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Abstract. We apply a Floquet-like theory to linear
discrete-time periodic systems, and present an algorithm
to compute the state-transformation matrices needed to
give a time-invariant representation. The algorithm uses
the periodic-Schur decomposition of a matriz sequence
A, 1=0,..., K —1.

1 Introduction

In the literature, two approaches are commonly used
for analyzing discrete-time periodic systems. In one, the
modified z-transform technique is used [2]. In the other,
the periodic sytem is mapped isomorphically to a L'TT sys-
tem, either by state-sampling [3], or by state-grouping [4].
In this paper, we present an alternative, and perhaps more
direct method, along the lines of classical Floquet theory
for continuous-time periodic systems [5, 6] .

2 Floquet theory
2.1 Continuous-time case

Floquet theory for continuous-time linear periodic sys-
tems can be summarized in the following result.

Theorem 1. Given the linear periodic system

fl—”; — A(t)z, A(t+T) = A(b) (1)
there exists a nonsingular matriz P(t), periodic of pe-
riod T with P(0) = I, such that the change of variables
z = P(t)y transforms the system into a linear system with
constant coefficients.

The proof proceeds by finding a (constant) matrix R
such that the state-transition matrix over one period’
B(T,0) = 7, and defining P(t) = ®(t,0)e™ . Tt is easy
to verify that P(0) = I. We have (see [5] for details)

P(t+T) = &(t+T,0) e "D
= ®(t,0)®(T,0)e” e
= ®(t,0)e” " = P(t).
Thus P(t) is periodic with period 7. Performing the

change of variables z = P(t)y in (1), we see that the
solution passing through zo at ¢ = 0 is given by

z(t;m0) = ®(t,0)z0
= P(t)eRtxo
= P(t)y(t; o).

Lthe so-called monodromy matrix

Thus y(t;20) = €™ xo, and is the solution of the linear
system with constant coefficients dy/dt = Ry. Note that
the periodicity of the original system has been absorbed
into the transformation P(t). Indeed, we have, in obvious
notation,

P(t)y(t; to, m0) = P(t)e™ )y,
P(t)e™ =) P~ (15} 0.

z(t; b0, z0)

;From the foregoing, we deduce that the whole behav-
ior of the solutions of a linear system with periodic coeffi-
cients such as (1) depends upon the eigenvalues of matrix
R. These eigenvalues are of the form 1 In);, where }; are
the eigenvalues of the (monodromy) matrix ®(7,0).

2.2 Discrete-time case

Here, we consider the system

Tr41 = Arrr, Artrr = As. (2)

As in the continuous-time case, we expect to gain in-
sight into the structure of the solutions of a linear system
with periodic coefficients by transformation into an equiv-
alent time-invariant system. Accordingly, we would like to
find non-singular Ty, periodic of period K, such that the
change of variables

rr = Trhin

transforms (2) into a linear system with constant coeffi-
cients
Fry1 = AZy.

In other words, we seek matrices Ty = Tiy i satisfying
T;:_I.ll ATy = A, for all k, (3)

where A is a constant matrix.
The question now arises as to the conditions under
which we can solve for A and T}. Equation (3) gives

Ti' Ak Tro1 Ty AT = Ty H(Ax—1--- Ad)To

— AK
which means A¥ is similar to the monodromy matrix
U= ®(K,0) = Ax—1--- Ao.

Thus, to compute A, we definitely need the eigenvalues
of the monodromy matrix [7]. The K-th root A exists
whenever A¥ is non-singular (or when its zero eigenvalue
has a full set of eigenvectors). Refer to [7] for details about
the theory of K-th roots of a given matrix.



2.2.1 ‘Naive’ algorithm for Tj:

We have the following algorithm for finding A and Tj:

1. Set To = 1. Solve for A in
AN = (4)
using the method outlined in [7]. Note that the K-th
root, when it exists, is not unique.

2. Solve for Ty, k =1,..., K — 1, using the recurrence

Tk+1A = ApTy. (5)

One easily checks that the above steps yield T AT = UT,
and therefore, T = I. Periodicity of Ty is thus satisfied.
In fact, we imposed this to obtain equation (4).
Remark:

1. This procedure always works when ¥ is non-singular,
because then the K-th root A exists, is non-singular,
and so (5) has a unique solution. The case of singular
¥ is more complicated, equation (5) may not have a
solution ewven if there exists a K-th root A of ¥. This
is currently under investigation.

2. Unfortunately, as with all straight-forward proce-
dures, the above algorithm may suffer from severe
numerical difficulties. Firstly, it involves the compu-
tation of the K-th root of ¥, which is a dense ma-
trix. Secondly, the solution described in [7] requires
not only the eigenvalues of W, but also its Jordan
form; and there is no reliable computer program to
compute Jordan forms for repeated eigenvalues [8].
Thirdly, equation (5) has no structure, and so its so-
lution is computationally intensive.

Some simplification would result if equation (5) has some
structure, e.g., if Ay and A are in upper-triangular form.
(We could then solve for Ty also to be upper-triangular).
For A to be upper-triangular, it would be helpful if
AT = U were also so. We are naturally led to wonder
whether there is a numerically sound procedure which tri-
angularises Ay, and puts the matrix product ¥ in Schur
Form (SF). It turns out that the periodic Schur decompo-
sition lemma (see [1] for the proof of existence and algo-
rithm) gives precisely such a method.

Lemma 1. [Periodic Schur decomposition] Given
n X n matrices A;, 1 = 0,1,..., K — 1, there exist n X n
unitary matrices Q;, 1 =0,1,..., K — 1 such that

Ao = QF A0Qo
A = QA
Ax—s = QF_1Ax_2Qr—s

A1 = QU Ax—1Qr—

are upper-triangular. [
To recapitulate, we take recourse to the periodic Schur
decomposition for the following reason(s):

e To find the K-th root of ¥, we would have to find
its eigenvalues anyway. The periodic Schur de-
composition gives us these, in addition to upper-
triangularising each Ax. The algorithm in [1], while
working only on the Aj matrices, implicitly puts ¥

in SF .

¢ Finding the K -th root of an upper-triangular matrix
is relatively simple [9].

o The K-throot A is not unique, though its eigenvalues
are known (K -th roots of the eigenvalues of ¥). So
why not find A also in SF? This will simplify solution
of (5).

e ‘Pre-processing’ with the @ is numerically reliable
since only unitary transformations are used.

2.2.2 ‘Good’ algorithm for Tj:

We will exhibit T} of (3) in the form
Ty = QiTx, Qr unitary, T upper-triangular. (6)

Note that this is the QR-factorization of Ty, which is a
useful representation. In (6), Qx, Tk are periodic matrices
with period K.

Finding (6) involves the following steps:

o Compute unitary Qi to put the Ajp matrices in

upper-triangular form, using the algorithm described
in [1].

e Find upper-triangular matrices T}, such that

is a constant matrix A for all k. This step involves
first finding A. Note that (7) gives

Ag_1---Ag = TglzﬁiK—l'TK—l - ~~T1_11‘~10T0
which is the same as
AK = To_l(AK_l . Ao)To. (8)

Thus, if we take Ty = I in (8), A can be computed
as the K-throot of (Ax—_1---Ag). We outline a pro-

cedure for computing A in the appendix. Ty is then
found by the recurrence

Tk+1A = Akj—‘k, k=1,..., K -1

which is a triangular system of equations.

For the case of singular U, statements similar to those
made in remark 1 hold.

3 Conclusion

A Floquet approach is presented for linear discrete-
time periodic systems. This could be useful in the analysis
of such systems. A numerical algorithm is described to
compute the state-transformation matrices which put the
periodic system in time-invariant form.
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5 Appendix: K-th root of a triangular

matrix

Problem Statement:
Let S be a given n X n upper-triangular matrix. Assume
that the zero eigenvalue of S| if it exists, is diagonalizable.
Find an n X n upper-triangular matrix A satisfying

AN =S (9)

Solution:
We will solve for A one column at a time, starting with
the first and proceeding towards the right. When S is sin-
gular, we assume that the Jordan blocks (each of dimen-
sion 1) corresponding to the zero eigenvalue are grouped
together at the top. In this case, for some r < n, the
leading principal sub-matrix of order r is zero in .S, and
we choose that sub-matrix to be zero in A also. Hence,
for singular S, we solve for columns of A beginning with
the (r 4+ 1)-th column.

When solving for the j-th column, it is helpful to par-
tition the leading principal sub-matrices of order 7 of A
and S as follows

A = [ AJO_l avjv :|7 S = [ Sjo—l svjv :| (10)

R F 933
where aj, s; are (j—1) column-vectors, a;;, o;; are scalars,
and A;_1, S;_1 are upper-triangular matrices of size (j —
1). Of course, A;_; and S;_; are the leading principal
sub-matrices of order (j — 1) of A and S respectively.
iFrom equation (9), we see that

AJK_1 = Sj—l
O‘ﬁ' = oy (11)
and
(A5 + A g, 4+ ol e, = 55 (12)

Since Aj;_1 i1s known when solving for the j-th column
of A, and «,; is given by (11), we can solve for a; from
equation (12). The coefficient matrix of (12) is upper-
triangular, with the :-th diagonal entry given by

(=K—1

L K—1—4
E ool
o33
£=0

(o = o)
12 17

(O‘” - O‘jj)

We see that d; = 0 & of = oF and a;i # aj;. Thus,
(12) can be solved uniquely for a; provided S has distinct
eigenvalues, or if we take a;; = a;; whenever o;; = o;;.
Similar conditions are encountered in the K = 2 case [9].

When the zero eigenvalue of S has Jordan blocks of
size greater than one, certain inequalities on the sizes of
Jordan blocks have to be satisfied for the K-th root to

exist [7].

d;
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