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ABSTRACT

We present a new method for eigenvalue assignment in
linear periodic discrete-time systems through the use of
linear periodic state feedback. The proposed method uses
reliable numerical techniques based on unitary transfor-
mations. In essence, it computes the Schur form of the
open-loop monodromy matriz via a recent implicit eigen-
decomposition algorithm, and shifts its eigenvalues sequen-
tially. Given complete reachability of the open-loop sys-
tem, we show that we can assign an arbitrary set of eigen-
values to the closed-loop monodromy matrixz in this man-
ner. Under the weaker assumption of complete control-
lability, this method can be used to place all eigenvalues
at the origin, thus solving the so-called deadbeat control
problem. The algorithm readily extends to more general
situations, such as when the system equation is given in
descriptor form.

1. Introduction

One of the most studied problems in modern control
theory has been the modification of the dynamic re-
sponse of a linear system through state feedback [1, 2].
Successful resolution of this problem for multivariable
systems ranks as one of the cornerstones of the theory.

Within linear systems, an important subclass is
that of periodic systems. Various processes in chemi-
cal, electrical and aerospace engineering can be mod-
eled using linear periodic systems. An added incen-
tive for studying such systems is that they repre-
sent the simplest case of general time-varying sys-
tems, consequently, their analysis 1s quite tractable.
In fact, linear {ime-invariant theory serves as a guide
to the study of linear periodic systems, and many
classical concepts first developed for time-invariant
systems have been extended and applied to the peri-
odic case.

In this paper, we consider the eigenvalue assign-
ment problem, henceforth referred to as the EAP, for
linear periodic discrete-time systems. Though several
authors have studied this problem [3, 4, 5], compu-
tational issues have not been adequately addressed

so far. Here we propose a numerically sound proce-
dure, based on a Schur approach, which uses only uni-
tary transformations. It is well known that the use
of unitary transformations promotes numerical sta-
bility in algorithms [6]. Tn essence, we compute an
ordered Schur form of the open-loop monodromy ma-
trix via an implicit eigen-decomposition algorithm [7],
and shift its eigenvalues sequentially by linear peri-
odic state feedback.

The paper is organized as follows. Section 2 in-
troduces notation and some preliminary facts about
linear periodic discrete-time systems. Section 3 states
the EAP, and contrasts our solution procedure with
previous ones. Section 4 describes our algorithm. Fi-
nally, after discussing possible extensions and an ap-
plication in sections 5 and 6 respectively, we end this
paper with some concluding remarks in section 7.

2. Linear periodic discrete-time
systems

2.1 Some preliminaries

Throughout this paper, we denote the set of integers
and complex numbers by Z and C respectively. We
write A* for the conjugate-transpose of the matrix
A, A’ for its transpose, and A(A) for the set of its
eigenvalues.

We will denote the linear periodic discrete-time
system under consideration by ¥. Assume that ¥ is
represented by the following equation:

Tp+1 = Agxr + Brug, (1)

where Ay : Z2 = C"", By, : Z2 = C"™™ are known
periodic matrices of integer period K, i.e., Ax4rx =
Ak, Bryx = Bg; and zp, ui are vectors of states
and inputs respectively. We allow Ag to be singular,
thus the system might be non-reversible. The state-
transition matrix of (1) is given by

I k=1{
ok, 0 = { ApiArae g1 A k>0
®(k, £) undefined for k < .



Tt is easy to see that ®(k+ K, £+ K) = ®(k,£), for
all & > ¢, due to the periodicity of Ag. The state-
transition matrix over one period (starting at time 7)
is known as the monodromy matriz (at time 7). We
denote it by ¥; := ®(i+ K,7). It is non-singular if
and only if the system 1s reversible. The eigenvalues
of W; are called the characteristic multipliers of (1).
They are independent of i, i.e., all ¥; have the same
spectrum. System (1) is said to be asymptotically
stable 1if all its characteristic multipliers lie inside the
unit circle. When the system is unstable, we usually
seek to stabilize 1t through feedback, i.e., move its
characteristic multipliers to the interior of the unit
circle.

2.2 Time-invariant reformulation

In many instances, problems involving periodic sys-
tems can be tackled by recasting the periodic sys-
tem as a time-invariant system. An advantage of
this approach is that known results for time-invariant
systems can then be immediately invoked. Often,
this approach forms a first method of attack, because
time-invariant theory is (currently) better understood
than its periodic counterpart. The K-periodic system
Y described by (1) has K associated time-invariant

representations. For s = 0,1,... K — 1, these are

Os(64+1) =T, -0,(0) + Gs - vs(£), (2)
where

Hs(g) = Ts4IK,
U, = P(s+ K,s),
Gy = [®(s+K,s+1)Bs --- Bsyr-1],
Us+IK
Us+eK+1
and vs(£) = .

Us+(+1)K -1
2.3 Reachability and controllability

The definition of reachability and controllability of X
is standard, so we skip it here. The following lemma
gives a simple criterion for these properties. It can
be proved using the correspondence between systems

(1) and (2).

Lemma 1 System (1) is reachable (resp. control-
lable) at time s iff for each characteristic multiplier

A(A#0), rank [AT =T, G,]=n. n

We now list some observations regarding reacha-
bility and lemma 1. Similar statements hold for con-
trollability.

e Lemma 1 is the usual PBH test for the equiv-
alent time-invariant system (2). Thus (1) is
reachable at time s iff (2) is.

e If the matrix in lemma 1 loses rank for some
eigenvalue A of W, then A is an unreachable
eigenvalue or ‘mode’ of 3.

o Y is completely reachable if lemma 1 holds for
every 5,0 <s < K —1.

2.4 Coordinate transformations

Tt must be borne in mind that equation (1) is not
the only (periodic) representation for ¥. We can let
2 = Tg#y in (1), where T} is any non-singular pe-
riodic matrix, and arrive at the following alternative
periodic realization

Ire1 = Apip+ Byug, (3)
where A, = T, _|_11 AT,
By = T} B

Such a transformation merely changes ‘book-keeping’.
It does not affect the characteristic multipliers, or
structural properties like reachability or controllabil-
ity. The pair (Ak, Bk) in (3) is said to be algebraically
equivalent to the pair (Ag, By) in (1).

It turns out that there exist some representations
for ¥ in which the EAP is very easy to solve. Given
a particular realization (1) of X, a smart approach
would be to first look for a coordinate transformation
Ty which leads to a representation suitable for the
EAP. For instance, in the time-invariant case (K =
1), we know that it helps to put (1) in controller
canonical form if the desired characteristic equation
is specified [2], or in Schur form® if the desired eigen-
values are given [8].

However, from a numerical point of view, just any
Ty, that accomplishes this task will not do, because
1t might be ill-conditioned with respect to inversion.
For this reason, a favored class of transformations is
that of unitary 7. In this work, we consider unitary
T which put the Ay in triangular form, while im-
plicitly computing the Schur form of the monodromy
matrices ¥;. The existence of such 7T} 1s guaranteed
by the following result:

Lemma 2 (Periodic Schur decomposition)

Given n x n matrices A;, 1 = 0,1,..., K — 1, there
erist n x n unitary matrices Ty, 1 = 0,1,..., K — 1,
such that
Ay = T ATy,
A = TS AT,
Ag_o = Th_jAg_oTx_o,
andAK_l = TSAK—lTK—l

More precisely, the system matrix is reduced to Schur form.



1s each upper-triangular. Moreover, Ty, can be chosen
so that the diagonal elements (eigenvalues) of the prod-
ucts (AH_K_l . ~Ai+1ﬁi) appear in any desired order.
Proof: See [7]. A constructive proof, as well as a
numerical algorithm on the lines of the classical QR
algorithm, is described therein. m

Note that a (unitary) similarity transformation
with 7; puts the monodromy matrix ¥; in Schur form:

AT =T Aiyg—1 - ATy = Ajyge g - Ay =0,

In other words, the periodic Schur decomposition re-
ally computes the Schur form of ¥;. However, it
does so mplicitly, without ever forming the matrix
products! The algorithm described in [7] works di-
rectly on the A; matrices, and reduces them to upper-
triangular form. This results in lesser computation,
and greater accuracy.

We mention here that, with minor modifications,
the periodic Schur decomposition has a real-matrix
version also [7].

3. Pole placement in periodic systems

Consider the system ¥ described by (1). If we apply
linear state-variable feedback of the form

up = Frap + vk, Frex = Fr, (4)

where v 1s the new external input, we obtain the
closed-loop system

241 = (Ag + BrFr)zr + Brog, (5)

which is again K-periodic. We denote the closed-loop
transition matrix by ®(k,i),k > 4, and the corre-

sponding monodromy matrix by ¥;. That is,
U, = ®(i + K, ). (6)

It 1s well known that the eigenvalues of W;, which
are the closed-loop characteristic multipliers, can be
arbitrarily chosen by state feedback if and only if ¥
is completely reachable [3].

Let T' C C be an arbitrary set of n complex num-
bers representing the desired eigenvalues for ;. Then
the problem considered in this paper can be stated as
follows:

Periodic eigenvalue assignment problem: Let
(A, By ) be a completely reachable periodic pair. Find
pertodic m x n matrices Fy, such that

A(T;) =T.

When (1) is a minimal representation of ¥, the poles
and characteristic multipliers are the same, hence the
above problem is also known as the pole placement
problem. [

3.1 Previous algorithms for periodic EAP

In the past, two approaches have been used to solve
the periodic eigenvalue assignment problem. The first
approach [4] transforms the EAP for ¥ into an EAP
for the associated time-invariant system (2). The de-
sired periodic matrices Fj are then found from the
feedback matrix of one of the K systems in (2). Such
indirect methods can be cumbersome, and it is worth-
while searching for algorithms which directly exploit
the periodicity of the problem.

The second approach [5] is based on computing
the Jordan form of W¥;, the open-loop monodromy
matrix. It 1s a periodic extension of the well-known
Simon-Mitter recursive pole placement algorithm for
the time-invariant case [1]. An attractive feature of
this approach is that it is recursive — hence, the fewer
the eigenvalues to be shifted, the lesser the compu-
tation. Unfortunately, the computations required are
rather involved, since 1t is necessary to update the
Jordan bases at each stage. Moreover, this algorithm
is best suited only for the case of distinct eigenval-
ues, since reliable computation of the Jordan form
for repeated eigenvalues 1s a very delicate numerical
problem [9].

3.2 Proposed Schur approach

We seek to ameliorate, via a Schur approach, the
above-mentioned difficulties associated with existing
solution procedures for the periodic EAP. Our algo-
rithm is recursive, 1t saves on computations by shift-
ing only the ‘bad’ eigenvalues. Tt tries to minimize
the norms of the feedback matrices to be used at each
stage, leading to an acceptable suboptimal solution.
It 1s a numerically sound approach, since it is based
on the periodic Schur decomposition technique de-
scribed in lemma 2, which uses only unmitary transfor-
mations. It combines the good features of, and offers
improvement over, all previous methods.

4. Algorithm description

In section 2.4, we stated that we can gain much sim-
plicity vis-a-vis the EAP by representing ¥ in ap-
propriate state coordinates. We now demonstrate
that the periodic Schur decomposition described in
lemma 2 gives one such convenient representation.

Starting with the state equation (1), perform a
transformation z; = T, 2, with T given by lemma 2.
As already noted, this puts ¥; in Schur form U;,
but does not alter the system structural properties.
Also, in the new state equation (3), Ay, are upper-
triangular.

4.1 Basic step — placing one pole

In what follows, we describe how to shift one eigen-
value of ¥;. Let the n-th diagonal element (also eigen-



value) of W, be Aot We compute feedback matrices
Fy, so that the n-th eigenvalue of

has a desired value A}°*. Since Ay are triangular, we
take Fk to have zero entries 1n all but the last column.
This ensures that all (AZ + Biﬁi) in (7), and hence
S, remain upper-triangular. Let f; denote the n-th
column of Fk It now remains to determine fj.

Suboptimal solution — only 1 f; is nonzero:
We show that we can accomplish the basic step in
section 4.1 through feedback at only one wug. In other
words, we change only one Aj.

Since ¥ is completely reachable, from lemma 1,
atleast one By must have a nonzero bottom row. Sup-
pose that the last row of Bj, denoted by b}, 1S nonzero.

Let Aj be partitioned as

=[] ®)

where «; is the (n,n) element of Aj. Then it is a
simple matter to choose f; so that

o+ b}fj = —/\Zld o= Qy (9)

All fy, k # j, are taken to be zero.

At this point, we have placed one eigenvalue. Note
that equation (9) has infinitely many solutions — we
mention two choices here:

1. f; = minimum norm solution of (9). This re-
duces the feedback gains of the overall solution.

2. f; = the solution of (9) which minimizes ||a;||,
where a@; is the (1,2)-block of (AJ + Bjﬁj) par-
titioned as in (8). This choice gives better ro-
bustness of the closed-loop poles, by keeping .S
close to a normal matrix.

4.2 Placing other poles after reordering

Through the procedure described in section 4.1, we
moved one ‘bad’ eigenvalue of ¥, to a new location,
while leaving the others untouched. Now, by means
of interchange operations using only unitary transfor-
mations, we bring the eigenvalue which 1s to be relo-
cated next, to the bottom of S. This reordering of
eigenvalues 1s a classical Schur idea, and has been in-
corporated into the periodic Schur algorithm [7]. The
individual matrices of the product in (7) are main-
tained triangular during this reordering process.
Once we have a new ‘bad’ eigenvalue at the bot-
tom, we shift 1t by starting the basic step 4.1 all over
again. We continue this process till all the ‘bad’ eigen-
values (of ¥;) have been shifted. By keeping track of
the various transformations applied, we accumulate

the feedback matrices found at each step, to compute
the final answer to the EAP.

This concludes the description of our algorithm
for the periodic EAP.

5. Extensions
e The periodic EAP for descriptor systems
Ekxk+1 = Apxp + Bruy (10)

can be handled just as easily. Assume that Fj, is
non-singular, with formation of Fj~'A4; being
undesirable. For such systems, periodic state
feedback ui = Frap + vk, Frex = Fk, results
in the closed loop system

Erzpy1 = (Ax + B Fr)z, + Brug, (11)

the underlying characteristic multipliers of which
are the eigenvalues of the matrix

Sp = Ex'(Ax + B Fi)---ET (AL + BiFy).

The problem is to choose F} so that Sgp has
desired eigenvalues.

We use the generalized periodic Schur decom-
position [7] to triangularize the two sequences
A; E;, 1 =0,..., K — 1, while implicitly com-
puting the Schur form of the monodromy ma-
trix of (10). We can then choose Fj to have,
as before, nonzero elements only in the last col-
umn. This will preserve the triangular form of
the matrices Ay 4+ By Fi. The rest of the algo-
rithm is the same as for the case F, = I.

e The algorithm described in this paper can be
modified to solve the following two special cases:

1. For a given stability margin, compute sta-
bilizing feedback matrices Fy with small
norms.

2. Conversely, for given constraints on the
norms of Fj, ensure the fastest dynamics
of the closed-loop system, 1.e., minimize
the spectral radius of ;.

e Under the weaker assumption of complete con-
trollability of ¥, the procedure presented in this
paper can be used to achieve state deadbeat
control, by setting T = {0}. When all eigen-
values of U; are equal to 0, starting with any
initial value z¢ at tg, the state of (1) goes to
the origin in at most p. K steps, where p. is the
maximal controllability index of X:

= max -
He 032’31{-1””



See [10] for the definition of the controllabil-
ity indices p.;, and for a derivation of this re-
sult. Note that this is not the tightest possible
bound, we might be able to drive any state to
the origin in fewer steps.

e We considered ¥ to be completely reachable
in this paper, which is a necessary and suffi-
cient condition for arbitrary eigenvalue assign-
ment [3]. Tn a recent paper [5], it is shown that
for nonreachable systems, it is still possible to
assign freely a core spectrum of the monodromy
matrix of the reachable part. We can use our al-
gorithm to do this in a numerically sound man-
ner. This issue is currently being investigated.

e With minor modifications, all the results in this
paper hold for the real-matrix case too. When
Ay, By are real, one likes to compute the feed-
back matrices Fj, to be real also, while avoiding
complex arithmetic altogether. In that case, we
would require T' to be a symmetric set?, and
use the real-matrix version of lemma 2 to place
one or two (complex-conjugate) poles in each
iteration. Of course, placing a pair of complex-
conjugate poles corresponds to shifting a 2 x 2
diagonal block of the matrix product. A ver-
sion of the periodic Schur decomposition algo-
rithm which uses only real arithmetic is de-

scribed in [7].
6. Application

6.1 Finding the controllability subspace

In this paper, the pole placement (resp. deadbeat
control) problem for periodic systems was solved un-
der the assumption of complete reachability (control-
lability). While it is true that the algorithm outlined
here breaks down when the system is not completely
controllable, precisely this condition can be used to
construct the controllable subspace of ¥. Refer to [11]
for details.

7. Conclusion

A computational procedure has been proposed for
pole placement in linear periodic discrete-time sys-
tems by means of linear periodic state feedback. This
is useful in many problems, e.g. stabilization of un-
stable plants.

The algorithm performs a suboptimal minimiza-
tion of the norms of the feedback matrices used for
pole-shifting. It is more reliable, from a numerical
point of view, than existing methods for pole place-
ment. This s because it uses only unitary state trans-
formations. The algorithm is recursive, it reduces

2We use the word symmetric to mean A € ' = \* € T,

the original problem to a sequence of subproblems,
in each of which 1 eigenvalue is shifted (possibly 2 in
the real case). An advantage of this recursive nature
is that only ‘bad’ eigenvalues are shifted, resulting in
computational savings — the fewer the eigenvalues to
be shifted, the lesser the computational effort.
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