FORWARD/BACKWARD DECOMPOSITION OF
PERIODIC DESCRIPTOR SYSTEMS

J. Sreedhar*
Department of Electrical & Computer Engineering
University of Illinois at Urbana-Champaign,
I 61801-2307, USA.
Tel number: 1-217-333-7541

Paul Van Dooren'
Department of Mathematical Engineering,
Université Catholique de Louvain,
1348 Louvain-la-Neuve, Belgium.

Tel number: 32-10-47-8040

Keywords : Linear systems, Numerical methods, Dis-

crete time

Abstract

We propose a Forward /Backward (F/B) decomposition of
periodic discrete time descriptor systems and describe a
numerically reliable method to compute it. We mention a
couple of applications of this F/B canonical form; namely,
the solution of two-point boundary value problems, and
discrete time Floquet theory.

1 Introduction
We consider the periodically time varying (PTV) system

Y. E(k)z(k+1)=Ak)z(k), kezt, (1)
where Z% is the set of non-negative integers, z(k) is an
n-dimensional vector of descriptor variables, and R 1is
the smallest positive integer for which E(k) = E(k +
K),A(k) = A(k + K),Vk € Z*. We assume that the
matrices E(k) and A(k) are real, n x n, and satisfy the
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condition
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is regular.
Recently [1] we have shown that statement (2) is equiva-
lent to solvability or conditionability of X, an assumption

commonly made in connection with the Two-point Bound-

ary Value Problem (TPBVP)
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Here N simply specifies a time interval of interest. For a
discussion of the general time-varying TPBVP, see Luen-
berger [2, 3]. When studying equation (1), it is common
to write

V(E) E(RYW(k+ 1) z(k+1) = V(k) A(k) W(k) z(k),
(4)
where V(k) = V(k+ K), W(k) = W(k + K) are nonsin-

gular for all k£, and try to achieve as much simplification



in form as possible for E(k), A(k).
time-invariant (TT) case, where none of the above mat-
rices depend on k, one could reduce E, A to Schur form [4]
or decompose the system into “forward” and “backward”
subsystems [5]. Tn this note, for the periodic case, we take
the latter approach and demonstrate that it is possible to
obtain a canonical forward /backward (F/B) form in (4):

For instance, in the

E(k) « [é Eb(zk)] Ak [Afo(k) ?] :

where the subscripts ‘f” and ‘b’ refer to forward and back-
ward components. Such a F/B form appears to be quite
useful in the general study of periodic systems, e.g., in
realization [6]. As an immediate application, we demon-
strate that the decomposition into F/B form greatly sim-
plifies the boundary recursion formulae of Luenberger [3]
and also helps to extend an earlier result in discrete time
Floquet theory [7] to descriptor systems.

2 A spectral decomposition theo-
rem and the F/B form

We begin by introducing some notation. For X, it is well-
known that the spectrum, i.e., the set of eigenvalues count-
ing multiplicities, of the periodic pencil AE(k)— A(k) plays
an important role; we shall denote it by A([E, A]). The
special situations where either E(k) = I, or A(k) = I,, af-
ford some simplification and we mention these separately.
When E(k) = I,,, k € Z*, we have the forward transition
matriz

da(k, ko) =
Ak —1)A(k —2) ... A(ko + 1) A(ko) if k> ko > 0,
I k= ko> 0,
éa(k, ko) undefined for k < ko, (5)

and the characteristic multipliers s ([A]) = A([7, A]),
which are nothing but the eigenvalues of the monodromy
matrix ¢4 (ko + K, ko). Similarly, when A(k) = I,, k €
Z7F, we have the backward transition matriz

er(ko, k) =
E(ko)E(ko+1)...E(k—=1)E(k—1) if k > ko >0,
I ifk=ko >0,
g (ko, k) undefined for k < ko, (6)

and the characteristic multipliers A, ([E]) = X([E, I]),
which are nothing but the eigenvalues of the monodromy
matrix og(ko, ko + K).

We now state a spectral decomposition theorem, which
extends a well known result for time invariant pencils to
the periodic case.

Theorem 1. Given E(k), A(k) satisfying (1), (2), and
an arbitrary disjoint partition A1, As of the spectrum
/\([E,A]), ie, A, Ay C /\([E,A]), A UAy = /\([E,A]),
A1 N Ay = & it is always possible to find K-periodic non-
singular matrices V (k) and W (k) such that

V(k) E(k) W(k+1) = [Elé(k) Ezg(k)]

V (k) A(k) W(k) = [Alb(k) AQS(k)] :

where all matrices on the right are upper-triangular, and
X([E11, A1) A([Es2, As0]) = As.
Sketch of proof. Step 1. Put E(k) and A(k) in upper-

triangular form using the periodic Schur algorithm [8],
which always exists (and defines the spectrum unambi-
guously when (2) is satisfied). Arrange, by reordering di-
agonal elements if necessary, that

st =[50 B] = [0 G

:A17

with A([E117A11]) = A1 and A([EQQ,AQQ]) = AQ. This
step uses unitary periodic transformations only.

Step 2. Since /\([EH,AH]) N /\([EQQ,AQQ]) = O, zero
each off-diagonal block using a further (nonunitary) per-
iodic transformation. This involves solving the periodic
Sylvester equation

-1
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The left and right transformations from Steps 1 and 2 can

be combined to get V (k) and W (k). O

Remark 1. By choosing Ay, Ay appropriately in Theo-
rem 1, it is possible to have /\([EH7 AH]) lie on or inside
the unit circle and /\([EQQ,AQQ]) outside the unit circle.
Note that Ey1(k) and As2(k) are then nonsingular. Such
a form would be useful, for instance, in finding a mini-
mal order TT description of ¥ using strict system equiv-
alence [9] operations on its stacked [10] representation.
This work is currently under progress [11]. See [12] for
details of this procedure for standard state space systems,
viz., when E(k) = I,k € Z+.

Remark 2. Theorem 1 would be useful when one considers
the additive decomposition problem for periodic discrete-
time systems. See [13] for details in the time-invariant
case.



Remark 3. Theorem 1 shows the possibility of diagonal-
izing F(k) and A(k) when the eigenvalues A([E, A]) are

distinct.

Theorem 1 quickly leads to the promised F/B form, as
shown next.

Corollary 1. Given E(k) and A(k) satisfying (1), (2), it
is always possible to find K-periodic nonsingular matrices

V (k) and W (k) such that

VR) E(R)W(k+1) = [I o k)],

0
A I] | @

where Ey(k) and A¢ (k) are upper-triangular, Ay ([Af]) lies
on or inside the unit circle, and Xy ([Eb]) lies inside the unit
circle.

0
(

V (k) AK) W (k) = [

Sketch of proof. Use Theorem 1 (in particular, see Re-
mark 1). Premultiply with diag(El_ll(k),Az_zl(k)) to get
the final result in (7), with

Ap(k) = BT (k) An (k),  Ey(k) = Azy (k) Eas(k). O

We conclude this note by mentioning two uses of the
F/B canonical form, namely, periodic TPBVPs and dis-
crete time Floquet theory.

3 Two-point boundary value prob-
lems

Clearly, Corollary 1 decomposes the original system X into
a forward and a backward part:

zp(k+1) = Ap(k)ap(k), Ap(k+ K) = Ap(k),

Eb(k’)l‘b(k’ + 1) = l‘b(k’), Eb(k’ + [{) = Eb(k’),

Given z;(0), we can iterate (??f) forward in time to ob-
tain z;(k) for all k¥ > 0, and, similarly, given z(N), we
can iterate (?7b) backwards in time to obtain (k) for all
0 < k < N. The solution will, of course, involve the for-
ward and backward transition matrices introduced in (5)
and (6).

Alternatively, if the boundary conditions are specified
as in (3), then the F/B decomposition yields very sim-
ple expressions for Luenberger’s boundary recursion pro-
cedure [3] applied to X, as we show next. The idea behind
the procedure 1s to express the inherent linear restrictions
on z(0) and z(N) in the form of a boundary mapping equa-
tion Zo(0, N)z(0) + Zn (0, N)z(N) = 0. Likewise, one

could write

Z0(0, k)2(0) + Zx (0, k)z(k) =0, k=1,2,...,N, (9)

where 75(0, k) and 7 (0, k) are some appropriate n x n
matrices, to make explicit the linear restrictions on 2(0)
and z(k) that are imposed implicitly by (1). The basic
step is boundary recursion, wherein Z5(0, k) and 7 (0, k)
are found recursively as follows:

[F(k) G(k)] [Zo(o,k) 71 (0,k) 0 ]

ok IR | 0 —AGK) E(k)
Zo(0,k+1) 0 Zpy1(0,k+1
o TR ] BT

Tt is easy to see that F'(k) = A(k),G(k) = Zx(0,k) will
produce the desired zero block on the right hand side
of (10). Furthermore, when F(k) and A(k) are in the
F/B form, we have
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(11)

Comparing (10) with (11), we get all the necessary formu-
lae for boundary recursion of periodic systems. Finally,
the boundary conditions W (0)z(0) + W(N)z(N) = w,
with W(O) = [Wof,WOb], W(N) = [Wvawa] parti—
tioned according to (8), are independent of the boundary
mapping of ¥ if

[Wor 4+ éa, (N,0)Wns, Wae + ¢r, (0, N)Wes]  (12)
is nonsingular. Equations (11) and (12) are analogous to
the TT case discussed in [3].

4 Discrete time Floquet theory

Since time invariant linear system theory is much more
developed than its periodic counterpart, it is natural to
wonder under what conditions can the PTV system X be
converted into a TI system by a nonsingular transform-
ation as shown in equation (4). A transformation of the
kind
E(k) « Z(k) E(k) Q(k + 1),  A(k) « Z(k) A(k) Q(k),

where the matrices Q(k), Z (k) are nonsingular for all k, is

known as a kinematic similarity, and a K -periodic similar-
ity when Q(k), Z(k) are, in addition, periodic of period K.



In this section, we give a necessary and sufficient condition
for a K-periodic pair {A(k), F(k)} to be K-periodically
similar to a constant pair {F, A}.

We need a couple of lemmas first. Lemma 1 states when
a forward PTV system

p(k+1)= Ay (R)2(k), A (k+ K) = A7 (k).
can be transformed into a TT system
2(k+1) = Az (k)

under an invertible, K-periodic, change of variable z(k) :=

Tf_l(k’)x(k’) See also [7], [14].

Lemma 1. Given K-periodic matrices Ay (k), there exist
K -periodic invertible matrices Ty (k) satisfying

Uk A BTy (0 = Ag, keTF,  (13)
if and only if
Ar(j+i—1)
I
nullity
T A(G+1)
I Ap)

is independent of j, for 1 <i<n, 1 <j< K. (14)

Proof. Tn [T], we proved that (13) is satisfied if and only
if

nullity {Ag(j +7i—1)--- As (5 + 1) Az (j) }

is independent of j, for 1 <i<n, 1<j< K. (15)

But Af(j4+i—1)---Ar(j+ 1D)Af(j) = éa(j+1,4) has
the same nullity as the matrix in (14), because the latter
matrix is, modulo right and left elementary operations,
nothing but

diag {I,..., I,64(j +1,5)}.

Therefore, (14) is the same as (4). O

We state the next lemma without proof; it gives a cor-
responding result for the backward PTV system

By(k)a(k+1) = z(k), By(k+ K) = Ey(k).

Lemma 2. Given K-periodic matrices Ey(k), there exist
K -periodic invertible matrices Ty (k) satisfying

T, (k) Ey(k)To(k + 1) = By, ke ZT, (16)
if and only if
By(+i—1) I
nullity B
Ev(j+1) T
Eb(j)
is independent of j, for 1 <i<n, 1 <j< K. (17)

We now state the conditions under which ¥ is K-
periodically similar to a TI descriptor system. The F/B
form helps in deriving this result.

Theorem 2. Given K-periodic matrices FE(k), A(k),
there exist K-periodic invertible matrices 7(k), Q(k) sat-

isfying

Z(YER)Qk+1)=E, Z(k)A(K)Q(k)= A, keZ*

if and only if the nullities of
AG+i—1)
E(j+i-2) "

A +1)
E()  AG)
E(j+i—1) A(j+i-1)
and s
E(G+1) A +1)
E(j)
(19)
are independent of j, for 1 <i<n, 1 <j< K.

Sketch of proof. Necessity is easy to prove because (18)
implies

Z(+i-1)

QG +1) B oA
L QU)

(20)

for all j € Z1t. To show sufficiency, we must invoke the
F /B form and perfect shuffle, followed by Lemmas 1 and 2,
We omit the details here due to lack of space. O

5 Conclusion

In this note, we studied spectral decomposition of per-
iodic discrete time descriptor systems and described a



numerically reliable method to compute it. This led to
a Forward /Backward (F/B) form which is useful for both
numerical computation and theory—as shown for instance
in Sections 3 and 4, respectively. We expect that further
applications for these decompositions will be found.
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