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Linear Time-variable Systems: Stability of Reduced 
Models* 

SHAHRIAR SHOKOOHI,I" L. M. SILVERMAN:~ and PAUL VAN D O O R E N §  

Uniformly balanced realizations provide a method for approximating linear time-variable 
systems by lower order systems with guaranteed stability. 
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Al~tract--The notion of a 'uniformly balanced' realization for 
time-variable systems has been previously introduced. This 
representation is characterized by the fact that its controllability 
and observability grammians are equal and diagonal. Such a 
framework has many remarkable properties and leads to a 
setting where the subsystems can be taken as reduced model for 
time-variable systems. It turns out that once the stability of a 
subsystem is guaranteed, then the subsystem preserves many of 
the properties of the original system. In this paper, the stability of 
subsystems is fully explored. 

1. INTRODUCTION 
IN REALIZATION theory, the central concerns of 
most of the previous research has been the formal 
aspects of the problem, such as questions of 
existence and minimality of realizations obtained 
from a given impulse response matrix H(t, ~), and 
providing a description of the class of all possible 
realizations. It is clear, however, that not all 
realizations are equally useful for practical imple- 
mentation or for answering various theoretical 
questions. Recently, Moore (1978, 1981)developed 
an essentially unique representation for linear time- 
invariant systems which he termed 'balanced'. This 
representation is characterized by the fact that its 
controllability and observability grammians are 
equal and diagonal. In such a realization one can 
always order the components of the state vector 
with respect to their influence on the system's 
input-output  response. This framework leads to a 
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very natural method for performing model re- 
duction by deletion of states which are 'nearly 
uncontrollable' and 'nearly unobservable' and 
therefore 'nearly redundant'. For constant systems 
obtained in this way, reduced models are almost 
always stable if the original system is stable (Moore, 
1978). Pernebo and Silverman (1979, 1982) showed 
that the stability of the reduced model is guaranteed 
if the diagonal elements of the controllability and 
observability grammians are distinct. 

Shokoohi, Silverman and Van Dooren (1980, 
1981, 1983) extended these balancing ideas to .time- 
variable systems. They gave the necessary and 
sufficient conditions for a uniform realization 
(Silverman, 1968) to be uniformly balanced. This 
uniformly balanced framework led to the first 
systematic procedure for lower-order approxi- 
mation of time-variable systems. In this paper we 
further study the properties of time-variable 
balanced systems, particularly, the asymptotic 
stability of reduced models. As in the time-invariant 
case, distinctness of the diagonal elements of the 
controllability and observability grammians is 
intimately connected with stability of subsystems 
but these connections are considerably more 
difficult to establish for time-variable systems. It is 
shown, however, if the diagonal elements are 
asymptotically distinct, and several technical 
conditions are satisfied, then asymptotic stability of 
system approximations can be guaranteed. 

2. UNIFORMLY BALANCED ASYMPTOTICALLY 
STABLE REALIZATION 

We start with a linear continuous-time system 
representation of the type 

it(t) = A( t )x ( t )  + B( t )u( t )  

y(t) = C(t)x(t) 

where the coefficient matrices A(t), B(t), C(t) are 
continuous and bounded. Such a system will be 
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denoted by the triplet (A(.), B('), C(-)). We first 
review several definitions. 

Definition 1 (Silverman and Anderson, 1968) 
A bounded realization (A,B, C) is said to be 

uniformly completely controllable if there exists a 
5 > 0 such that 

G¢(t - 6, t) > a1(6)I > 0, V t e ~  

Partitioning the matrices A, B, C as 

: ~A_I_I ] ?_12_~, ~ _Bl_q, 
A [_Aet +~ A22] B = C = [C1 i C2]. 

, I B2J 

Then any subsystem (A11,B1, C1) also satisfies 
similar Liapunov equations (Shokoohi, Silverman 
and Van Dooren, 1983) with Y,1 the corresponding 
submatrix of Z 

where 

~t t Gc(t - 6, t) = O(t, z)B(z)B'(z)~'(t,  v) dr. [] 
- 6  

Definition 2 
A bounded realization (A,B, C) is said to be 

uniformly completely 'observable if there exists a 
6 > 0 such that 

Go(t,t + 6) >_ ct2(6)I > 0, V t e ~  

where 

f 
t + 6  

Go(t,t + 6) = O'(z, t)C'(z)C(z)O(z,t)dz.  [] 
tJ t 

Definition 3 (Silverman, 1968) 
A system representation (A, B, C) is said to be 

uniform if 

(i) A('), B('), C(') are continuous and bounded 
(ii) (A, B, C) is uniformly completely controllable 

and observable. [] 

Definition 4 
A system representation (A,B, C) is said to be 

uniformly balanced if 

(i) (A, B, C) is uniform 
(ii) Gc(t - & t) = Go(t, t + 6) = X(t), where Z(t) 

is a diagonal matrix. [] 
If a uniform realization is asymptotically stable, 

then we can perform the balancing for 6 = 
(Shokoohi, Silverman and Van Dooren, 1983), and 
we obtain a uniformly balanced, asymptotically 
stable (u.b.a.s) realization (A, B, C) which satisfies 
the Liapunov equations 

E(t) = A(t)Z(t) + Z(t)A'(t)  + B(t)B'(t) (la) 

-E ( t )  = A'(t)X(t) + X(t)A(t) + C'(t)C(t) (lb) 

where 

G¢(-  oo, t) = Go(t, ~ )  = E(t) = 

diag [al(t),az(t) . . . . .  a,(t)] >_ aI > 0, Vt. (2) 

~£1(t) = Axl( t )X,( t )  + Y~l(t)A]l(t) + B,(t)B'l(t) 
(3a) 

- Z l ( t )  = A'~l(t)El(t) + E~(t)A~ l(t) + C'I(tJCI(I ). 
{3b) 

It is justified (Shokoohi, Silverman and Van 
Dooren, 1983) that if E1 contains the dominant 
(larger) singular values al(t), then the subsystem 
(A11, B1, C1) corresponding to Z1 can be considered 
as a reasonable reduced model. 

We summarize the properties of subsystem 
(A11,B1, C1) in the following lemma. Notice that 
every property holding for a subsystem (A11, B1, C1 ) 
also holds for system (A, B, C) since it is a trivial 
subsystem of itself. 

Lemma 1 (Shokoohi, Silverman and Van Dooren, 
1983) 

Let (A, B, C) be a u.b.a.s realization. Then any 
subsystem (A11, B1, C1 ) has the following properties 

(i) ,~max(Zll(t) + A'll(t)) -< O, Vt 
(ii) ~2(All(t)) _< O, Vt 
(iii) IICI)A,,(t, to)ll --< 1, Yt >_ to 
(iv) Ilxl(t)ll -< IlXl(Z)ll, Vt > 

where ~2(A 1 1 ) denotes the real part ofeigenvalues of 
All. 

Pernebo and Silverman (1979, 1982) showed that 
for balanced, a.s., time-invariant systems we have: 
IleA'll < 1, Vt > 0, where I1"11 is the spectral norm. For 
time-varing systems, the following theorem holds. 

Theorem 1 
Let (A, B, C) be a u.b.a.s realization. If A(t) is an 

analytic function of time, then IlOAIt, t0)ll < l, 
Vt > to. 

Proof 
Suppose not. Then there exists a t > to such that 

II¢a(t, to)ll = 1. We can always find Xo ~= X(to) such 
that IlOa(t, to)X(to)ll = 1 and IIx(to)ll = 1. Defining 
x(t) = Oa(t, to)X(to), we have IIx(t)ll = IIx(to)ll = 1. 
Since IIx(t)ll is non-increasing (property (iv), Lemma 
1), then IIx(v)ll = 1, V T e  (to,  t). But by analyticity, 
] lx ( z ) t l2=x ' ( z )x ( r )=l ,  Yz, which contradicts 
asymptotic stability. [] 
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Corollary 1 
Let (AI~,B1, C1) be a subsystem of a u.b.a.s 

system (A,B,C). If A~(t) is analytic, then the 
solutions of ~ ( t )  = Al~(t)x~(t) satisfy one of the 
following conditions: 

(i) Ilxl(t)ll = constant, Vt 
(ii) Ilxl(t)ll < Ilxl(~)ll, Vt > ~. [ ]  

The assumption of analyticity of A(t) is necessary 
as shown by the following example. 

Theorem 2 (Shokoohi, Silverman and Van Dooren, 
1983) 

Let (A, B, C) be a u.b.a.s realization. Then for any 
subsystem (A~ 1, B1, C1 ) the following are equivalent 
statements: 

(i) A~l(t) is a.s. 
(ii) (a l l  (t), Ba (t)) is uniformly controllable. 
(iii) (A11(0, Cl(t)) is  uniformly observable. 
(iv) (A11 (t), B1 (t), C1 (t)) is uniformly balanced 

with: 

Example 1 
Define: 

0, t •  [2kzt,(2k + 1)rr) k • . ~  
A(t) = sin2(2t) 

2 , t •  [(2k + 1)rc,(2k + 2)n) 

B(t) = 

=~0, t •  [2kTr,(2k + 1)rr) 
C(t) (sin(2t), t •  [(2k + 1)rr,(2k + 2)n). k e ~  

Then (A, B, C) is uniformly balanced with E(t) = 1. 
The system is also asymptotically stable (see 
Corollary 2), but A(t) is clearly not analytic. It is 
easily checked that OA(t,0) = 1 for t •  [0, zr) and 
only starts to decrease after that. [] 

If the uniformly balanced framework is to be used 
for model reduction, then the stability of subsystems 
is of prime importance. The following definition and 
lemmas work to this end. 

Definition 5 
A real valued measurable function f :  [to, ~ )  ~ 

is said to be integrable or summable i f f e  &a 1 [to, ~) ,  
where 

~¢1 [to, c~) = {f:  [to, oo) ~ :~ such that 

f f  If(t)l dt < oo}. 
o 

A matrix F(t) is said to be integrable if IIF(t)ll • -~1. 
[] 

Lemma 2 
If a matrix F(t) is integrable, and IIT(t)ll < K, Vt, 

then T(t)F(t) is integrable. 

Lemma 3 (Bellman, 1970) 
If a row and the corresponding column of a 

symmetric matrix G is deleted, then the ordered 
eigenvalues of 2i of G and #s of the submatrix satisfy 
the interlacing property 

21 </~1 < 22 < #2 < ... < pn-1 < 2,. []  

E,(t) = O'al,(z,t)C'l(Z)Cl(Z)Oa,,(z,t)dz 

= OA,,(t,T)BI(T)BI(QOA,(t, QdT. 
- o o  

[]  

This theorem shows that any one of the 
conditions (i), (ii) and (iii) imply both asymptotic 
stability and uniform balancedness of the subsystem 
(AII, B1, C1). The following theorem gives a 
sufficient condition which guarantees the asymptotic 
stability of any subsystem. In view of property (i) of 
Lemma 1, the properties of this theorem are 
'generically' satisfied. 

Theorem 3 
Let (A, B, C) be a u.b.a.s realization. If 

+ A'(t) 2m~,(A(t) 2 ) ¢.~, [to, oo) 

then every subsystem (A11, Bt, C~) is u.b.a.s. 

Proof 

Since 2m~x(A(t) 2 A'(t)') ¢oLZ'l[to, OO ) 

always non-positive, we have 

and is 

lim ftoXm~,(A(z) + A'(Q) t ~  2 dz = - o o .  

The matrix (All(z)+ A'll(Z)) is a submatrix of 
(A(z) + A'(z)), so by Lemma 3: 2max(At,(z) + A~, 
(z)) < 2max(A(z) + A'(z)), Vz. This implies 

lim f t 2  ( A ~ t ( z ) + A ~ i ( z ) )  d z = - o o .  

Using Wazewski's inequality (6), we have 
liml~A11(t, to)ll=O. This implies a.s. and by 
t '-~ cO 

Theorem 2, the u.b. of the subsystem. [] 

Corollary 2 
Let (A,B, C) be a u.b.a.s realization with A(t) 

periodic. If there exists a tl such that 
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2m~x(A(tl) + A'(tx)/2) < 0, then every subsystem 
(All ,B1, C1) is u.b.a.s. 

Proof 
Since there exists a tx such that 

)-max(A(tl) 4- A'(tl)/2) < 0, then by continuity of 
2max(t)(A(t) is assumed to be continuous) there 
exists an e > 0 such that 

A(t) A'(t)|  < Vt6(ta - 8, tl + ~). 
+ l 

)~m.~ 2 O, 
I 

The periodicity of '~max then implies that 

m a x l ~  / ¢&Pl [to, 00). 

The result then follows from Theorem 3. 

Corollary 3 

Let the time-invariant realization (A,B,C)  be 
balanced and a.s. If 2max(A + A')/2 < 0, then every 
subsystem (A11,B1, C1) is balanced and a.s. []  

The importance of Theorem 3 is due to the 
simplicity of the condition, i.e., no additional 
constraints are required for the elements of Z(t). 
Corollary 2 implies that if A(t) is periodic, then the 
stability and balancedness of the subsystem 
(A~ 1, B~, C1 ) hold generically, and Corollary 3 gives 
a new condition for the stability of the subsystems of 
time-invariant systems. However, we emphasize 
that the condition on 2max(t) is only sufficient and not 
necessary, as can be verified by the following example. 

Example 2 

Let (A, B, C) be given by 

Lemma 4 

Let (A, B, C) be a u.b.a.s realization. If there exists 
a point tl where E(tl) has distinct singular values 
and ~2(A(tl)) < 0, then )~max(A(tl) + A'(tl)) < O. 

Proof 

We prove the results by contradiction. All the 
matrices are evaluated at tx. Let 2max(A + A') = 0, 
and let the columns of V span the nullspace of 
A + A '  

(A + A')V = 0. (4) 

Adding (la) and (lb) we obtain 

(A + A')z + Z(A + A') = - ( B B '  + C'C). (5) 

Pre- and postmultiplying above equation with V' 
and V respectively, we have 

B'V = O, CV = 0. .(6) 

Postmultiplying (5) by V, we then obtain 

(A + A ' ) Z V =  0. (7) 

From (4) and (7) it follows that the columns of Y V 
are in the right nullspace of (A + A'). Therefore 
there exists a matrix ]~ such that 

z v = z  (8) 

where w.l.o.g, it is possible to choose Vsuch that Z is 
diagonal. In such a coordinate system, the diagonal 
entries of Y are then a subset of the diagonal entries 
of Z. Since Z is simple (no repeated eigenvalues), 
then Vis spanned by a set of unit vectors. From (la) 
and (lb) we have 

2Z = (A - A')Z + Z(A' - A) + BB' - C'C. (9) 

then it is a.s. and u.b. with Y~ = 12 × 2. We note that 
J~ m a x( A+A ' )=0~( ' l ,  yet every subsystem is 
u.b.a.s. [] 

On the diagonal we thus have 

2Z = diag [BB' - C'C]. (10) 

3. STABILITY OF REDUCED MODEL AND SINGULAR 
VALUES 

For time-invariant systems there exists a direct 
relationship between distinctness of singular values 
of Z and guaranteed asymptotic stability of the 
subsystems (Pernebo and Silverman, 1982). In this 
section, we extend this connection to the time- 
variable case by providing conditions under which 
the hypothesis of Theorem 3 and Corollary 2 holds. 
The following lemma is designed for periodic 
systems. 

Since V is spanned by unit vectors and from (7), 
BB'V = O, C ' C V =  O, then we have 

£ V = 0 .  (11) 

Postmultiplying (1 b) by V, and using (6) and (11 ), we 
obtain 

A ' Z V  + Z A V =  O. 

But since (A + A ' ) V =  0 and Z V =  VZ, we have 
IEA V = A VIE, Z V = VZ. Writing the above equa- 
tions columnwise, we obtain 
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ZA~e] = aiA"Y'i, Z~Cri = a0e'.  i = 1 . . . .  , r. 

Since Z has distinct eigenvalues, then 

(12) Proof 
According to Lemma 4, 2max(A(q ) + A'(q)) < O. 

Corollary 2 then yeilds the required result. []  

A"f~ = 2,~e'~. (13) 

Pre- and postmultiplying (lb) with ~¢'* and ~ i  
respectively, we obtain 

2#t(2,(a))~v'*x~v', = 0. 

Corollary 4 
Let the time-invariant realization (A,B, C) be 

balanced and a.s. IfZ has distinct diagonal elements, 
then every subsystem (A~ ~, B,, C~) is balanced and 
a.s. 

Since #t2~(A) -~ 0, this implies that Z is singular and 
thus contradicts the uniformity of (A, B, C). 

The following example shows that ~2(A(q))  < 0 
is a necessary condition for 2m.x(A(t~ ) 
+ A'(t,)) < 0. 

Example 3 
Let at 1 (t) = 

0, te  [2kn,(2k + 1)n) 
sin2 (2t) k e .~ 

2 , t e  [(2k + 1)n,(2k + 2)n) 

Proof 
Since A is a.s, then ~ 2 ( A ) <  0 and the result 

follows from Theorem 4. []  
Example 3 shows that the conditions of Theorem 

4 are sufficient but not necessary to guarantee the 
stability of the subsystem. For time-invariant 
systems, Corollaries 3 and 4 give two different 
sufficient conditions for stability of the subsystems. 
The following theorem shows that in many cases, 
these two conditions are equivalent, which is 
another remarkable property of balanced 
realizations. 

a22(t) = a,i(t + n),b~l(t) = c2xt(t) = -2axi( t) ,  

b~2(t) = c~2(t) = -a22(t).  

Then 

([0' aO22]'[bo ' 0 ] r c "  0 

is a u.b.a.s, realization (see Example 1) with 

having distinct singular values. Since ~2(A),Iz 0, 
then we cannot conclude 2m,~(A + A') < 0, in fact, 

. [ - 2 a l l  
2=.x(A + A') = 2m.xL 

0 

Yet both subsystems 

(atx, [ b a l , 0 ] , [ c 0 ' ] ) a n d  

are u.b.a.s. 

0 ] = 0 ,  Vt. 
2a22 

LC22J/ 

[]  

Theorem 4 
Assume (A, B, C) is u.b.a.s, realization with A(t) 

periodic. If 3t, ~ Z(tt) has distinct diagonal elements 
and ~ 2 ( A ( q ) ) <  0, then every subsystem 
(A,t, B1, C1) is u.b.a.s. 

Theorem, 5 
Let the time-invariant realization (A,B, C) be 

single input or single output, a.s, and balanced. Then 

2 [ A + A ' I  ' 
~.. 1 ~  ] < 0 ~ Z has distinct diagonal 

elements. 
(14) 

Proof 
( ~ )  It follows from Lemma 4. (--*) It suffices to 

show that if Z has equal diagonal elements, then 
2,,a~(A + A'/2) = 0. Suppose (A, B, C) is single input 
and w.l.o.g. Suppose that the first two diagonal 
elements of Y. are equal. The subsystem (At,,Bx) 
corresponding to the first two diagonal elements 
satisfies the following Liapunov equation 

a1I(A11 +A]I)  = -BaB't. (15) 

Since B~B't is 2 x 2 but has rank 1 at the most, then 

a2det (A,x + Aix) = det (BIBI) = 0. (16) 

This implies that (A,1 + A~a) is singular. Using 
Lemmas 1 and 3 we have 

0 = 2max(A1, + A~t) < 2ma~(A + A')_< 0 ~  
2~ax(A + A') = 0 (16b) 

which proves the result. 
We note that 2m,x(A + A')/2 < 0 does not in 

general imply that Y. has distinct diagonal elements 
as shown in the following example. 
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Example 4 
The system (A, B, C) with 

0 

(17) 

is balanced and a.s with 2max(A + A')/2 = - 2  < O. 
However, the diagonal elements of Z are not 
distinct, in fact, Z = 12 × 2. 

In the sequel we investigate the case where the 
diagonal elements of Z(t) are distinct for large t, and 
relate it to the stability of the subsystems. However, 
such a connection is considerably more difficult to 
establish compared to the time invariant or periodic 
case. The following definition is useful. 

Definition 6 
Two real valued functions f~ (t) and f2(t) are said 

to be asymptotically distinct, if there exists a to e 
and e. > 0 such that 

IJ~(t) - f2(t)l >- e, Vte  [to, oo). 

Let us divide the spectrum of (A + A') into two 
sets S 1 = {2i(t)}~=1 and $2 = {2j(t)}7=,+1, where 
),~(t)~LP~ for i = 1  . . . . .  r and 2i(t)¢5°~ for 
j = r + 1 . . . . .  n. Notice that eigenvalues 2~(t) can be 
chosen continuous since (A( t )+  A'(t)) is con- 
tinuous (Kato, 1976). Let J.min(Sl) be the pointwise 
minimum of the set S~, and ~,max(S2) be the pointwise 
maximum of the set SE. We now make the following 
assumption. 

Assumption 1 
Assume that 2rex(S2) and min(2mi,(S~),0) are 

asymptotically distinct from each other. 
Let us define orthonormal bases V(°(t) and V(")(t) 

for the invariant subspaces corresponding to the 
groups of eigenvalues, then we have the following 
eigenvalue decomposition: 

+ A'(t)) (v(i)(t) I V(.)(t)) A(t) 2 

= (V(i'(t)'V("'(t)) l/A(~)-(t)lo ~)A(~)(t)0 ) (18) 

where A(/)(t) = diag [21(0 . . . . .  2,(0] and A(")(t) 
= diag [2,+1(t) . . . . .  2.(t)]. Because of Assumption 
l, it follows from Kato (1976) that projectors 

P(i)(t) = V(i)(t)V(i)'(t), P(")(t)= V(")(t)V(")'(t) 

can be chosen continuous in [ to ,~) .  By the 
Theorem of Dolezal (1964), it also follows that 
V(°(t) and V(")(t) can be chosen continuous in t, 

since these are bases of the range of P(°(t) and P(")(t) 
respectively, and these projectors have constant 
rank. 

We now have the following four technical lemmas 
which are stated in the framework of having a u.b.a.s 
realization (A, B, C). 

Lemma 5 
If Assumption 1 holds, then 

[(A(t) + A'(t))Z(t)V(°(t)] ~ ~('1 

implies that there exists a diagonal continuous 
matrix Z(t) > ctI > 0 such that 

[Z(t)v(i)(t) - ~'")(t)Z(t)] E 5¢1 

where v(i)(t) = v(i)(t)P(t) with P(t) a unitary matrix. 

Proof 
We can always find continuous matrices K(t) and 

L(t) such that 

X(t)v(i)(t) = v(i)(t)K(t) + V(")(t)L(t) (19) 

where K(t) > ctI > 0. Postmultiplying the above 
equation with (A + A')/2, we have (A + A')/2 
EV(1) = V(°A")K + V(")A(")L which implies 

V(")A(")LE all. (20) 

By asumption 1, (A(")) -1 is uniformly bounded. 
Premultiplying (20) with (A("))-IV (")' and using 
Lemma 2, gives L( t )eS f l  and (19) implies 

[Z(t)v(i)(t) - v(i)(t)K(t) ] ~ ~1. 

Using the eigenvalue decomposition K(t) = 
P(t)]~(t)P'(t), we have [Y~(t)v(i)(t) - 
V(i)(t)]~(t)] ~ ~ 1  where V")(t) = v(i)(t)P(t) and Z is 
continuous. [] 

Note that Z in the above lemma is continuous and 
bounded, we now further assume that Z(t) behaves 
as nicely as Y.(t). Since E(t) is continuous and 
bounded (Shokoohi, Silverman and Van Dooren, 
1983), we assume the same for Z(t). 

Assumption 2 
IIX(t)ll _< M, Vt6 [to, ~) .  

Lemma 6 
If Assumption 2 holds and the diagonal elements 

of Z(t) are uniformly distinct, then 
[Z(t)r/(1)(t) - ~'(i)(t)Z(t) ] ~ ~ x  implies that the basis 
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is continuous, and w.l.o.g we have: 

(i) non-diagonal elements of r  x r matrix P~i)(t) 
are integrable. 

(ii) diagonal elements of ~'~i)(t) have magnitudes 
close to 1 for large t. 

(iii) ~'2")(t) e ~1. 

Proof 
Defining D°(t) ~ [VI[V2[.. V,], and taking the 

first column of [Y(t)V/")(t) - r/ti)(t)~(t)], we have 

[E(t)Vl(t) - ~ l ( t ) V~( t ) ]~ l  (21) 

where ~(t) is the first diagonal element of E(t). 
Rewriting (21) we obtain 

(0"2( 0 -- 

( ~ ( t )  - 

a, (t))f/l~ l(t)] 

ffl (t))~2 l(t)]e .c#1" 

al(t))~nx(t)J 

(22) 

We claim that at most one of the functions 
( a f r o -  6~(t)) i =  1, . . . ,n  is integrable since, if we 
have (afro - el(t))~ L~ and (a~(t) - #tit)) 
~Le 1 for i #  j, then the difference of these two 
functions must also be integrable, that is 

(~fft) - ~At)) = 

[ ( a i ( t )  - e ~ ( t ) )  - ( a ~ ( t )  - ~ ( t ) ) ] ~  ~ .  

However, this is a contradiction to assumption of 
asymptotically distinct singular values. Assumption 
2 implies that #l(t) cannot jump from ai(t) to aj(t) 
nor can it go continuously from a # )  to a~(t) with 
infinitely large slope. Therefore integrability in (22) 
implies that 61(t) becomes essentially close to one of 
the diagonal elements of E(t), for large t. Suppose 
w.l.o.g that (0"l(t) --~l(t)) is the only possible 
integrable function, then (ai(t) - e~(t) ¢ if1, 
i=  2 . . . . .  n and by asymptotic distinctness of 
singular'values, they become essentially bounded 
away from zero for large t. Therefore (22) implies 
that ~/ l ( t )e£~l  for i = 2 . . . . .  n and since 

K(t) = P(t)~,(t)P'(t) in Lemma 5 is in fact a con- 
tinuous decomposition, therefore, D°(t) = V")(t) 
P(t) is also continuous. Finally, we note that a 
constant permutation will always yield the proper 
ordering for W)(t) as described in the lemma. [] 

Lemma 7 
Suppose B'(t)rz(i)(t) ~.2"1 and C(t)l/(°(t) e ~ l  

where ~'°)(t) is defined as in Lemma 6. Then 
£(t)~'")(t) e LPl. 

Proof 
Subtracting (lb) from (la) we get 

2~(t) = diag {BB' - C'C} where diag {M} contains 
only the diagonal elements of M. By assumption we 
have (BB' - C 'C)D°e  Lel. Using this, coupled with 
the special structure of .D°(t)  as in Lemma 6, we 
have 2 ~  "{° = [diag (BB' - C'C)]F'")~ ~1. 

Lemma 8 
Suppose [Y .D° -~ ' ( °Y]eLf l  and [EAD i ) -  

A~'(°]~]sL, et, then there exists a diagonal matrix 
~(t) such that [A~ "") - F'(°~] e ~1- 

Proof 
Working columnwise, we want to show that if 

(E - etl)VI ~ ~1 and (E - #II)AVt ~ 0~1, then 
[AV1 - ~ l V l ] e ~ l .  We have 

AV1 - X, Vt = L Zi~ (23) 
i=2 

and we wish to show the r.h.s of (23) is integrable. 
Premultiplying (23) by (E(t) - e f t )  we obtain 

(Y.(t) - -  ~II)(AV1 - -  ~-1V1) = L )~i( y~ -- 6,I)V~ 
i=2 

L ~](E - ~ , I )~e&.  (24) 
i=2 

Now using the distinctness of singular values and 
results of Lemma 6 we can easily deduce 

~12 (t) + L C 2  (t) = 1, 
i=2 L /Ti~/e,,~l. [] 

i=2 

then ( ~ ] ( t ) -  1)eL~l, and for t sufficiently large, 
~ , ( t ) ,  i =  2 , . . . ,n  becomes close to zero while 
IN 1 (t)l becomes close to 1. Similar proof follows for 
other eigenvectors V2 . . . . .  V,, noting that the 
structure of F'°)(t) prevents two diagonal elements of 
~(t) from being the same. In fact, by asymptotic 
distinctness of singular values of Y.(t), the diagonal 
elements of ~(t) also are distinct for large t. This 
implies (Kato, 1976) that decomposition 

We now arrive at the main result of the section, 
Theorem 6. Remarkable in this theorem is that we 
do not need the existence of limits of A(t), B(t), C(t), 
E(t) and ~(t), as is the case for many asymptotic 
results in time-varying systems. On the other hand, 
we do need the following technical assumption, in 
addition to Assumptions 1 and 2. This assumption 
ensures the integrability of a matrix whenever it is 
squarely integrable. 

AUT 20:I-E 
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Assumption 3 

I B ' ]  p(i)~ ~lwhenever 

~/(i)' [ B I C' ] ~/(i) e ~ ,  . 

Theorem 6 
Let (A, B, C) be u.b.a.s realization, and suppose 

Assumptions 1, 2, and 3 hold. Then the asymptotic 
distinctness of the elements of Z(t) implies the 
asymptotic distinctness Of2madA + A')/2 from zero, 
i.e. $1 = ~b. 

Proof 
Suppose not. Then S, ¢: 4~, and by Assumption 1 

there exists a continuous V u) such that 

From Lemma 8, therefore, there exists a diagonal 
matrix N(t) such that 

[A F "(i) - F'")A] ~ ~ .  (31) 

Partitioning A in (31) in accordance with pu) in 
Lemma 6, we have 

V'I u ) [FAll II A*2]F~/~li)l-I-z-(2i~]]~)~,~ 1 

which implies that A2,(t) e ¢,~1. Similarly partition- 
ing equation (25) we get A , 2 ( t ) ~  and 
[A**(t) + A~,(t)]~L~I. Using Wazewski's in- 
equality (Zadeh and Desoer, 1963), we then have 

ftto,J~min( A ' ) 0 < ~ = exp 11 + A11 dz < [[OAt,(t, to)H 
2 

(A + A')VU)~Lfa which implies 

which also implies I[OA.(t, t0)ll --> ~ > 0, Vt >_ 0. (32) 

(A + A')P"~E ~ ,  (25) 

where p.) = VU)p with P a unitary matrix. Pre- and 
postmultiplying ( l ( a ) +  l(b)) with P")' and V") 
respectively, we have 

Pu)'(A + A')EV u) + ~'"YE(A + A')V u) 

= --F/OY(B B' + C'C)[ "~i). 

From (25) it follows that: ~'u)' (BB' + C' C) p.) e Le~, 
and by Assumption 3, we have 

On the other hand, considering the original system 
(A,B,C), and subdividing its transition matrix 
OA(t, to) = A(t)~A(t, to), ¢bA(to, to) = I accordingly, 
we get 

ek2dt, to) 4022(t, to)l 

=rA, ,  A,z]pkll(t, to) ~b12(t, to)] (33) 
LA21 A22Jlck21(t, to) ck22(t, to)J 

with 

B 'F'u)~ ~1, CF'u)~ ~1. (26) 

Postmultiplying l(a) + l(b) by ~,u), using (25) and 
(26) we obtain 

(A + A')Y,P(°s 5°1. (27) 

Lemma 5 implies that there exists a continuous 
diagonal matrix ]~(H) > ~I > 0 such that 

[XV u) - F'")]~] ~ Lfl (28) 

where ~'") is defined as in Lemma 6. Lemma 7 
implies that ZP(°~ A¢,. Postmultiplying (lb) by p(o 
we get 

[Y 'AV (i) + A'EV ")] ~ '£fl. (29) 

[ ~bl,(to, to) ~b12(to, to) 1 = [-I,×,lt01 

~b21(to, to) q~2:(to, to)J L-~3--~,-/] 

By a.s since II~A(t, to)ll --' 0 as t ---, ~ ,  then 

II¢P11(t, to)tl ~ 0 as t ~ or. (34) 

Using (33) with its boundary condition, together 
with the variation of constant formula we have 

q~21(t, to) = OA~(t,Z)AEl(z)cPll(z, to)dz 
0 

f' 4h2(t, to) = Om,(t,z)A1z(Z)dP22(Z, to)dz 
0 

Adding and subtracting AE~ "(i) to (29) and using 
(28) we get 

[ZA V (i) - A ~'(i)~-, ] • ~'1. t30) 

~bl l(t, to) = ¢I)A,,(t, to) 

f 'oOA. + (t,z)A12(z)~b21(Z, to)dz. 
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Taking the norm of the above equations, we get 

~ t Ikb21(t, to)ll < IIA21(x)II dx (35) 
o 

ft 
t 

Ilq~12(t, to)ll ~< [Ia12(z)ll dz (36) 
o 

ft 
t 

Ikbll(t, to) - ~A.(t ,  to)ll -< Ila12(~)lldz. (37) 
o 

Considering t ha t  A12 6 ,~1 a n d  A21 6 ,~1, by taking 
to sufficiently large, we can make the right-hand 
sides of (35)-(37) arbitrarily small, but this 
contradicts (32) and (34). [] 

Theorem 7 
Let (A, B, C) be a u.b.a.s realization, and suppose 

Assumptions 1, 2, 3 hold. Then the asymptotic 
distinctness of the elements of X(t) implies that every 
subsystem (A11, B1, C1) is u.b.a.s. 

Proof 
Combining the results of Theorem 6 and 

Theorem 3, we have the conclusion of Theorem 7. 
[] 

We note that while Assumption 1 is fundamental 
in the proof of Lemma 5, Assumptions 2 and 3 are 
only technical assumptions which are satisfied in 
many cases. They are designed to exclude possible 
pathological behavior. 

4. CONCLUSIONS 

This paper is the continuation of the authors 
previous work (Shokoohi, Silverman and Van 
Dooren, 1980, 1981, 1983)where a 'balanced' 
realization for time-variable systems was in- 
troduced. Balanced realizations lead to a natural 
technique for model reduction, using the concepts of 
controllability and observability. In this paper we 
have studied stability of the resulting approxi- 
mation. Several sufficient conditions to guarantee 
the stability of subsystems of time-variable, periodic 
and time-invariant systems are given. The idea of 
taking the subsystem, in the balanced framework, as 
a reduced model is very appealing and attractive. 
However, much work needs to be done to further 
understand the balanced realization, its variations 
and implications in linear system theory. In 

particular, more research is desirable to justify that 
reduced model is in fact a good one. At this point, 
however, balanced realizations yield a new per- 
spective in view of linear systems and model 
reduction. 
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