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ABSTRACT

We describe a method for computing the controllable
subspace of a linear periodic discrete time system. The
method is based on the ordered periodic Schur form [1]
of a matrix sequence A;, 1 =0,..., K—1, and proceeds
by reducing the state equation to a convenient form in
which the controllable /uncontrollable states are clearly
displayed. Its attractive features are simplicity, nu-
merical accuracy and stability.

1. Introduction

A basic problem connected with linear systems is to
compute the controllable subspace. Consider the fol-
lowing discrete-time system

Tp+1 = Agxp + Brug, (1)

where A, € C"*", B, € C**™ are known periodic
matrices of integer period K| i.e.,

Aptx = Ak, Bryrx = Br, Yk € Z;

and xy, up are vectors of states and inputs respec-
tively.

For the special case of time-invariant systems (pe-
riod K = 1), this problem has been studied exten-
sively, beginning with the work of Kalman — see for
instance [2], [3], [4], [5]. We know that if the pair
(A, B) has the form

| A Ae | B
e he(t]

then the modes of Asq are uncontrollable — they are
neither affected by the input, nor by the modes of Aq;.
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Since uncontrollable modes do not contribute to the
input/output description of a dynamical system, we
can prune the state vector to retain only controllable
modes. This does not change the transfer function
realized by the state equation

Tr41 = Axy, + Buy,. (3)

In fact, this constitutes a valid procedure for finding
a minimal realization of a given transfer function.

Let us stay a little bit longer with the time-invariant
case, since 1t gives valuable insight into the periodic
(K > 1) case. For a general pair (A, B) not having
the transparent structure of (2), we would first find
a (non-singular) state transformation to put (3) in a
more convenient form, one in which A and B are as
in (2). Such a state transformation always exists [6,
p 130], and in fact, a numerically attractive procedure
[5] uses only unitary transformations.

In this paper, we carry this basic idea through
for periodic (K > 1) systems, and describe a general
method to obtain the controllable subspace. The algo-
rithm is based on the ordered periodic Schur form [1]
of the matrix sequence A;, i =0,..., K — 1, and pro-
ceeds by transforming the state equation (1) to a con-
venient form in which the controllable/uncontrollable
states are readily distinguished. This operation is car-
ried out by orthogonal state transformations only, and
the algorithm is numerically stable.

2. Linear periodic systems

2.1 Some preliminaries

Throughout this paper, we denote the set of integers
and complex numbers by Z and C respectively. We
write A* for the conjugate-transpose of the matrix A,
and A’ for its transpose. We will denote the linear
periodic discrete-time system under consideration by
Y. We assume that ¥ is represented by equation (1).



The state-transition matrix for (1) is given by
I k=14
Dk, 0) =
(k.0 { Api Ag e Ay Ap k> 0
®(k, £) undefined for k < £.

Using periodicity of Ag, it is easy to verify the follow-
ing properties of ®(k, £):

U+ kK, 0) = B+ K, 0)F
B, 0—kK) = (- K)F
B+ K, (+K) = ®(k)Vk> L

The state-transition matrix over one period (start-
ing at time 7) is known as the monodromy matriz (at
time 7). We denote it by

U; = ®(i+ K, i).

The monodromy matrix ¥; is non-singular if and only
if Ay are, 1.e., iff the system is reversible. The eigen-
values of W; are called the characteristic multipliers
of the system (1). They are independent of 4, since all
¥, have the same eigenvalues.

2.2 Time-invariant reformulation

In many instances, problems involving periodic sys-
tems can be tackled by viewing the periodic system
as a time-invariant system. An advantage of this ap-
proach 1s that known results for time-invariant sys-
tems can then be immediately invoked. The K-periodic
system X given by (1) has K associated time-invariant

representations. These are, for s =0,1,... K — 1:

Os(04+1) =T, -0,(0) + G - vs(£), (4)
where

Hs(g) = Ts4LK,
U, = P(s+ K,s),
Gy = [®(s+K,s+1)B; -+ Bsyr—1],
Us+IK
Us+eK+1
and vs(£) = .

Us+(+1)K -1
2.3 Coordinate transformations

Tt must be borne in mind that equation (1) is not the
only (periodic) representation for ©. We can let zj, =
TiZp in (1), where T} is any non-singular periodic
matrix, and arrive at the following alternative periodic
realization

Iry1 = Ap¥p + Byug, (5)
where A, = T, _|_11Aka7
B, = T7l Bs.

k+1

Such a transformation of the state-space merely alters
‘book-keeping’. Tt does not affect the characteristic
multipliers, or structural properties like reachability
or controllability. The pair (Ak, Bk) in (5) is said to
be algebraically equivalent to the pair (Ag, By) in (1).

Much simplicity can be gained by representing ¥ in
appropriate state coordinates. For instance, 1t turns
out that just as in the time-invariant case (K = 1),
there exist some representations in which the control-
lable/uncontrollable states can be read off by inspec-
tion [7]. Given a particular representation (1), it is
clearly worthwhile, for our purpose of finding the con-
trollable subspace, to look for a coordinate transfor-
mation T} which will put the state equation in such a
nice form.

However, from a numerical point of view, just any
Ty, that accomplishes this task will not do, because it
might be ill-conditioned with respect to inversion. For
this reason, a favored class of transformations is that
of unitary Tj. In this work, we consider unitary T}
which put the Ag in triangular form, while implicitly
computing the Schur form of the monodromy matrices
W,;. The existence of such T} is guaranteed by the
following theorem:

Theorem 1 (Periodic Schur decomposition)

Given n x n matrices A;, 1 = 0,1,..., K — 1, there
exist n X n unitary matrices T;, 1 = 0,1,..., K — 1,
such that
Ay = Ty ATy,
A = Ty AT,
Ag-s = Ti_1Ag—2Tk—_o,
and AK—I = TSAK—lTK—l

15 each upper-triangular. Moreover, Ty, can be chosen
so that the diagonal elements (eigenvalues) of the prod-
ucts (AH_K_l . ~fL+1fL) appear i any desired order.
Proof: See [1]. A constructive proof, as well as a
numerical algorithm on the lines of the classical QR
algorithm, is described therein. m
Note that a (unitary) similarity transformation
with 7; puts the monodromy matrix ¥; in Schur form:

TP T =T Aipg—1 - ATy = Ajyg—1 - A = 0.

In other words, the periodic Schur decomposition re-
ally computes the Schur form of ¥;. However, it does
so tmplicitly, without ever forming the matrix prod-
ucts! The algorithm described in [1] works directly on
the A; matrices, and reduces them to upper-triangular



form. This results in lesser computation, and greater
accuracy.

We mention here that, with minor modifications,
the periodic Schur decomposition [1] has a real-matrix
version also, where all A; are reduced to upper trian-
gular form, except for one which is made quasi upper
triangular, viz., with possibly 2 x 2 diagonal blocks.
Moreover, T}, can now be chosen so that the 1 x 1 and
2 x 2 blocks of the product z‘L’+K—1 .- ~Ai+1fii appear
in any desired order.

2.4 Standard controllable form

The definition of controllability of X is standard, so we
skip it here. Tt 1s known that the dimension of ¥’s con-
trollable subspace is constant (or time-invariant) [8].
Thus, X i1s controllable if and only if it 1s controllable
at an arbitrary time instant, say £ = 0. The following
lemma gives a simple criterion for controllability.

Lemma 1 (Controllability)
Y. is controllable at time s iff for each characteristic

multiplier X # 0, rank [A\] — ¥, G,] = n.

Proof:  TFollows from the equivalence of systems (1)
and (4). See also theorem 4 of [8]. n

We now list some observations regarding control-
lability and lemma 1.

e Lemma 1 1s the usual PBH test for the equiva-
lent time-invariant system (4). Thus (1) is con-

trollable iff (4) is.

o If the matrix in lemma 1 1s not of full rank for
some eigenvalue A # 0 of ¥, then that A is an
uncontrollable eigenvalue or ‘mode’ of X.

o Y is completely controllable if lemma 1 holds for
any 5,0 <s < K —1.

o The set of states controllable at time &, denoted
by X.(k), is a subspace. This subspace is invari-
ant under A(-), in the sense that

Using this, it can be shown that there exist state-
transformations which put Ag, By in the form

. A (k) A(k) ] 4 By (k)
AL = ~ B, =
iy [ 0 Aos(k) |’ 0o ]
(6)
which is the ‘natural’ representation (alluded to
earlier) from the controllability point of view.

When A, By are transformed to (6), (¥, Gy)
take the form

S é11 ¢E12 S 7]
‘PS—[O ¢22],G5_[0]. )

Moreover, in (6), Azz(k’) is non-singular for all
k, a result which strengthens the intuition that
zero eigenvalues are trivially controllable (the
corresponding state can always be driven to zero).
This also explains why only non-zero eigenvalues
need to be considered in lemma 1.

3. Algorithm description

In this section, we describe the main result of this pa-

per, namely an algorithm to compute the controllable

subspace of a linear periodic discrete-time system. We

treat the complex and real matrix cases side by side.
The following lemma is key.

Lemma 2 If (A, B) is controllable, with
_ | A Ane _| B
[
then (Aaz2, Ba) is controllable. Also, in particular, if
Asa is a 1x1 (resp. 2x2) diagonal block (of the Schur
form) of A corresponding to a real eigenvalue (a pair

of complex conjugate eigenvalues), then (Asa, Ba) is

controllable iff By # 0. L]

In order to introduce the main idea of our algorithm,
we first restrict attention to the simpler K = 1 case
(time-invariant system). A fuller treatment of the
time-invariant case can be found in Varga [5].

3.1 Algorithm for time-invariant systems

Lemma 2 motivates a simple procedure for identifying
uncontrollable states of an uncontrollable pair (A, B).
The algorithm is the following. Start by putting A in
Schur form with any particular ordering of the diag-
onal blocks. Tf the last 1 x 1 (resp. 2 x 2 in the real
case) diagonal block corresponds to an uncontrollable
eigenvalue (an uncontrollable complex conjugate pair
of eigenvalues), then, by lemma 2, the last row (last
two rows) of the transformed B matrix vanishes (with
some minor assumptions about repeated eigenvalues).
If this happens, leave that block at the bottom, and
reorder the remaining blocks to check for another un-
controllable mode. Continuing in this fashion, accu-
mulate all uncontrollable eigenvalues in Agg, where
A and B are partitioned as in lemma 2. Bs is now
zero, and (AH, Bl) represents the controllable part of
(A, B).

3.2 Algorithm for periodic systems

In view of lemma 1, it is clear how the foregoing al-
gorithm for time-invariant systems (described in sec-
tion 3.1) applies in the periodic case. In effect, we
run Algorithm 3.1 on the pair (¥, G;). But we do so
implicitly, working only with the Ay’s and By’s.



3.2.1 Computational steps in brief:

1. Use theorem 1 to find a coordinate transforma-
tion which puts ¥ in Schur form (denoted by
N s). Choose the Schur form in which only zero
eigenvalues occur in the first diagonal block of
\ils, where \ils, (i, are partitioned as

I _ P11 1%12 _ C:H
[ 2)e-(d] o

This is done because the zero eigenvalue is known
to be controllable.

2. Apply Algorithm 3.1 to the subsystem (1/;22, C~'2)
in (8).
It is helpful to note that the last row of G5 van-
ishes iff the last row of each By vanishes.

3. Continue reordering the diagonal blocks of W,
till (Ag, By) is exhibited in the form shown in
(6). When this happens, ¥, G will be as shown
in (7).

4. Accumulate the transformations thus far to find
T}, the desired coordinate-transformation.

The case of repeated eigenvalues which are not all

e Dead-beat control:
It 1s possible to do dead-beat control of periodic
systems [9].

e Canonical decomposition:
Since controllability and reconstructibility are
duals of each other, the method outlined in this
summary is clearly extendable to finding the full
Kalman canonical decomposition for linear pe-
riodic discrete-time systems.

6. Conclusion

A computational procedure has been proposed for find-
ing the controllable subspace of linear periodic discrete-
time systems. It uses only unitary state transforma-

tions, and 1s numerically stable.

It readily extends

to more general situations, such as when the system
equation 1s given in descriptor form.

(1]
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