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1. Introduction Proof: Omitted. See [4].
Suppose it is required to find a control law of the form Remarks:
uk = —Hxzx, Hepxe = Hy Yk, ) 1. We have not assumed Bj has full column rank.

2. Theorem 1 specialized to the time-invariant case

(Ak = A, Bi = B) essentially gives the result in [5]. How-
Tk41 = AxTx + Biug, (2) ever, there are some differences — for instance, their pro-

where Ax : 2 — R™ ™ B, : Z — R™ ™ are known cedure does not guarantee that the closed-loop poles lie

L . R . . within the a-circle.
periodic matrices of integer period K, i.e., Ap4x = A,

that stabilizes the linear discrete-time system

Biyx = By VE. without having to transform Ax to a 3. Theorem l.considers only .co?trollable and re-
canonical form, and without regard to explicit closed- versible sytems — this is not a restr{ctlon l'>ecause more
loop pole assignment. Such a situation arises, for in- general systems can be handled quite easily. See sec-
stance, in iterative quasi-linearization methods for solv- tion 2.1 for details.

ing a discrete-time periodic Riccati equation {1]. There . .

toginitia.llize the a.lgl:)rithm, it is sufﬁ::lient to ;ix]d a con: Algorithm to implement theorem 1:

trol (1) that merely stabilizes (2) — exact values are not (i) Transform the monodromy matrix ¥, = AsA24;
specified for the closed-loop characteristic multipliers. As to real Schur form (RSF). Store Uk, and compute Ay —
Bittanti et. al. [1, §VIII-C] observe, the problem of choos- UL 1 AxUs, Bi — UT,, Bx. We are now working with the
ing stabilizing (initial) gains could be solved by a pole- modified system

placement technique. Indeed, a technique of general va- . N

lidity for the assignment of closed-loop characteristic mul- Ery1 = Axx + Brux. (6)
tipliers has been worked out recently by the authors [2],

but such a procedure would be too elaborate for our pur- (i) Using knowledge of A(¥,) from the RSF of ¥,,
pose here, since the precise location of closed-loop poles select o in (5).

is unimportant. Our present result is computationally (iii) Solve the following modified DPLE (for ﬁk);
cheaper too — it mainly involves the solution of a discrete

periodic Lyapunov equation (DPLE), for which an effi- AxP 1 AT — o By = 202 By BY. ©)

cient Schur technique exists [3].
Bl By theorem 1, the stabilizing feedback for (6) is

2. Main result

A = BY(BxBF + f’k)-lflk. (8)
Theorem 1 Consider system (2), with the additional as- . L oar s -
sumption that (Ak,Byx) is controllable, and that Ak is non- (iv) Solve (BkBj + Pi)- X = Bs for X.
singular. Then the periodic control law ux = —Hyzg, (v) Compute He = XT/ik, the desired stabilizing
Hy = (I+BTP? Bk)'l BF P Ay (3a) peri‘odic statehfeei}aack.il ([\;\;? ca; Ta}l{wgg‘ f:har(llg)e basis;
-1 again : note that Hx = HxU; = sUg 1n woul
= By (BB + Px)” Ax, (3b) stabilize the original system (2).)
. e o _ pT _
is stabilizing, where P: - P: - P"”: > OTsoIves Numerical example: Consider system (2) with
AxPry1A; — a” Py = 2a° B By, 4) K=smesmaa
with a chosen such that oo i tm ane ] o[ inn onm omn]
0<af < min (1 min|A(\Il;)|) (5) 3 0.2378 o©.1665 0.9092 | - | o.s045 o0.s866 o0.0907
) . 0.9478 0.3841 0.5397 0.0501 0.8278
Moreover, all the characteristic multipliers of Ax — Bx H 4= [ 05007 oe138 0.2410 ] Bo=| 0Tt02 oloise ]
lie within the a-circle centered at the origin. [ | By = [ e JTne2 ]. By = [ 9:5338 o0 ]
0.6295 0.99985 0.3083 0.5911
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0.0165. We first use the periodic Schur decompaosition
algorithm [6] to obtain the modified system (6).

1.4427 -0.5589 -~0.5639 —-1.1655 —-0.1518

Ag = o 0.2124 —0.4018 , A5 = 0 -0.8861
o 0.23587 o
-1.7714 -0.0357 0.3271 ~0.9135 ~0.5568
A = ] 0.5762 —0.0318 , By = ~0.5586 0.6212 {,
0 ~0.1276 0.1710  -0.07328

~1.2698 -1.3888 0.8203
0.0834

—0.0709

0.2595
0.2668

0.4683
—0.2134

—-0.1987
-0.2660

- o

It is easy to see that ¥, is now upper-triangular too:

0.7911 ]

. 2.9785  0.1226 —0.7568
A3dlAy = 0 —0.0717 —0.0202
0 0 0.0165

and that the characteristic multipliers have been found
correctly. By (5), the maximum value o can take is
0.0165. So we take o = 0.25. Solving (7) and (8), we get

.= ~—0.8318 01949 06238 5 _ 0.4581 0.2489
3% _0.4744 03665 -0.0073' 2= 04202 0.0072
. = —0-6202  0.0237 0.1721
1= -1.1986 -0.2660 0.2532 "

It can be verified that the closed-loop monodromy matrix

(A3 - By H3)(Ay — ByH3)(A) - B1Hy) =

0.0120 0.0990 -0.0111
-0.0159 —0.0487 0.0049
0.0343 0.0158 0.0001

has eigenvalues —0.0182+4:0.0308: (abs. value 0.0358) and
—4.69% 10~3, which all have magnitude less than o. Thus
the stabilizing feedback given by Theorem 1 does indeed
place the characteristic multipliers within the a-circle.

2.1 General case

The ‘(Ax, Bx) only stabilizable’ case is simple, we apply
theorem 1 to just those controllable modes which need
to be moved, viz., which are outside the a-circle. More
precisely, we first use the periodic Schur algorithm [6,7)]
to put ¥, in Schur form as well as standard controllable

form:
7= [ Yar s ] ©)

where 22 is non-singular and defines the uncontrollable
modes. Furthermore, within ¢1,, we order the eigenvalues
so that those within the a-circle are on top. These need
not be touched, and include the zero eigenvalue. Then
Ak, By can be partitioned as

Ag(k) x By(k)
Ak=[ . ) Au(k)]’B":[Bbk ]’
0 | Ax(k) — é

(10)
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is controllable; and the characteristic multipliers of the
n1 X 1 matrix Ap(k) are ‘bad’, or outside the a-circle.
Note that since all subsystems of a controllable system are
themselves controllable, the periodic pair [As(k), By(k)] is
also controllable. Now just apply theorem 1 to the (con-
trollable) pair [As(k), Bo(k)], and find n; x m (periodic)
matrices Hp(k) such that Ap(k)—Bs(k)- Hy(k) has its char-
acteristic multipliers inside the a-circle. Since all Ay(k)

where the pair

[ Ag(k)  x
0 Ap(k)

By(F)
By(k)

0.8343
~0.1429 ,
~0.5478

-0.2900
-0.3836 °*
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are non-singular, we can always choose a so small that
a1 Ay(k) is stable (in a discrete periodic sense). Then
the desired state feedback matrix for the overall system is

Hy(k) lo] :

given by Hj =[0

Remarks:

1. Note that we cannot shift the eigenvalues of the
uncontrollable part ;. However, since [A,Byx] is stabi-
lizable, these uncontrollable modes are stable. In general,
these may not be within the a-circle. So unless we assume
that A(t22) are within the a-circle, we cannot achieve our
goal of putting all characteristic multipliers inside the a-
circle.

2. We only need to work with a sub-system of size
n; — this leads to savings in computation, especially if
n; is much smaller than n.

3. Concluding remarks

We have presented an elegant algorithm for stabilizing a
linear periodic discrete-time system using periodic state
feedback. The algorithm is very simple, and mainly in-
volves the solution of a periodic Lyapunov equation. It
gives a number 0 < a < 1 such that all closed-loop poles
have magnitude less than a. Moreover, it works only with
that sub-system whose poles need to be shifted, and is
cheaper than an explicit pole placement routine [4). Thus
it is attractive for stabilization problems where the exact
location of closed-loop poles is unimportant.
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