectors of 
S ( ' ) ( t )  and 6 / ' ) ( r )  and 3(') which are defined as 6 / y ( t )  = 
t-'(uis j ( t ) -  a). But,  by assumption, u/')(r) # u/''(t) on 
O( 0). Hence,  these projectors have continuous derivative on 
O(o), since S ( ' ) ( t )  has continuous derivative there [ 13, 
Remark 5.10,  p.  1151. Once we know that q(t) and P i ( t )  
have continuous derivative, the eigenvectors u j ( t )  and ui(t) 
satisfy the same condition because of Dolezal. 

We  now  use the above  theorem to prove Theorem 6. 
Proof of Theorem 6: As discussed in Corollary 1, we 

have to prove this theorem in the case GoGc= S is a 
symmetric matrix to be  decomposed as S = UZ2U'.  We 
first prove the continuity of U .  

The matrix S ( t ) -  u f ( t ) I  has  continuous derivative  ev- 
erywhere and constant rank ( n  - 1) on PC, the complement 
of P. Its nullspace is the eigenvector u i ( t )  and this vector 
thus has continuous derivative on 8, (by Dolezal theorem, 
[ 151). For to E 8 it is proven that  under  assumption of 
Property 11, u(t) is continuous at to since S ( t )  is continu- 
ous at to [13,  p. 1231. Continuity of U follows from 
Theorem B1. The  boundedness of U is then proven  as 
follows. Writing the following: 

S ( t )  = U Z 2 U ' +  uZ2u'+ uz2U 
=U(U'UZ2+Z2+Z2ir 'U)U'=UFU' 

we  have that F is bounded (since U and S are also 
bounded). Also from U'U = I, it follows that U U  + U'U = 

0, and thus that U U  is antisymmetric, or zero on diagonal. 
Therefore: 

F =  { 22 on diagonal 
U f U Z 2  + Z2UU = u ' U Z 2  - Z 2 U U  off diagonal. 

From the latter equation it follows that 

f . . = u ~ ~ . ( ~ ; - u ~ )  IJ I J i # j  

NOW, (la) is continuous on O(o)/{O} since it is  even dif-  and thus 
ferentiable there.  Moreover,  using  L'Hospital's rule we 
have UTI .  = f .  ./(a* - 0;) i * j 

IJ J i :: (2) 
lim - - ~ ( ' ) ( t )  = lim a -  ti?( t )  - S( t )  U'U. = 0 
r - . O  at-  f + O  t 2  

yields that UfU is bounded on 8. This implies that U is 
Sf(  t )  + tSf/( t )  - Sf( t ) bounded on 9. For finite to E 8, the continuity of U 

implies that U is also bounded  on S~,/{CO}. For the points 
at infinity we may  reason as follows. By Property 11, 

= lim 
I - 0  2t 

l im,+ , ( ; f ( t ) -u; ( t ) )==O,  and thus there exists a se- 
quence t ,  + 00 such that 

- .  
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u;( tk ) -o; ( tk )  2 6 > 0 [27] L. M. Silverman and M. Bettayeb. “Optimal approximation of 
linear systems.” in Proc. JACC. San Francisco, CA, 1980. 

[28] S. Shokoohi and L. M. Silverman, “Model reduction of discrete 
time-variable systems via balancing.” in Proc. I981 I E E E  CDC, San 
Diego. CA. 1981. 

on this sequence. Hence, by (2) u$$ is bounded on { r k } .  By 

uniform boundedness of U .  lemma of Lyapunov.” Electron. Lerr.. vol. 3. pp. 293-294, July 1967. 
continuity u ~ ( ~ ) u j ( c o ~  is bounded. This proves the [29] B, D, 0, Anderson and J, B, Moore. “Time-vming version of the 

[31 

[41 

P I  
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