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Abstract

We propose an elegant and conceptually simple method for computing
the periodic solution of three classes of periodic matrix equations — Ric-
cati, Lyapunov and Sylvester. Such equations arise naturally in several
problems of linear system theory. Our approach is very attractive from a
numerical point of view, since it is based on the periodic Schur form of
matrix sequences G;, H;, t = 0,..., K — 1, which utilizes stable numerical
techniques involving unitary (orthogonal in the real case) transformations
only. Our approach readily extends to more general situations, such as
when the equations are given in implicit or descriptor form.

1 Introduction

Systems and control theory has been a very active subject of research for a
long time now. In recent years, there has been an increased cross-fertilization

1This research was supported by the National Science Foundation (Grant CCR, 9209349).
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of ideas between this field and linear algebra — and this has played a crucial
role in the development of both disciplines. One area of system theory where
numerical linear algebra has had a direct impact is the development of stable,
efficient and reliable algorithms. All too often in the past, ‘textbook’ methods to
solve control problems have turned out to be numerically naive in the context of
limited-precision arithmetic. This paper also focuses on the interplay between
linear algebra and system theory, and proposes a powerful new tool for the
numerical solution of discrete-time periodic Riccati, Lyapunov and Sylvester
equations. These equations arise in a fundamental manner in all analysis and
design problems involving periodic systems, especially those related to stability,
optimal control and filtering, model reduction, observer design etc. Hence it is
imperative that we seek better and more efficient ways of solving them in as
general a setting as possible. The method described in this paper is a theoretical
as well as an algorithmic tool, in that it extends the range of problems for which
solutions exist. It gives a clear understanding of the periodic structure of these
equations, and hence is more than a mere extension of existing procedures for
solving the time-invariant versions of these equations.

The unifying thread to our solution techniques for the three equations is a Schur
approach based on a recent implicit eigendecomposition algorithm [1, 2] which
uses only unitary (orthogonal in the real case) transformations. It is well known
that the use of unitary transformations promotes numerical stability in algo-
rithms [3], thus our approach is numerically sound. Another notable feature
of our method is that it easily generalizes to handle the case when the matrix
equations are given in descriptor form. Descriptor systems, also referred to as
generalized state-space systems, arise in diverse applications such as the study
of large scale power systems, interconnected systems, robotics, econometrics,
decentralized control and decision networks, population models, optimization
problems ete. [4].

This paper is organized as follows. Section 1.1 introduces notation and some
preliminary facts about linear periodic discrete-time systems. For easy reference,
and to avoid undue repetition, we list below some oft-used acronyms:

DPLE: Discrete-time periodic Lyapunov equation
DALE: Discrete-time algebraic Lyapunov equation
DPRE: Discrete-time periodic Riccati equation
DARE: Discrete-time algebraic Riccati equation
SPPS: Symmetric periodic positive semi-definite
SDS: Stable deflating subspace

LQ: Linear quadratic
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Section 1.2 briefly describes the periodic Schur decomposition, which lets us com-
pute the Schur form of the product of several given matrices. This technique
also gives a unitary basis (of Schur vectors) for any deflating subspace of the
periodic pencil connected with these matrices. In Section 2, which deals with the
DPRE, we motivate our solution procedure by considering a well known problem
where the DPRE crops up naturally — the linear quadratic regulator problem.
The discrete maximum principle leads to a periodic symplectic system of dif-
ference equations in the state and co-state vectors. We use the periodic Schur
decomposition to compute the Riccati solution from the SDS of the (periodic)
matrix pencil associated with this system. Sections 3 and 4 give the details of
our treatment of the DPLE and the Sylvester equation respectively. For solving
the DPLE Pryy = ApPr A% 4+ BrBj, one procedure is to first upper-triangularize
Ay via the periodic Schur decomposition, and then employ a back-substitution
technique similar to the Hammarling method [5, 6] for a standard DALE. A
similar procedure can be used for solving the periodic Sylvester equation. We
also propose an alternative, deflating subspace approach for the Lyapunov and
Sylvester equations. Finally, we end this paper with some concluding remarks
in Section 5.

1.1 Discrete-time linear periodic systems

Throughout this paper, we denote the set of real numbers by R, and complex
numbers by C. We write A* for the conjugate-transpose of the matrix A, and
A(A) for the set of its eigenvalues. The system considered in this paper is

Tpp1 = Az + Brug, (1)

where z; € C™ and uy € C™ are the state and the input of the system respec-
tively. The matrices Ay and By are possibly complex, periodic with (integer)
period K" > 1, and have dimension n X n and n x m respectively. We allow Ay,
to be singular, thus the system might be non-reversible. The state transition
matrix of (1) is given by

1 t=r1
o(t,m) = { AciAra A A, 157
(¢, 7) undefined for ¢ < 7.

It is easy to see that ®(t + K,7 + K) = ®(¢,7) VI > 7 due to the periodicity
of Ag. The matrix U, := &(7 4+ K,7), 7 = 0,1,..., K — 1, is known as the
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monodromy matriz of (1) at time 7. It is non-singular (resp. singular) for all 7
if the system is reversible (non-reversible). The eigenvalues of W, are known as
the characteristic multipliers of (1). They are independent of 7. In other words,
all U, have the same spectrum. System (1), or equivalently W, is said to be
asymptotically stable if all its characteristic multipliers lie inside the unit circle.

The (finite-window) reachability grammian matrix of (A(-), B(-)) is given by
t—1
W (t,7):==> 0, i+ 1)B;B:®*(t,j+ 1), t > 7. (2)
j=T
Various system properties such as controllability, observability, stabilizability,
detectability can be defined just as for the time-invariant case [7, 8]. A sta-
bilizability criterion is that the system (1) or the periodic pair (A(-), B(+)) is
stabilizable at time 7 iff the pair (V,, W,(7 + K, 7)) is stabilizable [8].

1.2 Periodic Schur decomposition

Consider the set of (implicit) difference equations
szk-l-l == Hka7 k= 0717... (3)

with periodic coefficients Hy, = Hjix, G = Grig. For period K = 1, one
has the constant coefficient case H, = H, G = G, and it is well known that
the generalized eigenvalues of the pair (H, () yield important information about
the system (3). When K > 1, we first assume, for simplicity, that all G} are
invertible. Letting Sy := G3 ' Hy, (3) becomes

Zhpr = Gy Hy -z = Spzr, k=0,1,... (4)

which is an explicit system of difference equations in zp, again with periodic
coefficients Sy = Si1x. Now, the characteristic multipliers of (4) are crucial in
understanding the system behavior — these are of course the eigenvalues of the
monodromy matrices

S(k) :Sk-|-K—1"'Sk-|—1Sk7 kZO,l,...,I(—l. (5)
Note that all S*) have the same eigenvalues.

In order to fully describe the behavior of (4), we require the eigenvalues and
eigenvectors of all the eyclically shifted matrix products S, While computing
these, we must avoid, if possible, explicit formation of S®*) themselves. An
implicit decomposition of these matrices to achieve this is described in [1], [2].

Its existence can be described by the following theorem, whose proof is given
in [1]:
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Theorem 1. (Periodic Schur decomposition) Let matrices H;, GG,
1=0,...,K —1 be all n x n and complex. Then there exist unitary matrices

Qi, 7y 1=0,..., K — 1, such that

Glo = Z5 - Glo - Qu Ho = 75 - Ho - Qo
Gi=7; Gy Qs i, = 7; - Hy - Q
Gy =75 -Ga- Qs Hy=75-Hy- Qs (6)

GK—I — Z}k(_l . GK—I . QO HK—I — Z}k(_l . HK—I . QK—h

where all matrices Gi, H; are upper-triangular. Moreover, (); and 7Z; can be
chosen so that the eigenvalues of S*) appear in any desired order. |

Corollary. An easy observation is that in the case of a single sequence, say
H;y1=0,..., K —1, Q; alone suffice to put Wy (implicitly) in Schur form. Just
take GG; = I in theorem 1, then Q. \,0d x = Zi-1, 1 = 1,2,..., K, will work. &

Clearly, if the matrices G; are invertible, then each @; puts the matrix S
in Schur form, i.e., Q:SWQ; is upper triangular. However, the periodic Schur
decomposition result is more general, and works even for singular G;, H; — it
solves the periodic eigenvalue problem associated with (3). It is an extension of
the standard @ Z-algorithm [9] to K matrices, K > 1. The QZ-algorithm for
a matrix pair (G, H) avoids inverses while computing the Schur form of G™'H,
the periodic Schur decomposition does likewise while computing the Schur form
of S, Other features common to the two methods are simultaneous reduction,
implicit shifts, reordering of diagonal elements, and of course, numerical stability.

We remark here that, modulo some minor modifications, the periodic Schur
decomposition has a real matrix version also, in which one of the matrices in (6)
has a quasi-triangular form.

2 Discrete-time periodic Riccati equation

As an example of the occurrence of the DPRE in the analysis of periodic systems,
we consider the periodic Q) control problem. We shall see that this problem
is a natural setting for introducing our approach to the DPRE. It is known
that the optimal periodic solution to the L(Q problem is a linear state-feedback
control, and that the feedback gains can be obtained by solving an appropriate
DPRE. Using variational theory to study the L.Q) problem, we arrive at a set of
homogeneous difference equations with properties intimately connected to those
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of the above DPRE. We show that we can actually solve the DPRE (and hence
the L.Q problem) by using a geometric approach to study this set of difference
equations.

Linear quadratic optimal control problem:

The LQ problem is to find a control function which minimizes a given quadratic
cost functional. It can be stated as follows:

Find uj to minimize

1 o0
J=3 D (25Qurr + uiRrur), Qr=Q; >0, Ry = Rj >0, (7)
k=0
subject to xp11 = Apxr + Brug,

where the matrices Ag, Q) € C™*™, R, € C™*™ and By € C™*™ are periodic
of period K. |

Under the assumption that the system in (7) is stabilizable and detectable, the
optimal periodic control wu,, (k) is unique and stabilizing [10]. It is given in

feedback form by
Uopt(k) = —(By, + B} Pigr By) ™' By Pi1 Agary, (8)
where Py is the unique SPPS stabilizing solution of
P, = A3 P Ay — A5 Poyy Bi(Ry + By Pey1 Br) ' By P A + Q. (9)

Equation (9) is the DPRE underlying the LQ problem (7).

2.1 Previous methods for DPRE solution

Earlier procedures for solving (9) have used either quasi-linearization or time-
invariant reformulation. See [11] for a description and comparison of these two
techniques. In the quasi-linearization method, the SPPS solution of the DPRE
is obtained as the limit of periodic solutions of a sequence of DPLEs. This
procedure is the periodic analog of the well known Newton-type algorithm for
solving a DARE [12]. Tt follows the general philosophy of tackling a non-linear
(quadratic) problem through a sequence of linear problems.

In the second method, namely time-invariant reformulation, the underlying pe-
riodic system is viewed as a time-invariant system [13]. A periodic generator

[10] of the DPRE is obtained as a solution of an ‘equivalent” DARE. While
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this connection with a time-invariant equation provides interesting insight into
the periodic case, a direct procedure which exploits the fundamental periodic
structure of the problem is clearly of value. We provide such a direct method
in this paper using the periodic Schur form. Similar ideas are also described
in [1, 14, 24].

2.2 Proposed Schur method for the DPRE

The discrete maximum principle applied to the LQ control problem (7) gives us
the following Hamiltonian difference equations in the state x; and co-state ~;:

I ByR;'Bj lml ] Ao [xk] (10)
0 Az Y | | —Qn T L]
Equation (10) has the same form as (3), with the following correspondences
T I ByR;'B; A 0
Vi 0 AL —Qr 1

If A is invertible, so is G. Then (10) takes the form of (4), with the additional
feature that Sy = G ' Hy is now symplectic :

-1

o - [ I BLR.'B; Ay 0]
| 0 Aj —Qr 1
_ [ A+ BLR'BiA;T'Qr —BuR;'BrA! (1)
i —ATQx At

The periodicity of Si, implies that the system (10) sampled over K steps becomes

aar = SH 2, (13)
with S®) defined as in (5). Now assuming that y; = Pray, where Py is SPPS of
period K, we get

I I

from which it can be shown that Im[ ]g ] is an invariant subspace of S®*).
%

Indeed, for each k, a DARE can be associated with the symplectic matrix S*):

[P, T]SW [é] =0, (15)
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and it is not hard to see that P in (15) is a periodic generator [8] for the DPRE
(9). Invariant subspace methods to solve the DARE (15) are well known. In
essence, these find the stabilizing solution of the DARE by computing a basis
for the stable invariant subspace of the associated symplectic matrix. In order
to use such a procedure to solve (15), we have to find a basis for the stable
invariant subspace of S®). In principle, one can do this by reducing S® to
Jordan form, and taking the stable eigenvectors as the required basis. However,
such a computation is fraught with numerical difficulties and is best avoided. A
more appropriate technique is to use a Schur reduction instead. Schur methods
to solve Riccati equations have been popularized by Laub [15, 16] and Van
Dooren [17]. For the DPRE, it goes as follows. Find a unitary matrix T} to put
S in Schur form with a particular ordering:

*

Tk Tiok o9

Torr Took

Tk Tiok
Torr Toop

; (16)

Sllk Sl?k
0 Sy

where the partitioning conforms to that of Sy in equation (12), and Siix (resp.
Saak) is an upper-triangular matrix with stable (unstable) eigenvalues. Standard
assumptions [16, 8] on the problem guarantee that S*) has no eigenvalue on the
unit circle, and precisely n eigenvalues in the open unit disk. Also, Ty is then
invertible. The SPPS stabilizing solution of the DPRE can be written as

Py = T21k l_l}c (17)

As a slight modification, we could use the idea in [18] to find Py from just one
of Ty,x, T1;1 — this also guarantees positive semidefinite-ness of Py.

The key idea of our proposed method is that we can use the periodic Schur
decomposition of the sequence Si, k =0,1,..., K —1, to find the above ordered
Schur form of S®*). What is more, we can do this without forming the matrix
products S®). This is crucial in situations where one or more G} is singular,
for then the corresponding Sy [cf. (10)-(12)] does not exist, and none of the
S®) can be formed! This happens, for instance, when Ay is singular [cf. (11)].
However, our procedure still works because we use only the implicit form (10)
of the Hamiltonian equations.

To summarize, we use a deflating subspace approach to solve the DPRE (9).
Methods based on deflating subspaces have many advantages, and have been
used successfully in the solution of the DARE [17, 16]. Our algorithm brings all
those advantages to the periodic case.
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Numerical example:

As an illustration of our Schur approach, suppose we take, in (7), Ry = I,

Qr =1, and

K=3n=3m=2,

0.5586 —0.4254  0.4685 [ 0.7362  0.8886
Ay = | —1.0659 —0.3666 —0.4905 |, Bs= | 0.7254 0.2332 |,
| 0.6874  0.0786 —0.1981 | | 0.9995 0.3063 |
0.0919  0.5419 —1.5145 ] [ 0.3510  0.8460 ] (18)
Ay =| 02432 —04114 07030 |, By =| 05133 04121 |,
| —0.4407 01707 0.1933 | | 05911 0.8415 |
[ —0.1376 —0.0124  0.1057 | [ 0.2693  0.4679 ]
Ag= | 0.1127 —0.1821  0.0378 |, Bg= | 0.4154 0.2872
| —0.0179  0.2828 —0.2265 | | 05373 0.1783 |

where we have rounded off all data to four decimal places. The monodromy
matrix

0.1173 —0.3965  0.2326
Uy =P(3,0) = Az A1 Ag = | —0.0841  0.4494 —0.3020
0.0295 —0.3475  0.2615

has eigenvalues 0, 0.0739 and 0.7543, and infinite condition number. The zero
characteristic multiplier is due to A, which is singular — because of this, the
symplectic matrix Sj, defined in (12) does not exist. Nevertheless, we can use
the periodic Schur decomposition algorithm to compute a unitary basis for the
SDS of (G, Hy) defined in (11). This gives us the SPPS stabilizing solution of
the DPRE (9) as

P, = | 0.5588 1.2582 0.0421 —0.0973 1.5624 —1.2967 —0.0756 1.4094 —0.2699 |,

3.8442 0.5588 0.8751 1.3340 —-0.0973 —0.2283 1.0495 —0.0756 0.0214
, P = , Po=
0.8751 0.0421 1.5015 —0.2283 —1.2967 4.6357 0.0214 —0.2699 1.2011

The relative error, measured by
| A5 Pryr Ay — Ap Prya Br( Ry + Bj Pry1 Bi) "' By Pryr Ar + Q. — Pil| / || Pil,

is 5.1408 x 10716, 5.6533 x 107'¢ and 1.0674 x 10715 for £ = 0, 1 and 2 respectively,
which is comparable to the machine precision (e = 2.2204 x 10719).
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2.3 Extensions
The Schur procedure we just described for the solution of the DPRE is very

general. It can be easily adapted to deal with a broad range of situations, as

sketched below :

e Consider the case where the constraint is a generalized state-equation

We assume that Fj, is non-singular, with formation of E,7l A, being undesirable.
The Hamiltonian difference equations (10) now become

Th41 _
YE+1

which can be handled using essentially the same procedure as before.

E. ByR;'B;
0 A%

A 0

—Qr B} lxk ]7 (20)

Yk

o Cross-weighting (between the state and control vectors) can be incor-
porated just as easily in the performance index in (7).

o Often, one wishes to avoid forming R;'. This might be because Ry,
even though non-singular, is ill-conditioned with respect to inversion. We can
handle this case by staying with the original Hamiltonian difference equations
(where uy is given implicitly),

I 0 0 A 0 B
Th41 T
0 —B; 0 | LU+ 0 0 R, |L"

and using an orthogonal reduction procedure on (21) to construct a system
equivalent to (10):

e lx“l] = [:"k] (22)

YE+1 Yk

The rest is as before. We note that this extension follows the approach described
in [17].
e Combinations of the foregoing can be tackled.

e Finally, everything we have described so far in Section 2 applies in the
real case as well.
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3 Discrete-time periodic Lyapunov equation

Suppose we wish to find the steady-state periodic solution of the difference
equation

Pip1 = AP A% + BBy, (23)

where Ap € C™*™, B, € C™*™ are known periodic matrices with integer period

K > 17 ViZ.7 Ak_|_]( = Ak7 Bk-|—K = B;€7 VEk.

Equation (23) is called the discrete-time periodic Lyapunov equation (DPLE)
and is of interest in linear periodic system theory, especially in the areas of
optimal control /prediction, and stability. To give just one example of its use, it
is known [7] that determining the SPPS solutions of the DPLE corresponds to
finding the cyclostationary processes compatible with the discrete-time periodic
stochastic system

Tpy1 = Arxy + Brwy, (24)

where wy, 1s Gaussian white noise with zero mean and identity covariance matrix:
wg ~ N(0, I,,), wy, and xy are jointly independent, and the initial condition (at
time ko) is Gaussian with zero mean: xy, ~ N(0, Py, ). Note that the state covari-
ance matrix P, = F[z,ax}] satisfies (23). Thus, if we initialize system (24) with
Py, equal to one of the (steady-state) solutions® of (23), the resulting process xj
is cyclostationary (of period K').

For another interpretation of the DPLE (23), note that its steady-state solution
gives the (infinite-window) reachability grammian, which is defined as

k-1

Wi i= Wo(k,—o0) = 3. ®(k,j+ 1)B;B:®(k,j + 1). (25)

j=—o00

3.1 Alternative formulations for the DPLE

Equation (23) is an algebraic equation to be solved for K unknowns Py, ..., Px_1.
It can be rewritten as the discrete-time algebraic Lyapunov equation (DALE)

P = APA" + BB, (26)

Lalso called periodic generators



12 J. Sreedhar and P. Van Dooren

where
P 0 0
0o P 0 0
oo ) 7 (27)
Prg1 O
0 0 0o P
and
0 0 0 Ao By ©
A 0 0 0 0 By 0 0
A:: : Ay : R B:: : 0 : . (28)
oo 0 0 . . Bgp_, O
0 0 -+ Agp_, O o 0o - 0 Br—1

To solve (26) for Py,..., Px_1, we cannot blindly use well known DALE tech-
niques (Hammarling [5, 6]), since those methods would ignore the structure of
the matrices and solve for a dense P. However, it is interesting to note that the
eigenvalues of A are just the K-th roots of those of g = Ax_1Ax_o--- A1 Ag
(or any other monodromy matrix W, ), so we can justifiably hope to simplify A
using the periodic Schur decomposition. In fact, the following will work — first
use theorem 1 (corollary) to upper-triangularize Ay, then do a perfect shuffle
(permute rows and columns) of equation (26) to go to

P AP + BB,

where A is block upper-triangular with cyclic diagonal blocks, and P is “dense”
with diagonal submatrices (the (7, j)-th block-element of P is an n x n diagonal
matrix with the (7, j)-th elements of Fo,..., Px_1 on its diagonal). After these
preliminaries, the Hammarling method [5, 6] can be used to solve for 75, and
hence for Py, k =0,..., K — 1. The (i, 7)-th elements of all Py are found simul-
taneously — this would be important in a parallel implementation. However,
we shall not deal any further with this viewpoint in this paper.

Alternatively, to find the desired P;, 0 <7 < K — 1, all we have to do is solve
P,=®(r+ K, 7)P,®*(t+ K,7)+ W.(r+ K, 7) (29)

for each value of 7, where as already noted in Section 1.1, ®(7 + K, 7) is the
monodromy matrix at 7 (also denoted by W.), and W,(7 + K, 7) is the finite
window reachability grammian over one period starting at 7. Note that (29) is

a DALE. This method is elaborated further in Section 3.2.
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Previous methods for DPLE solution:

Equation (23) has been studied extensively, and conditions for the existence
and uniqueness of solutions are now well known [19]. Surprisingly however,
little attention has been paid to the efficient numerical computation of these
solutions. For instance, DPLEs arise in the iterative solution by linearization
of the DPRE [8, 11], and the authors mention [8, Section VIII-A] that at each
iteration, the bottleneck consists of solving a DPLE similar to (23). Whilst
tackling (23) through (29), they suggest multiplying Ay and By to form ®(-)
and W,(+), and then solving (29) via standard methods [5, 6]. Now, formation
of matrix products should be avoided as far as possible, both to reduce the
number of flops and for numerical accuracy. Moreover, explicit computation of
(29) followed by application of standard DALE techniques amounts to ignoring
the underlying structure, viz. periodicity, of the original problem — which is to
solve (23). And it is a cardinal rule of numerical analysis that structure should
be exploited whenever possible.?

In what follows, we describe two approaches for finding the SPPS solution of (23).
In the first procedure, which is described in Section 3.2, we reformulate (23)
as (29), but this reformulation is only implicit. The distinguishing feature of
our method is that while solving (29), the matrix products ¥, and W,(-,-) are
never actually computed — instead we implicitly triangularize W, using unitary
transformations (via the periodic Schur decomposition). The second method,
described in Section 3.3, treats (23) as a special case of the DPRE (9), and solves
it using ideas explained in Section 2.2.

3.2 Proposed method 1 — periodic Hammarling

This is basically a straightforward extension of Hammarling’s procedure [6] to
the periodic case. It is known that for a stabilizable periodic pair (A(-), B(+)),
the DPLE (23) has a unique SPPS solution iff A(-) is asymptotically stable [8].
The periodic generators P., 0 < 7 < K — 1 of this solution must satisfy the
DALE (29). To verify this for Py, consider equation (23) for £ =0,1,..., K:

bl

Pl — A()P()AS —|— B()Bg
P2 — A1P1A>{—|—B1Bik
— AlA()P()ASA){ —|— AlBOBgAT —|— BlBik

2quoted from the book Matriz Computations by Golub and Van Loan.
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K-1
Pr = ®(K,0)P®*(K,0)+ ZCI)(K,]' +1)B; B;®*(K,j + 1), (30)

=0

which is just (29) since Px = Py, and the summation on the right is W,(K,0).
Equation (30) can therefore be rewritten as the DALE

K-1
Po=UoPVy+ > ®(K,j+ 1)B;B:®*(K,j +1), (31)

=0

which must be solved for P,. We can apply to (31) a procedure similar to
Hammarling [5], and obtain Py as

Po=WVy, (32)

where Vj is upper-triangular. Then, using the recursion (23), the other matrices
P.,0 <17 < K —1, can be found in such a decomposition V. V* as well, where
V. is upper-triangular.

Finding Py:

To solve (31), it would clearly help to simplify the coefficient matrices using
stable transformations, as explained in [6, 5]. To this end, we appeal to the
periodic Schur decomposition (corollary of theorem 1). We saw that @; puts U;
in Schur form, viz.,

QrViQ: = Apyr— -+ Ay Ay =1 0,

In particular, (unitary) similarity transformation with Qo puts Wq in upper
triangular form. Thus pre and post multiplication, by QF and (g respectively,
would reduce (31) to the following equivalent DALE

K-1
Py =WoPoWs+ > (Q5®(K,j+ 1)B;) (Qz®(K,j +1)B;)", (33)

7=0

where ]50 = Qs FPoQo, and \Tlo = QyVoQo = AK_lAK_Q---Ale. This trans-
formation is carried out implicitly, meaning that ¥y and the ®’s are not actually

computed. Instead, the periodic Schur algorithm [1] works on Ay directly to
give (g and Ay.

The transformed equation (33) has a particularly simple form. This makes the
computation of Fy very easy. First of all, as mentioned earlier, Uq is an upper-
triangular matrix. What is more, each term of the summation on the right hand
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side can be put in the form GG*, where G is upper-triangular. This becomes
clear when we examine the individual terms. For 0 < 5 < K — 2, we have

Q@K j+1)B; = QoAxk-1Arx—2- AjppAjnB;
= Ax_1Ag—2--- Aj+2Aj+1(Q;+1Bj> (34>

upon inserting ;% 7 <1 < K, at appropriate places. Further, we can replace
(Q711 B;) by the upper-triangular matrix of its RQ-factorization.

3.3 Proposed method 2 — deflating subspace approach

It is well known that every Lyapunov equation is also a Riccati equation. This
simple observation leads us to yet another method, which we believe is novel,
for solving the DPLE (23). And that is to treat it as a DPRE, and use Riccati
techniques such as those described in Section 2.2 for its solution. If we make the
substitutions

Ak — Ak*7 Bk “— 07 Qk — BkBk*
in the DPRE (9), it reduces to the DPLE

Py = AP AL + BiBy™,

and hence the latter equation can be handled by considering the periodic eigen-

Ar 0
g . (35)
BBy 1

value problem:

I 0
0 A

Zk4+1 =

Notice that for the time-invariant continuous-time case, this idea boils down to
eliminating an off-diagonal block in a block-triangular matrix (see Section 4).

For simplicity, we explain this approach for a time-invariant Lyapunov equa-
tion (DALE) only. The basic idea carries over with minor modifications to the
periodic case, to illustrate which we shall give a numerical example later. Ac-
cordingly, let us now consider

P =APA* 4+ BB" (36)

with A already in Schur form. Under the assumption that A is stable, (36) has
a unique symmetric solution P > 0. As pointed out above, we can view (36) as
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an algebraic Riccati equation and invoke standard Riccati techniques. In par-
ticular, we can construct its solution from a basis for the SDS of the generalized
eigenvalue problem

NGz = Hz,  with G:[(I) g] H:l_gjg* (” (37)
If A is invertible, S := G=1IT is symplectic,
S::[[ 0]‘1[ A* O]Zl A" 0]
0 Al | =BB T _AT'BB AT |
and we know its eigenvalues — just those of A* and A=, Hence we could

compute S and find a basis for its stable eigenspace to determine the desired
solution P. However, for numerical reasons, it is preferable to work directly with
the pencil A\G — H and compute its SDS.

Stable deflating subspace:
As explained in [16, 17], we must find matrices (), Z to upper triangularize G

and H :
Qazzﬂ, Qﬂzzﬂ, (38)

with the stable generalized eigenvalues on top. Since A is in Schur form, ¢
is already upper-triangular; so we need to upper-triangularize H only (while
maintaining upper-triangularity of ). Once @ and Z have been found, with
ATRVAT:

7 =
[Zm Zaa

Unitary () and 7 satisfying (38) can be computed using the Q) Z-algorithm [9].

] , the solution to (36) is given by P = Z,, Z;;".

X [ |™MY] —Ax 1
each of which form a group, can be used to construct @ and 7 in (38) to have
the form

) : ) I 0 I 0
Alternatively, non-unitary transformations of the type [ d ] ,

o[ 40) [0

where the sub-block P directly gives the solution to (36). To see this, observe
that the matrices @) and 7 shown in (39) satisfy
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cor-[ o 11 3][1] -

(40)
onz—| T 0 A ol[1 0] _ A 0
" | -AP T || -BB* I || P I| = | —APA*—BB*+P I |°

Hence P solves (36) provided QH 7 is upper-triangular in (40).

A different, and perhaps simpler, procedure for finding @ and 7 in (38) is to
perform permutation on G and H followed by reordering of diagonal elements.
As before, there exist unitary and non-unitary variants to accomplish the re-
ordering step. Briefly, the procedure is as follows. Since A is already in Schur

form, G and H (defined in (37)) look like

N0 LO.
N N

Put G and H in upper-triangular form by block permutation (at two levels)
using

1

0o 7 0 .
T = — 41
[[0] 2l (41)

where I is the reversal matriz with 1s on its secondary diagonal. This permu-
tation essentially involves no work, and gives

N o N

. TCHT = H = ,
NN 0\

where I had the effect of reversing the order of rows and columns as indicated
by the arrows. We have almost reached our goal now, except that the stable

T*GT — G =

generalized eigenvalues are at the bottom! Next we take these to the top by
reordering. This reordering can be accomplished by either unitary transforma-
tions or non-unitary. In the case of unitary transformations, at each step we
can exchange adjacent diagonal elements only. We refer to [20] for details on
reordering diagonal elements.
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It is important to notice that in contrast to a ‘regular’ Riccati problem where
one must find the (ordered) Schur form of a 2n x 2n matrix, here in the special
case of Lyapunov, one needs to do only an n x n Schur decomposition of the A
matrix (followed by eigenvalue reordering). Thus the computational complexity
of this Lyapunov solver is comparable to other direct solution methods — we
do not increase complexity by going via Riccati.

Numerical example:

As an illustration of our proposed Schur method for the DPLE, we present a
numerical example. Consider the system of (18) again, with characteristic mul-
tipliers 0, 0.0739 and 0.7543. Before beginning to solve the Lyapunov equation
(23), we perform a state-space transformation (theorem 1, corollary) to put Ay
in upper-triangular form. The updated Ay and B}, are

K=3n=3m=2,

[ —1.1698 0.1174  0.8326 ] [ 04503 0.5171
Ay = 0 05839 —0.1585 |, Bs= | —0.1303 04241 |,
i 0 0 —0.5479 | | 13592 0.7003
—1.7604 0.2725 —0.2578 ] [ —0.0550 —0.5335 ]
Ay = 0 05789 00663 |, By=| 01998 0.3540 |,
| 0.0000 0.0000 —0.0000 | | 08325  1.0880 |
[ 0.3663 —0.1154 —0.1157 ] [ —0.2328 —0.0157 ]
Ag = 0 0218 00110 |, By=| 0.1593 —0.1887 |,
i 0 0 0.0186 | | —0.6740 —0.5453 |

where we have only shown four digits of accuracy. The new monodromy matrix
is, just for the record,

0.7543 —0.2924 —0.2354
—0.0000  0.0000  0.0000

Uy =P(3,0) = Az A1 Ag = [ —0.0000  0.0739  0.0044

showing that the characteristic multipliers have been found correctly. Next, after
the reordering trick explained above, we use the periodic Schur decomposition
algorithm to compute a unitary basis for the SDS of the periodic pencil defined
in (35). Finally, we obtain

P = —0.1872 0.1923 0.5515 —0.0315 0.0718 —0.0034
—0.6263 0.5515 1.8769 0.1568 —0.0034 0.7526

0.1957 0.2075 0.1064 |,
—0.3187 0.1064 2.9013

5.0254 —0.1872 —0.6‘263] [ 1.4551 —0.0315 0.1568] [ 10.0295 0.1957 —0.3187
P = F
k) k)
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which satisfy (23) with relative errors 1.8494 x 10716 1.6047 x 107'¢ and 3.6080 x
107! respectively, the relative error in computing P, being measured by

[ A1 Pro1 A5y + B Bisy — Bill [ 1Pl

The relative errors are of the order of machine epsilon, ¢ = 2.2204 x 10716,

3.4 Extensions

e The methods extend with minor modifications to the implicit Lyapunov
equation

E; P B = AP A} + BB, where A; = Ak, B, = Biyx, Ei = Eiyk,

by using the periodic Schur form of the sequence A;, F;, 1 =0,1,..., K — 1.

e Everything we have described so far in Section 3 applies in the real case
as well. In that case, we would have 2 x 2 blocks on diagonal corresponding to
complex conjugate eigenvalues.

4 Sylvester equation

When considering periodic observers, say
Zhpr = Frzp + Grug + Hyyy, (42)
with Fy, = Fiyx, Gr. = Gryr, Hy = Hiyi, to a periodic system

yr = Crag + Dyuy, (44)

Ar = Apyk, Br = Bryr, Cr = Crax, Dy = Dyyi, we encounter the following
periodic Sylvester equation

Tor1 Ay — P T, = HyCh, (45)

where the monodromy matrix Wp = Fi --- F} has to be chosen stable, and T}
has to be periodic and invertible. If we take T}, = I, this problem becomes one
of periodic pole placement, and we can use our Schur idea, as described in [21].
Alternatively, we can first choose Fj to satisfy the stability constraints (take e.g.
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Fy constant and stable), and then solve for T, from (45). In this case, recursively
applying (45) leads to
T4 — VT, = le (46)

where €, is a summation of matrices involving Ag, F, C) and Hy. (The mono-
dromy matrix Wr is independent of k& when Fj is chosen constant.) A straight-
forward approach is to use a periodic analog (involving the periodic Schur form)
of the Bartels-Stewart algorithm [23] to solve (46); and then recurse on (45)
assuming invertibility of A;. However, instead of involving ourselves with com-
plicated expressions like 0 which arise above, we can directly use the periodic
Schur idea as follows. Equation (45) is equivalent to

r o] [ A o][TI o Ay 0
= . (47)
Tiyr 1 H,.Cy Fy T, I 0 Fy
Ay 0
Denoting Sy = , we can define S®) in the usual manner (5). Since
Uy 0
S = , its spectrum is clearly that of W4 and of Wp. Also (47)
X Up
implies
-1
I 0 I 0 1\ 0
5 - , (48)
T, 1 T, 1 0 Up
so Im l fl{ is an invariant subspace of S*®) with spectrum W4. This invariant
k

subspace is unique if A(W4)NA(Ug) = ¢. So the periodic Schur algorithm with
reordering to put A(W4) on top of the product S*) will give bases for the spaces

I ) .
Im l T ] from the first n columns of the transformation matrices Jy:
k

I | Que —1
] -G e (49
The invertibility of Q11x and Q12 is guaranteed when (A, C}) is observable.

Assume now that we have done a preliminary reduction of A, Fj to Schur

form (actually Fj can be chosen to have this form). One way of finding these

transformation matrices (Jy is to first do a permutation to swap diagonal blocks:
0711 [ A o][o0 1 F, HyCy,
7o rof|

(50)
H,Cy Fy 0 A
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This is already in Schur form, but with the incorrect order of eigenvalues. So
we update the transformations to put the eigenvalues of W4 on top of S*) by
reordering, and this yields a solution to (45). Note that we did not need to
assume invertibility of Aj.

Extension of these ideas to the equation DTy Ap — Fi. T, By = C}, for periodic
observers in a descriptor variable framework, can be considered by taking pairs
of (periodic) matrices.

Another application:

An equation resembling (46) arises when one considers the spectral projection
problem for periodic discrete-time systems. See [22] for details in the time-
invariant case. Suppose one wishes to use a transformation method similar to
[23] to solve for Ty in (46) — clearly, as indicated earlier, we can use our Schur
method to implicitly put W4 and Wz in upper (or lower) triangular form, and
solve for T} by back-substitution. The other 7} can then be found recursively
using (45), provided Ay is invertible.

5 Conclusion

In this paper, a Schur method was proposed for finding the steady-state solu-
tion of some periodic discrete-time matrix equations. On the whole, only unitary
transformations were used. The DPRE in its various forms was solved by using
the periodic Schur decomposition to (simultaneously) triangularize the mat-
rices connected with a periodic pencil formulation of the Hamiltonian difference
equations. The DPLE was tackled by two methods. In one, it was solved after
simplification by a technique similar to the Hammarling method for a DALE.
In the other, deflating subspace approach, it was treated as a special case of the
DPRE. Similar techniques were used to study periodic Sylvester equations.

References

[1] A. Bojanczyk, G. Golub, and P. Van Dooren, “The periodic Schur de-
composition. Algorithms and Applications,” Proc. SPIE Conf., vol. 1770,
pp. 31-42, July 1992.

[2] J. J. Hench, Numerical methods for periodic linear systems. Ph.D. thesis,
University of California, Santa Barbara, CA, Sept 1992.



22

3]

[4]

[5]

[10]

[11]

[12]

[13]

J. Sreedhar and P. Van Dooren

J. H. Wilkinson, The Algebraic Figenvalue Problem. Clarendon Press: Ox-
ford, England, 1965.

D. G. Luenberger, “Dynamic equations in descriptor form,” IEFE Trans.
Automat. Control, vol. AC-22, pp. 312-321, June 1977.

S. J. Hammarling, “Numerical solution of the stable, non-negative definite
Lyapunov equation,” IMA J. Numerical Analysis, vol. 2, pp. 303-323, July
1982.

S. J. Hammarling, “Numerical solution of the discrete-time, convergent,
non-negative definite Lyapunov equation,” Systems & Control Lett., vol. 17,

pp. 137-139, Aug 1991.

S. Bittanti, “Deterministic and stochastic linear periodic systems,” in
Time series and linear systems (S. Bittanti, ed.), pp. 141-182, New York:
Springer Verlag, 1986.

S. Bittanti, P. Colaneri, and G. De Nicolao, “The difference periodic Ric-
cati equation for the periodic prediction problem,” IEEE Trans. Automat.
Control, vol. 33, pp. 706-712, August 1988.

C. B. Moler and G. W. Stewart, “An algorithm for generalized matrix eigen-
value problems,” STAM Journal of Numerical Analysis, vol. 10, pp. 241-256,
April 1973.

S. Bittanti, P. Colaneri, and G. De Nicolao, “The periodic Riccati equa-
tion,” in The Riccati Fquation (S. Bittanti, A. Laub, and J. C. Willems,
eds.), pp. 127-162, New York: Springer-Verlag, March 1991.

S. Bittanti, P. Colaneri, and G. De Nicolao, “Two techniques for the solution
of the discrete-time periodic Riccati equation,” in Proc. SIAM Conf. on
Linear Algebra in Signals, Systems and Control, (Boston, Massachusetts),
pp- 315-331, August 12-14 1986.

G. Hewer, “An iterative technique for the computation of the steady-state
gains for the discrete optimal regulator,” IEFEFE Trans. Automat. Control,
vol. AC-16, pp. 382-384, August 1971.

R. A. Meyer and C. S. Burrus, “A unified analysis of multirate and pe-
riodically time-varying digital filters,” IKEFE Trans. Circuits and Systems,
vol. 22, pp. 162-168, March 1975.



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

Periodic Schur form and some matrix equations 23

J. J. Hench and A. J. Laub, “On the numerical solution of the discrete-
time periodic Riccati equation,” in Proceedings of MTNS, (Regensburg,
Germany), Aug 2-6 1993. (also submitted to IEEE Trans. Auto. Cntrl).

A.J. Laub, “A Schur method for solving algebraic Riccati equations,” IKEFE
Trans. Automat. Control, vol. AC-24, pp. 913-921, December 1979.

T. Pappas, A. J. Laub, and N. R. Sandell, Jr.; “On the numerical solution
of the discrete-time algebraic Riccati equation,” IFEFE Trans. Automat.
Control, vol. AC-25, pp. 631641, August 1980.

P. Van Dooren, “A generalized eigenvalue approach for solving Riccati equa-
tions,” STAM J. Sei. Stat. Comput., vol. 2, pp. 121-135, June 1981. Erratum
in Vol.4, No. 4, Dec. 83.

L.-F. Wei and F.-B. Yeh, “A modified Schur method for solving algebraic
Riccati equations,” Systems & Control Lett., vol. 16, pp. 295-297, 1991.

P. Bolzern and P. Colaneri, “Existence and uniqueness conditions for the pe-
riodic solutions of the discrete-time periodic Lyapunov equation,” in Proc.
IEEE 25th Conf. on Decision and Control, (Greece, Athens), pp. 1439
1443, 1986.

A. Bojanczyk and P. Van Dooren, “Reordering diagonal blocks in real Schur
Form,” in Linear Algebra for Large-Scale and Real-Time Applications (M.
Moonen, G. H. Golub, B. De Moor, ed.), (Proc. NATO Advanced Study
Institute, Leuven, Belgium, Aug 3-14, 92), pp. 351-352, Kluwer Academic
Publishers, 1993.

J. Sreedhar and P. Van Dooren, “Pole placement via the periodic Schur de-
composition,” in Proc. Amer. control conf., (San Francisco, CA), pp. 1563—

1567, June 2-4, 1993.

B. Kagstrom and P. Van Dooren, “A generalized state-space approach for
the additive decomposition of a transfer matrix,” J. of Num. Lin. Alg. with
applns, vol. 1, no. 2, pp. 165-181, 1992.

R. H. Bartels and G. W. Stewart, “Solution of the matrix equation
AX + XB =C. Communications of the ACM, vol. 15, pp. 820-826,
September 1972.

J. Sreedhar and P. Van Dooren, “Solution of periodic discrete-time Ric-
cati and Lyapunov equations,” in Proc. IEEE 32nd Conf. on Decision and
Control, (San Antonio, TX), pp. 361-362, Dec 15-17, 1993.



